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Abstract 

Background:  Zoonotic cutaneous leishmaniasis (ZCL) is a neglected tropical disease worldwide, especially the Mid-
dle East. Although previous works attempt to model the ZCL spread using various environmental factors, the interac-
tions between vectors (Phlebotomus papatasi), reservoir hosts, humans, and the environment can affect its spread. 
Considering all of these aspects is not a trivial task.

Methods:  An agent-based model (ABM) is a relatively new approach that provides a framework for analyzing the 
heterogeneity of the interactions, along with biological and environmental factors in such complex systems. The 
objective of this research is to design and develop an ABM that uses Geospatial Information System (GIS) capabilities, 
biological behaviors of vectors and reservoir hosts, and an improved Susceptible-Exposed-Infected-Recovered (SEIR) 
epidemic model to explore the spread of ZCL. Various scenarios were implemented to analyze the future ZCL spreads 
in different parts of Maraveh Tappeh County, in the northeast region of Golestan Province in northeastern Iran, with 
alternative socio-ecological conditions.

Results:  The results confirmed that the spread of the disease arises principally in the desert, low altitude areas, and 
riverside population centers. The outcomes also showed that the restricting movement of humans reduces the sever-
ity of the transmission. Moreover, the spread of ZCL has a particular temporal pattern, since the most prevalent cases 
occurred in the fall. The evaluation test also showed the similarity between the results and the reported spatiotempo-
ral trends.

Conclusions:  This study demonstrates the capability and efficiency of ABM to model and predict the spread of ZCL. 
The results of the presented approach can be considered as a guide for public health management and controlling 
the vector population.
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Background
Two types of leishmaniases, visceral leishmaniasis (VL) 
and cutaneous leishmaniasis (CL), are common in Iran. 
The CL has two forms in Iran, zoonotic cutaneous leish-
maniasis (ZCL) and anthroponotic cutaneous leish-
maniasis (ACL). In the high-risk areas of CL in Iran, 
Leishmania major and L. tropica are the most common 
parasite agents causing ZCL and ACL, respectively [1].
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Approximately 12 million humans are infected, and 
about 1.5 to 2 million new cases of CL occur each year 
worldwide [2]. More than two-thirds of new CL cases 
currently occur in six countries: Iran; Colombia; Alge-
ria; Syria; Brazil; and Afghanistan [3]. Approximately 
22,000 CL cases are reported in Iran each year, about 
80% of which are ZCL [1, 4]. The ZCL occurs more 
often in rural areas and is endemic in Golestan Prov-
ince located in northeastern Iran [5–7]. In 2015, 573 new 
cases were reported in this province, and the incidence 
of disease was 31.7 per 100,000 people [8]. According to 
research conducted in this province [5, 9], the primary 
and secondary reservoirs of the ZCL are two rodent spe-
cies, namely Rhombomys opimus and Meriones libycus, 
respectively.

There are two transmission cycles for this disease: wild 
(zoonotic) cycle and domestic cycle. In the wild cycle, the 
sand fly of the Phlebotomus caucasicus group, includ-
ing Ph. mongolens, Ph. caucasicus, and Ph. andrejivi as 
a vector, transmits the parasite from an infected wild 
rodent to a susceptible wild rodent (wild rodent-sand 
fly-wild rodent). But, in the domestic cycle, Phlebotomus 
papatasi as a vector, transmits the parasite (Leishmania 
major) from an infected human/wild rodent to a suscep-
tible human/wild rodent [1, 4, 10].

According to Weber [11], environmental components, 
mainly location, are an important factor in the outbreak 
of diseases. Geospatial information systems (GIS) can be 
applied as a monitoring system to better track the route 
of infection in the propagation of diseases, which leads 
to the design of control strategies [12–14]. Several spatial 
analyses have been used to model leishmaniasis world-
wide. Seid et al. [15] used statistical analysis and GIS to 
produce a risk map of CL based on spatial components 
in Ethiopia. In Iran, Mollalo et  al. [16] stated that envi-
ronmental factors significantly affect the spread of the 
ZCL. In their study, due to the environmental factors, 
the spatial spread of ZCL was limited to the northern and 
northeastern low-lying areas. Similarly, there are several 
studies on CL distribution in endemic regions, includ-
ing deserts, plains, low-altitude, and high-population 
regions, which have a clustering pattern of the CL [17, 
18]. Additionally, some CL studies have applied regres-
sion models [19, 20]. In India, Sudhakar et al. [21] gener-
ated predictive risk maps using GIS. Furthermore, many 
current studies have modeled the vectors and reservoirs 
of leishmaniasis in high-risk regions by GIS [22–24].

While the above studies are beneficial, researchers have 
also criticized them. For instance, Epstein [25] pointed 
out these models were inappropriate to present com-
plex systems such as individual behavioral components 
and socio-ecological complex relations for disease mod-
eling. In other words, these models ignore direct contact 

between humans, vectors, reservoirs, and the environ-
ment in disease modeling and mostly consider uniform 
mixing [26], which is not the case as individual agents 
interact with each other [27, 28]. Besides, they assumed 
humans as aggregate individuals, ignoring the heteroge-
neity of the population and key individual-based behav-
iors. Hence, heterogeneous individual agents operating 
over various social and geospatial spaces lead to explore 
the diverse view of disease dynamics [29].

