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Abstract 

Background:  Ticks are blood-sucking ectoparasites that play a pivotal role in the transmission of various pathogens 
to humans and animals. In Korea, Haemaphysalis longicornis is the predominant tick species and is recognized as the 
vector of pathogens causing various diseases such as babesiosis, borreliosis, rickettsiosis, and severe fever with throm‑
bocytopenia syndrome.

Methods:  In this study, the targeted high-throughput sequencing of the 16S rRNA V4 region was performed using 
the state-of-the-art sequencing instrument, iSeq 100, to screen bacterial pathogens in H. longicornis, and the findings 
were compared with those using conventional PCR with specific primers. Microbiome analyses were performed with 
EzBioCloud, a commercially available ChunLab bioinformatics cloud platform. ANOVA-Like Differential Expression tool 
(ALDEx2) was used for differential abundance analysis.

Results:  Rickettsia spp. were detected in 16 out of 37 samples using iSeq 100, and this was confirmed using a PCR 
assay. In the phylogenetic analysis using gltA and ompA sequences of the detected Rickettsia, the highest sequence 
similarity was found with ‘Candidatus Rickettsia jingxinensis’ isolate Xian-Hl-79, ‘Ca. R. jingxinensis’ isolate F18, and ‘Ca. 
R. longicornii‘ isolate ROK-HL727. In the microbiome study, Coxiella AB001519, a known tick symbiont, was detected 
in all 37 tick samples. Actinomycetospora chiangmaiensis was more abundant in Rickettsia-positive samples than in 
Rickettsia-negative samples.

Conclusions:  In this study, iSeq 100 was used to investigate the microbiome of H. longicornis, and the potentially 
pathogenic Rickettsia strain was detected in 16 out of 37 ticks. We believe that this approach will aid in large-scale 
pathogen screening of arthropods to be used in vector-borne disease control programs.
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Background
Ticks are blood-sucking ectoparasites that play a piv-
otal role in the transmission of a variety of pathogens to 
humans and animals [1, 2]. Ticks harbor numerous bac-
terial, protozoal, and viral pathogens and transfer these 
into the host’s body when sucking blood, causing serious 

infectious diseases [3, 4]. Tick-borne diseases such as 
anaplasmosis, ehrlichiosis, borreliosis, babesiosis, and 
rickettsiosis represent emerging threats to public and 
animal health worldwide [5, 6]. Each tick species has pre-
ferred environmental conditions, which determine the 
geographic distribution of the tick and, consequently, the 
risk areas for tick-borne diseases [1].

Ixodid ticks (including Haemaphysalis longicornis) 
have been recognized as vectors of pathogens causing 
diseases such as babesiosis, borreliosis, rickettsiosis, and 
severe fever with thrombocytopenia syndrome (SFTS) 
in Korea [7–13]. Rickettsia spp. have been isolated from 
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infected animals, ticks, and the blood of human patients 
in Korea [13–18].

The main advantage of next-generation sequencing 
(NGS) is that a wide array of known and unknown patho-
gens can be identified simultaneously, without the need 
for designing individual specific bacterial primers [19]. 
iSeq  100, a recently released instrument, is capable of 
processing a targeted NGS library with accuracy compa-
rable to that of MiSeq, the most widely used instrument 
in microbiome studies [20]. iSeq 100 also features short-
ened sequencing workflow preparation time and a total 
sequencing run time of under 24 h. The reduced capital 
and maintenance costs are also advantages of iSeq  100 
over MiSeq [20].

In this study, we used iSeq  100 to detect bacterial 
pathogens in H. longicornis and compared the pathogen 
detection rates to those of pathogen-specific PCR test. In 
addition, we identified the strain of the detected potential 
pathogens using PCR with specific primers.