Agent-based models (ABMs) are good alternatives to 
classical mathematical models [30]. Classical mathemati-
cal models account for a homogenous population and do 
not consider the dynamic interactions between entities 
(agents) within the complex system. These approaches 
also do not define the characteristics of the agents indi-
vidually but in a group. In contrast, ABMs divide a syn-
thetic population into different sections (types) and 
incorporate behaviors of agents within the system. In 
ABMs, known as a bottom-up approach, the behavior 
of the system is a result of collective interaction between 
individual agents. Therefore, considering heterogeneity 
in ABMs allow different agents in the same situations to 
make different actions [31]. This approach is more like 
to represent the actual condition and leads to a better 
understanding of the socio-ecological interactions than 
other methods [32].

Linking ABMs to spatial analysis leads to find and 
explore the complexity of disease spread over space 
[33]. Therefore, ABM has been applied to several epide-
miological studies, including swine flu H1N1 [25], chi-
kungunya [34], influenza [35], tuberculosis [36], malaria 
[33], cholera [37] and ZCL [38, 39]. Little consideration 
has been given in using ABM and GIS for ZCL. In a few 
research projects, having worked on this issue, research-
ers did not simulate the entire ZCL disease transmission 
cycle including not considering the rodents and their 
behaviors, not simulating all the main factors affecting 
ZCL spread such as humans and sand flies, and, or not 
modeling the individual-level reproduction behaviors of 
rodents. Also, in these studies, the temporal pattern of 
ZCL was not simulated. Based on the mentioned limita-
tions, rodents and their behaviors in our study will also 
be simulated, and the temporal pattern of ZCL spread for 
one year will be explored and evaluated. Moreover, our 
proposed ABM explores the spread of ZCL with respect 
to the interactions between humans, vectors, reservoirs, 
and the environment in Maraveh Tappeh County, in the 
northeast region of Golestan Province in northeastern 
Iran, which is endemic for ZCL. In this study, GIS will 
also be employed to show the agent’s geospatial loca-
tion and movement so that the model can indicate ZCL’s 
spatio-temporal diffusion through a set of interactions. 
Hence, the main aim of this work is to develop an ABM, 
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which integrates GIS and an improved Susceptible-
Exposed-Infected-Recovered (SEIR) model to analyze 
and evaluate the ZCL outbreak at a fine granularity (i.e. 
microscale) in an endemic area.

Methods
This section includes the study area, data collection, 
modeling, and model verification and validation. In the 
study area section, the case study is described. The input 
data set, including ZCL notification data, spatial, and 
census data, are presented in the data collection section. 
The model is introduced in the modeling section, which 
consists of three parts, including a brief overview of the 
proposed model, design concepts, and details of the 
model. In the remainder of the methods section, model 
verification and validation are explained.

Study area
Figure 1 shows the geographical location and the extent 
of the study area. Maraveh Tappeh County consists of 4 
rural districts and 96 villages; its climate varies from the 
hot desert in the north to cold semi-humid in the south 
of the county, with warm summers, mild winters, and a 
great deal of sunshine throughout the year. The maximum 
temperature varies from 40.6 °C to 35.6 °C in summer. In 
the southern regions, predominantly in the mountains, 
land cover often is semi-forest and rocky soil. In contrast, 
the northern regions are mostly semi-desert and desert 
and are covered by soft soil, which represents favorable 
habitats for rodents, the reservoir hosts of ZCL. Suitable 
habitats of these rodents have large colonies where are 
composed of several subgroups and create networks of 

underground burrows. Most rodent activities can be seen 
during spring and summer (April to October), and these 
rodents become more visible during the night and in 
the early morning outside of their burrows. This activity 
decreases considerably when the temperature reduces in 
fall and winter. Having suitable and permanent weather 
in the underground burrows prepares rodent blood for 
phlebotomine sand flies in the study area. The favorable 
temperature for sand fly survival is 35–45 °C in summer 
within these burrows [7].

Data collection
Based on the authors’ field observations and surveys and 
other leishmaniasis-related studies [16–18], the following 
parameters were chosen to be the main variables consid-
ered in the ABM generated by this study: rural popula-
tions, desert areas, altitude, and rivers (Fig. 2).

The input data set were generated from publicly avail-
able data sources as follows. The ZCL notification data 
were obtained from the Center for Disease Control and 
Prevention (CDC). The ZCL data only include people 
that went to health centers with clinical symptoms of 
ZCL, and the result of their microscopic test was posi-
tive. The landscape data were generated by the National 
Cartographic Center (NCC) and the United States Geo-
logical Survey (USGS). The data will be used in the county 
scale, and the field unit of the model is 100 × 100 m. Both 
NDVI and DEM were resized to the resolution of 100 m 
in ArcMap version 10.2 (ESRI, Redlands, CA, USA). In 
addition, the census data were collected from the records 
of national statistic organizations. It should be mentioned 
that all data (Table 1) were prepared in ArcGIS.

Fig. 1  Location of the study area, Maraveh Tappeh, Golestan, Iran. The maps were illustrated using ArcMap version 10.2 based on geospatial data 
obtained from National Cartographic Center (NCC), Iran
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Modeling
Overview
Our model is an agent-based framework that simulates 
human, sand fly, rodent, and environment behaviors 
regarding the spread of ZCL. Designing a spatial model 
of the ZCL spread as a complex geospatial system is the 
main objective of the model, including spatial and non-
spatial data and agent objects. Hence, our approach con-
siders the spatial heterogeneity and spatial behaviors 
explicitly. The agent-based simulation platform of Net-
Logo version 6.1.1 (Northwestern University, Evanston, 
IL, USA) was used for modeling. The model is described 
in Additional file 1. ZCL transmission is a complex pro-
cess, which depends on many parameters. To skip these 

complexities and to prevent the deviation of the model 
from its original purpose, some simplifying assumptions 
are described in the following sections.

We considered various aspects of known sand fly and 
rodent behaviors and several ZCL characteristics. Simu-
lation results provide some initial insight into how cer-
tain sand fly, rodent, and human characteristics might 
change the severity of the ZCL spread. To understand the 
dynamics of the ZCL outbreak and the spatially behav-
ioral heterogeneity, various features are considered for 
agents (sand fly, rodent, human, and environment). The 
unified modeling language (UML) diagram applied in 
this research is shown in Fig.  3. As seen in this figure, 
mobile agents and cell agents are two kinds of agents 

Fig. 2  Input evidence maps for the ABM. Both normalized differentiated vegetation index (NDVI) and digital elevation model (DEM) were extracted 
from the United States Geological Survey (USGS) (https​://gdex.cr.usgs.gov/gdex/) and were mapped in ArcMap version 10.2. These indexes were 
collected from the ASTER platform at 90 meters resolution

Table 1  Input data set

Data set Type Source

ZCL notification data Monthly ZCL cases from 2011 to 2016 at the village level Center for Disease Control and 
Prevention (CDC) of Golestan 
Province, Iran

Spatial data Vector County boundary, villages and rivers National Cartographic Center (NCC), 
Iran

Raster Normalized Differentiated Vegeta-
tion Index (NDVI)

Desert areas United States Geological Survey 
(USGS), downloaded from its 
website (https​://libra​.devel​opmen​
tseed​.org/)

Low vegetation areas

High vegetation areas

Digital Elevation Model (DEM) Elevation map United States Geological Survey 
(USGS), downloaded from its 
website (https​://gdex.cr.usgs.gov/
gdex/)

Census data Villages population Statistical Center of Iran, down-
loaded from its website (https​://
www.amar.org.ir/engli​sh/)

https://gdex.cr.usgs.gov/gdex/
https://libra.developmentseed.org/
https://libra.developmentseed.org/
https://gdex.cr.usgs.gov/gdex/
https://gdex.cr.usgs.gov/gdex/
https://www.amar.org.ir/english/
https://www.amar.org.ir/english/
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considered in the model. Mobile agents are separated 
into three classes: sand fly, rodent, and human. Each of 
them has its own set of variables and counters, includ-
ing Boolean variables for each infection state. Generally, 
ZCL is transmitted between mobile agents in four ways 
(human-sand fly-human, human-sand fly-rodent, rodent-
sand fly-rodent, and rodent-sand fly-human) by infected 
female sand flies [2]. Foraging and biting human/rodent 
are two main behaviors of the sand fly agents. Sand flies 
and rodents have variables for their age, health status 
(such as susceptible and infected), reproduction, and 
environment (known as a “patch”) on which they will be 
initialized. At any point in time, human agents may reside 
in one of four states: susceptible; exposed; infectious; or 
recovered. In addition, cells define the ABM environment 
in which mobile agents are moving, interacting, and 
doing their tasks. Each of these cells is a statistic agent. 
They generate the risk value (susceptibility) of their areas 
based on the number of human infections occurred in 
each place, which is calculated according to observations 

of the cell agents. Furthermore, we assumed that envi-
ronmental factors in each field unit are constant. They 
show the habitat suitability, which can affect the spread 
of ZCL.

To create a model as simple as possible while preserv-
ing the required complexity, we assumed that the time 
steps are short enough to gain better dynamics and long 
enough to prevent dispensable overhead. After defining 
the time steps, we can set the other parameter values. The 
disease parameters and the number of contacts among 
agents depend on the time steps; thus, they should cor-
relate to the timing of the model. The model is updated 
each 8 h intervals, called ticks in this manuscript. Fig-
ure 4 presents a UML sequence diagram that is an over-
view of the entire scheduling process. In this diagram, we 
can see an outline of the sequence of procedures and the 
schedule of interactions between various agents at each 
time step. Each procedure is specified according to a spe-
cific class of agents based on the UML class diagram.

Fig. 3  UML class diagram of the ZCL model
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First, the time counter is updated at each discrete time 
step. Then, the field unit values are initialized based on 
the spatial, statistical, and ZCL data. Next, cell agents 
are placed in the environment. Then, sand flies appear in 
the environment at various random locations. Sand flies 
move to low altitude areas and begin to forage and bite 
humans or rodents if the time is between 00:00 h and 
8:00 h on any given day of spring or summer, and they 
have completed the larval stage. Then, humans appear in 
their village centers and move freely through the environ-
ment. Next, rodents appear in the environment with ran-
dom positions and move to the desert areas where their 
favorite habitats are. Agents of the same type are pro-
cessed at each time step by utilizing a random sequence. 
Some procedures are only operated under specific cir-
cumstances, e.g. the recover function only begins after a 
human is infected.

Design concepts
To create the model, we utilized the knowledge from pre-
vious models of infectious diseases. The ZCL progresses 
like an improved SEIR model where a human status can 
be changed in different stages depending on whether and 
when an individual contracts the disease. In addition to 
the progression of the ZCL, the spread of this disease pri-
marily depends on interactions between sand fly, human, 

and rodent. Other factors play a role in disease spread, 
including the spatial and statistical data of the case study, 
affecting the spatio-temporal dynamics of ZCL.

Disease spread is emergent behavior captured in our 
model and is governed by the behaviors and characteris-
tics of the mobile agents. Although agent behaviors and 
decisions (which different agent types need to make. For 
instance, in each iteration, sand fly agents decide whether 
they want to move or not) are strictly defined, stochas-
ticity is present in each. Sand flies are capable of sens-
ing other mobile agents (human/rodent) and cell agents 
(low altitude areas/rivers). Humans can sense all patch 
variables, including patch color and population density. 
When cell agents perceive the interactions among sand 
fly, human, and rodent through their landscape, ZCL sus-
ceptibility is updated. In the interactions of the model, we 
can explore the complex trajectories of ZCL outbreaks 
by disorganized interactions among agents and between 
agents and the environment at a microscale. Sand flies 
interact with other mobile agents (human/rodent) during 
the biting and foraging procedure. Also, when sand flies 
arrive at the river patches, they lay eggs. Moreover, when 
a human is bitten by an infected sand fly, the risk value 
of the field units where a human is located increases. 
Many processes in the model involve some levels of sto-
chasticity. We randomly assigned some characteristics 

Fig. 4  Display of the ZCL model by utilizing the UML sequence diagram
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of the agents (e.g. the age of sand fly, rodent’s reproduc-
tion status, and initial location of mobile agents) at the 
initialization of the model. Biting and disease transmis-
sion are both stochastic procedures controlled by a user-
controlled slider. The mobile agents are collectives of 
agents that have different locations, movement patterns, 
and variables. At certain times of day (00:00–08:00 h), 
the sand fly moves and starts to bite and forage. When a 
sand fly reaches adulthood, it moves and lays eggs for the 
entirety of the lifespan. By observing the model, the user 
can track the statistics such as the number of humans 
with various statuses (according to the SEIR model) per 

iteration and the susceptibility of each cell. The user also 
shows the highest infection sites in the study area and the 
temporal pattern of the ZCL in one year of simulation.

Details
The initialization of the model depends on the landscape 
data of the study area, which includes the spatial and 
non-spatial data. We determined the parameter values 
according to related works, some of the most authorita-
tive websites, and experts’ judgments. All parameters and 
their values are described in Table 2.

Table 2  Summary of input parameters and their values used in the ABM model

Parameter Description Values Source

Sand fly Flight range 500 m [40]

Active period Every day from 00:00 h to 8:00 h in spring and summer

Time interval between meal (forage/bite) and reproduce 5 days

Lifespan 80 days

No. of days a sand fly (egg) reaches the end of the larval 
stage and turns into the adult sand fly

30 days

Max no. of eggs produced by a sand fly in its whole life 
(lifespan)

100

Max no. of eggs produced by a sand fly in each discrete 
time step (reproduction)

30

Carrying capacity (maximum number of existing sand 
flies in each time step)

1000 Experts’ judgments

Sensory range for move 500 m

Sensory range for meal (bite/forage) 300 m

No. of days a sand fly spends in exposed state (ES) 10 days [41]

Baseline DMR (for larvae and adults) ( ρ) 0.1 [33]

Exponential mortality increases with age ( σ) 0.04

Degree of mortality deceleration ( ε) 0.1

Rodent Movement range 300 m Experts’ judgments

Active period Every day from 00:00 h to 8:00 h in spring and summer [42]

Lifespan 3 years

No. of days a newborn rodent turns into the adult rodent 100 days

Max no. of rodent reproductions during their lifespan 50

Max no. of rodent reproductions per reproduction 5

Carrying capacity (max. no. of existing rodents in each 
time step)

1000 Experts’ judgments

Sensory range for move 200 m

Human Movement range 50 m

Active period Every day from 8:00 h to 24:00 h

Initial no. 100–2000 User settable

No. of days a human spends in the exposed state (EH) 120 days [41]

No. of days a human spends in the infected state (IH) 150 days

The probability of transiting from recovered state to 
susceptible state (γ)

0.02 [43]

Infection 
transmis-
sion cycle

Transmission probability of infection from sand fly to 
human and rodent (α)

0.6 [34]

Transmission probability of infection from human and 
rodent to sand fly (β)

0.275
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Based on Fig. 3, mobile agents have particular coordi-
nates, their state changes under different circumstances, 
and they are enabled to move. The states of cell and 
mobile agents can change over time. Even though both 
kinds of agents are placed in a specified location within 
the study area, only the positions of mobile agents can 
vary at each time step. Mobile agents can move and 
explore the landscape based on their behaviors and 
determined rules. In addition, cell agents are static and 
do not move. Below, we list and describe the function of 
each sub-model.

Although collecting the distribution frequencies of vec-
tors and reservoirs can be a useful tool for more accu-
rate ZCL modeling, it is costly and time-consuming and 
needs special skills [8, 22]. Therefore, we assume that 
sand flies randomly appear in the environment. If age 
is 30 days (this means that as sand flies emerge into the 
adult stage and the larval stage ends [40]) and if time is 
between 00:00 h and 8:00 h in spring and summer [40], 
they start to search in their Moore neighborhood (is 
defined on a two-dimensional square lattice and is com-
posed of a central cell and the eight cells that surround 
it) where is within a circle with a certain radius (sensory 
range for move). Inside this area, they move toward their 
favorite site where the altitude is minimum. In addition, 
the maximum distance of the sand fly movement at each 
time step is 500 m. When adult sand flies are arriving at 
the end of their active period each day, they rest and do 
not move.

Sand flies can sense humans and rodents within their 
perception range (sensory range for a meal). There-
fore, if an infected female sand fly is within a distance 
of this range, the sand fly will attempt to bite humans 
and rodents. The chance that the bite will be success-
ful is user-defined through the transmission probability 
of infection from sand fly to human and rodent [34]. If 
the bite is successful, and if humans and rodents were 
susceptible, the humans’ status becomes exposed, and 
rodents become infected until the end of their lifespan 
[42]. Sand flies need blood for the development of eggs 
in their reproductive system [44]. Hence, if rodents and 
humans move to the perception range of sand flies, and 
if all of them (sand fly, rodent, and human) are infected 
or susceptible, then sand flies forage humans and rodents 
to reproduce. Moreover, if infected humans and rodents 
are within the perception range of susceptible sand flies, 
according to a certain probability (β) [34], sand flies enter 
the exposed state. Once the exposed period has passed, 
sand flies move from exposure to infectious and remain 
infectious for the remainder of their lifespan [40]. Conse-
quently, infected sand flies are ready to infect other sus-
ceptible mobile agents.

Unlike other traditional CL transmission models, we 
consider senescence (biological aging) of sand flies. The 
ABM defines age-specific mortality rates for adult sand 
flies and the larvae (i.e. the probability of death for sand 
fly agents increases with their age). According to Styer 
et al. [45], we used the logistic mortality model as follows:

where ρ is the baseline DMR (daily mortality rate), σ is 
the senescent/aging component (the exponential mor-
tality increase with age), ε is the degree of mortality 
deceleration, and Age is the age of the sand flies. These 
coefficients and their values were presented in Table 2.

Since each time-step was set to eight hours in the 
model, we calculated the 8 hourly mortality rate (EMR) 
for each age of the sand flies (Eq.  2). In this regard, at 
every age, sand flies have a certain chance of dying, and 
this chance increases exponentially with age.

Since rodent colonies, as well as riversides, are suitable 
areas for laying eggs [46], we set the following rules for 
the reproductive behavior of sand flies. Adult female sand 
flies reproduce under certain conditions, including pass-
ing at least the 5 days of their meal (forage and bite), the 
time is spring and summer, the number of existing sand 
flies in the model is less than the carrying their capacity, 
the number of their reproductions is less than the maxi-
mum number of their reproductions during sand fly’s 
lifespan, and if they locate at a 500 m radius of rodents 
and in the riverside. If all the above conditions are met, 
sand flies will produce a maximum of 30 new sand flies 
(eggs) randomly. If the parent sand fly is susceptible, 
exposed, or infected, a new sand fly will be susceptible 
too. New sand flies begin at age 0 and will reside in their 
location until their age reaches 30 days; at that time, they 
will move [40].

As the movement of sand flies affects the spatial move-
ment of infection, the displacement of rodent agents 
leads to the spread of ZCL through the landscape. 
Accordingly, rodents appear in the study area with a ran-
dom location. If time is between 00:00 h and 8:00 h on 
any given day of spring or summer, they move to their 
favorite places; desert areas are in their Moore neighbor-
hood (sensory range for move), and they rest and do not 
move for the remainder of a day. Based on experts’ judg-
ments, we have considered that the maximum distance of 
the rodent’s movement at each time step is 300 m.

The proposed model also implements a mortal-
ity process for rodents. The rodents die based on a 

(1)DMR(Age) =
ρ × eAge×σ

1+
ρ×ε

σ

(

eAge×σ − 1
)

(2)EMR(Age) = 1−
(

1− DMR(Age)

)1/3
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specified number of time steps. The probability of death 
for a rodent increases with their age. In this regard, 
at every age, rodents have a certain chance of dying, 
which increases as the age of a rodent increases. These 
procedures were chosen to limit the total of rodent’s 
population.

Adult female rodents reproduce under certain condi-
tions that include; time must be spring or summer, the 
number of existing rodents in the model is less than the 
carrying capacity, and the number of their reproductions 
is less than the maximum number of their reproductions 
during rodent lifespan. When all the above conditions are 
confirmed, rodents will produce a maximum of 5 new 
rodents randomly [42].

As in the real world, a human agent might or might not 
become infected by the disease. At the beginning of the 
simulation, humans appear in village centers, and they 
can move freely in their environment. A maximum dis-
tance of movement at each time step is assumed as 50 
m. The whole population of the studied area cannot be 
simulated because of the computational burden. Hence, 
we have assumed that the number of humans initialized 
in the villages is determined by the population distribu-
tion in the census data. Moreover, because of the short 
simulation time of 1 year, no getting older, no dying, and 
no birthing occur for human agents. In other words, no 
humans enter or leave the model.

Considering that many vector-borne diseases are 
known to have significant incubation periods (malaria, 

dengue, chikungunya, etc.), the SEIR model was cho-
sen as its exposed state addresses the incubation period 
(EH) (Fig.  5). For humans, the susceptible state is when 
a human is vulnerable to infection by the pathogen. A 
human is exposed when he/she is carrying the infec-
tion but is not yet contagious. The infected state is when 
a human has started showing symptoms and is ready to 
infect a sand fly. Over time steps, all infected humans 
directly enter the recovered state after passing the infec-
tion period (IH). In addition, the recovered human can 
turn into a susceptible human with a certain probability 
(γ). Infection in sand flies follows a similar cycle, except 
they do not recover once they have been infected. We 
also assumed that the rodents only have two steps of the 
SEIR model: the susceptible state and the infected state. 
In other words, when an infected female sand fly bites a 
susceptible rodent, it immediately turns into the infected 
rodent with a non-zero probability (α), and it remains 
infectious for the remainder of the lifespan. When a sus-
ceptible female sand fly bites an infected human/rodent, 
it gets infected with a non-zero probability (β). If a sand 
fly acquires the pathogen, it multiplies in the sand fly 
until it reaches enough strength to infect some other sus-
ceptible human/rodent, thereby completing a cycle. This 
period is called the exposed period for sand fly (ES). Fig. 5 
presents the structure of the SEIR model encompassing 
various components considered in the model.

Once a susceptible human is bitten by an infected 
sand fly, the value of cell susceptibility where the human 

Fig. 5  ZCL transmission through the interaction of sand fly, human, rodent, and the environment
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is located will increase by one unit. Therefore, the sus-
ceptibility map is updated by changing the cell agents. 
Accordingly, locations with more susceptibility represent 
the high-risk cells where a human is infected by a sand 
fly. In the remainder of this work, this map will be applied 
to trace the spatial spread of ZCL over time steps.

Model verification and validation
Before interpreting the results, it is essential to discuss 
the validation process. By model validation, we determine 
that the programming implementation of the abstract 
and conceptual model operates correctly [47]. We verify 
our model by conducting code walk-throughs, debugging 
software, looking for an incorrect implementation of con-
ceptual models, and verifying the calculations to assure 
the model has no logical errors in the translation of the 
model into code. Performing these tests leads to match-
ing the model with its intended design. To confirm that 
our proposed conceptual model is a reasonably correct 
representation of the real world, and to increase the cred-
ibility of the model, validation processes were executed.

To investigate the model, we ran four experiments var-
ying key parameters of interest. In the first experiment, 
we tested three levels of the population size of mobile 
agents. In the second experiment, we investigated the 
impact of the infectious period of humans on the epi-
demic. The third experiment tested three levels of initially 

infected sand fly and rodent. In the fourth experiment, 
we explored how restricting movement of human effects 
on the ZCL spread. These experiments were conducted 
to gain more understanding of the dynamics of the ZCL 
outbreak under various conditions. All these experiments 
not only allowed the model performance evaluation and 
led to testing the inner validity of the model, but also 
demonstrated how our model could be applied to explore 
endemic ZCL. The model was implemented based on the 
parameters mentioned in Table 2. It should be noted that 
the results of the proposed model were extracted from 
the average of twenty runs of the model. To validate the 
model, we compared the simulation outcomes with ZCL 
notification data (see Table 1). For this purpose, the spa-
tial and temporal pattern of ZCL is validated.

Results
Sensitivity analysis
Population size
Here we explore how a change to the population size of 
each mobile agent affects the ZCL outbreak. Figure 6a-c 
illustrates different statuses of human agents in the SEIR 
model within Maraveh Tappeh with various population 
densities of humans, sand flies, and rodents, respectively. 
This experiment tests how sensitive our model is to pop-
ulation sizes.

Fig. 6  SEIR results with different initial populations (human (a), rodent (b), and sand fly (c)). Blue, yellow, red, and green lines refer to susceptible, 
exposed, infected, and recovered humans, respectively. The left vertical axis in all charts indicates the number of susceptible humans. The right 
vertical axis in all charts shows the number of exposed, infected, and recovered humans



Page 11 of 17Tabasi et al. Parasites Vectors          (2020) 13:572 	

Infectious period of a human
This parameter defines the duration of a period in which 
a human can infect susceptible sand flies. Figure 7 shows 
the impact of the duration of an infectious period by the 
different length from 120 to 180 days. Since the treat-
ment process for infectious humans was not accounted 
in this model due to the simplification, it is assumed that 
all infected humans recovered after passing the infection 
period (IH) over time steps. The previous studies also indi-
cated that the infection heals spontaneously [48, 49]. In 
Iran, the average period of IH (without any treatments) is 
150 days [41]. Therefore, these periods were considered 
for the model. A longer infectious period leads to a greater 
proportion of infections during the period of an epidemic.

Initially infected rodent and sand fly
Figure  8a, b shows that as the percentage of initially 
infected rodents and sand flies increases, the number of 

infected humans grows. This is not surprising because 
the percentage of initially infected rodents and sand flies 
is expected to proportionally affect the probability that a 
susceptible human will experience an infection. By com-
paring Fig. 8a, b, it can be stated that an infected sand fly 
plays a more effective role in disease spread relative to an 
infected rodent.

Restricting human movement
One way to prevent and control the ZCL is to shorten 
human appearances in the habitats of vectors and res-
ervoir hosts (desert and low altitude areas, and riv-
ers). In the first state, humans can move randomly in 
the environment. In the second state, humans only can 
move to the extent of their villages (restricted move-
ment). To compare these two scenarios, all other 
parameters remain constant. Figure  9 shows the pro-
portion of infected humans in response to these two 
scenarios. As expected, without any movement restric-
tions, the infections have been considerably increased 
while restricting movements can result in an approxi-
mately 10% reduction in the percentage of infected 
humans.

Model validation
Spatial pattern
Based on the information obtained from ZCL data, three 
villages in the case study are highly infected. They are 
Ghareh-Gol-Gharbi, Ghareh-Gol-Sharghi, and Maraveh-
Tappeh. It could be because more desert and low altitude 
areas are located around these villages. It makes these vil-
lages more exposed to ZCL from sand flies. To evaluate 
the spatial pattern of ZCL, we compare the proportion of 
infected humans resulted from the simulation with ZCL 

Fig. 7  The human infection percentage throughout the epidemic in 
response to different infectious periods. The vertical axis of the chart 
indicates the percentage of infected humans. The horizontal axis of 
the chart refers to the infectious periods of humans

Fig. 8  SEIR results with different initial infected populations (rodent (a) and sand fly (b)). Blue, yellow, red, and green lines refer to susceptible, 
exposed, infected, and recovered humans, respectively. The left vertical axis in all charts indicates the number of susceptible humans. The right 
vertical axis in all charts shows the number of exposed, infected, and recovered humans
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data in these villages, as shown in Fig.  10. It is clearly 
observable that simulated results are almost consistent 
with real data. Furthermore, to track the infection path, 
we illustrate the spatial pattern of ZCL during the con-
secutive time steps, as shown in Fig. 11. High-risk areas 
show a high probability of ZCL exposure and infection. 
Figures 2 and 11 show that the spatial pattern of ZCL is 
much more localized around regions with high popula-
tion density, desert, and low altitude areas, and starts to 
spread along rivers.

Temporal pattern
To validate the temporal pattern of ZCL, we compare 
the proportion of infection per month obtained from 
the model with the reported ZCL data, as shown in 
Fig.  12. The blue bars show that the proportion of the 
infection started to rise in July, peaked in October, and 
then declined until the end of January. The ZCL data are 
reproduced quite well by the model. Therefore, the model 
provides a close representation of the ZCL epidemic.

Discussion
Leishmaniasis is an endemic disease in several coun-
tries, which has also imposed social and economic 
damages. In each epidemiological study, three effec-
tive components are location, human, and time [50]. 
Many epidemiological aspects of diseases have been 
considered in several provinces of Iran, including Ilam 
[51], Kashan [52], Kerman [53] and northern Kho-
rasan [54]. However, the above studies often ignored 

the environmental factors of leishmaniasis and only 
studied the characteristics of the individual patients 
and vector or reservoirs of their study area. Here, we 
developed a spatially explicit ABM integrated with GIS 
to explore the spatio-temporal spread of ZCL within 
an endemic region in northeastern Iran. We modeled 
the ZCL spread by explicitly representing the interac-
tions between vectors, reservoir hosts, humans, and the 
environment and the spread of the epidemic using the 
SEIR epidemic model to understand the disease spread 
realistically.

We verified the model by using four scenarios. In sce-
nario one, the results indicated that increasing the pop-
ulation size of each mobile agent leads to the growth of 
the infection. Accordingly, ZCL control programmes are 
based on reducing the population of rodents and sand 
flies [41]. Rajabi et  al. [38] corroborated similar results. 
Other studies conducted in Golestan province indicated 
that in the areas where the number of sand flies and 
rodents has been higher, the number of ZCL cases has 
been higher, which is consistent with our results [8, 44, 
55]. Moreover, this scenario showed that the spread of 
ZCL is similar to the traditional epidemiological curve.

In scenario two, we showed that a longer infectious 
period caused a greater infection during an epidemic. 
Since an increase in the infectious period, an infected 
human being can have more time to expose susceptible 
sand flies. It leads to developing disease quickly. There-
fore, reducing the infectious period (i.e. applying fast 
treatment) can be a suitable control strategy to deal 

Fig. 9  The human infection proportion in the case study in response to the two-movement rules. The red box indicates the percentage of infected 
humans for whom there was no movement restriction. The green box shows the percentage of infected humans for whom there was movement 
restriction
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with the increased severity of the disease. Raising public 
awareness of ZCL and rapid diagnosis of the disease in 
areas with limited access to health facilities lead to reduce 
scarring and, in turn, early treatment. This scenario is 
compatible with the results of previous epidemiological 
studies on the disease spread [56, 57].

In the third scenario, by comparing Fig. 8a, b, it can be 
stated that an infected sand fly plays a more effective role 
in disease spread relative to an infected rodent. There-
fore, to reduce the spread of ZCL, it might be most ben-
eficial to focus on reducing the number of sand flies with 
the disease rather than reducing the rodent population in 
endemic areas. Currently, the ZCL control programs in 

Iran include the control of rodents and personal protec-
tion of sand flies bite. When the epidemic of the disease 
occurs, indoor residual spraying (IRS) does the control of 
sand flies. This method is much more effective than the 
rodent control policies and quickly reduces the incidence 
of ZCL in the endemic regions [41]. Therefore, the out-
comes of this scenario correctly illustrate the accuracy of 
doing this control method in Iran.

In scenario four, we indicated how the restricting 
movement leads to reduce the severity of the epidemic. 
This finding is supported by relevant studies [37–39] 
and can be contributed to the fact that the most favorite 
habitats of rodents and sand flies are located outside of 

Fig. 10  Comparison of simulation results with reality in terms of the proportion of infected humans in three endemic areas in the case study. This 
map was obtained from the United States Geological Survey (USGS) (https​://gdex.cr.usgs.gov/gdex/) and was displayed in ArcMap version 10.2

https://gdex.cr.usgs.gov/gdex/
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the villages in the case study. Thus, humans can do more 
activities and, as such, have a more chance to become 
infected as they face more sand flies in the infected areas. 
As a result, the disappearing of humans in the habitats 
of rodents and sand flies is a key factor for enhancing 
human immunity level against sand fly’s bites.

Moreover, we showed that finding evidence for the 
validity of the model by challenging them with ZCL out-
break data is possible. The results of our proposed model 
indicated that the outbreak of ZCL principally arises 
from the desert and low altitude areas and riverside pop-
ulation centers. Therefore, most disease cases occur in 
these regions. Studies in Golestan province showed that 
most of the ZCL cases occur in arid and semi-arid areas 
with lower altitudes, which confirm our results [8, 44].

Our results also showed that the spread of ZCL has a 
particular temporal pattern. In other words, most of the 
prevalent cases occur in the fall. This finding could be 
due to the latent period of the disease (four months) and 
inactivity of sand flies in fall and winter. As most of the 
bites occur in early summer, expected to that humans are 
infected in fall by spending this exposed period. Besides, 
the inactivity of sand flies in fall and winter explained the 
reducing infections in early summer. It could be due to 
unfavorable climatic conditions for the survival of sand 
flies in this period of a year. These results confirm the 
previous studies on the temporal pattern of ZCL in the 
study area [7, 44, 58–60]. Despite previous studies [61, 
62] that did not consider the latent period of the disease 
for humans, we clarified the causes behind the particular 

Fig. 11  a Spatial pattern of ZCL during the consecutive time steps in the Maraveh Tappeh County. b Population density of village residents in 
the study area. In panel a, bold red areas indicate regions with the highest levels of the infection. In panel b, bold red areas show regions with the 
highest population density, and blue areas indicate the lowest population density. The maps were prepared by ArcMap version 10.2
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temporal pattern of the disease by modeling this param-
eter (EH). We recommend that during the activity period 
of sand flies, particularly the beginning of the warm sea-
sons, health authorities should use the control policies to 
reduce disease outbreak, such as minimizing the amount 
of exposed (uncovered) skin, applying insect repellent, 
staying in well-screened or air-conditioned areas and 
using insecticide spray.

We intend to extend this work in the future to model 
even more realistic situations, including the adaptive 
behaviors of humans, which can help reduce the spread 
of ZCL. Some specific adaptive behaviors that could be 
added to our model include changes in human behav-
ior to avoid sand flies if they have encountered sand 
flies previously, sand fly and rodent population control, 
and healthcare-seeking behaviors if the infection is sus-
pected. To represent human movements as more realistic 
behavior, a distance decay function could be applied in 
future works. In addition, future works should consider 
neglected influencing factors, which are effective on the 
ZCL epidemic, including climatic data (precipitation, 
humidity, temperature, etc.), culture, and the lifestyle of 
the population at risk to provide a clearer understand-
ing of the ZCL spread. Besides, there is no connection 
between the age of each human and his or her probability 
of being infected by the ZCL since we attempted to keep 
the model as simple as possible. However, these impacts 
do happen in real conditions, and they should be consid-
ered in future studies.

Conclusions
This survey creates a good match between the simulated 
and reported spatio-temporal trends, which demon-
strates the remarkable power of data-intensive computing 
and its profound effects in the future, GIScience research. 
This work accentuates the role of ABM to explore the 
explicit representation of spatio-temporal patterns of 
ZCL and mobility of agents; especially, it supports the 
modeling of spatial heterogeneity. Although the model 
has been implemented in Maraveh Tappeh County, it can 
be easily extended to other endemic areas that provided 
relevant ZCL data and to other vector-borne diseases by 
adjusting a few landscapes and socioeconomic parame-
ters. In this study, we developed an ABM integrated with 
an improved SEIR epidemic model to understand the 
spatiotemporal behavior of ZCL realistically. We investi-
gated the model based on four scenarios. Through these 
scenarios, the model indicated how increasing the popu-
lation could lead to a significant increase in new cases. 
The results confirmed that reducing the infectious period 
can be one of the effective measures to slow the transmis-
sion of the disease. The vector control policies can have a 
more significant impact to combat the disease than other 
measures. The results also showed that adopting restric-
tions on human movements lead to reduce the intensity 
of the epidemic. Besides, applying control policies at the 
beginning of the warm seasons could help health policy-
makers. Moreover, using the results of the spatial spread 
of the disease across time, health authorities can allocate 
the facilities to high-risk prone areas as properly.

Fig. 12  Comparison of simulation results with reality in terms of the temporal pattern of ZCL
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