Methods
Sample collection and processing
Ticks were collected from the vegetation by flagging in 
Wonju (Gangwon-do Province; 37.389545, 127.801770) 
in July 2015. Species identification of collected ticks was 
performed by examination under a dissecting microscope 
according to the method of Yamaguti et  al. [21]. Only 
nymph stage ticks were used in the study. The surface of 
each tick was sterilized using alcohol before DNA extrac-
tion, and whole ticks were used for DNA extraction. 
DNA was extracted from each tick using a NucleoSpin 
DNA Insect kit (Macherey-Nagel, Düren, Germany) 
according to the manufacturer’s instructions, and stored 
at −20 °C until use.

Illumina sequencing and bioinformatics
Total DNA was extracted using the NucleoSpin DNA 
Insect Kit (Macherey-Nagel, Düren, Germany) fol-
lowing the instructions of the manufacturer. The 16S 
rDNA V4 region was amplified by PCR using primers 
of 515F (5′-TCG​TCG​GCA​GCG​TCA​GAT​G TGT​ATA​
AGA​GAC​AGG​TGC​CAGCMGCC​GCG​GTAA-3′) and 
806R (5′-GTC​TCG​TGGG CTC​GGA​GAT​GTG​TAT​
AAG​AGA​CAG​GGA​CTA​CHVGGG​TWT​CTAAT-3′) 
[22]. A limited-cycle (eight cycles) amplification step 
was performed to add multiplexing indices and Illumina 
sequencing adapters. Mixed amplicons were pooled, and 
the sequencing was performed with the Illumina iSeq 
100 sequencing system according to the manufacturer’s 
instructions, utilizing an Illumina iSeq™ 100 i1 Reagent 
v2 kit (San Diego, CA, USA).

Processing raw reads started with a quality check and 
the filtering of low-quality (< Q25) reads by Trimmomatic 

ver. 0.321 [23]. After a quality control pass, sequence 
data were merged using the fastq_mergepairs command 
of VSEARCH version 2.13.42 with default parameters 
[24]. Primers were then trimmed with the alignment 
algorithm of Myers and Miller [25] at a similarity cut-off 
of 0.8. Non-specific amplicons that do not encode 16S 
rRNA were detected by nhmmer [26] in the HMMER 
software package ver. 3.2.1 with hmm profiles. Unique 
reads were extracted, and redundant reads were clustered 
with the unique reads by derep_fulllength command 
of VSEARCH2. The EzBioCloud 16S rRNA database 
[27] was used for taxonomic assignment using the use-
arch_global command of VSEARCH2, followed by more 
precise pairwise alignment [25]. Chimeric reads were fil-
tered on reads with < 97% similarity by reference-based 
chimeric detection using the UCHIME algorithm [28] 
and the non-chimeric 16S rRNA database from EzBio-
Cloud. After chimeric filtering, reads that were not iden-
tified to the species level (with < 97% similarity) in the 
EzBioCloud database were compiled, and the cluster_fast 
command was used to perform de novo clustering to 
generate additional operational taxonomic units (OTUs). 
Finally, OTUs with single reads (singletons) were omit-
ted from further analysis. All subsequent analyses were 
performed with EzBioCloud, a commercially available 
ChunLab bioinformatics cloud platform for microbiome 
research (https://​www.​ezbio​cloud.​net/). The reads were 
normalized to 2500 to perform the analyses. We com-
puted the Shannon index [29] and performed principal 
coordinate analysis (PCoA) [30]. The Wilcoxon rank-
sum test was used to test the difference in the number 
of OTUs and the Shannon index between two groups. 
Significant differences in the relative abundances at the 
phylogenetic level between the two groups were assessed 
using the ANOVA-Like Differential Expression ver-
sion 2 (ALDEx2) package and were visualized with the 
beeswarm package in R software (version 4.0.5) [31].

PCR, sequencing, and phylogenetic analysis
To detect the partial sequences of 17 kDa antigen-encod-
ing gene of Rickettsia spp. in ticks, nested PCR was per-
formed with two primer pairs: Rr17k.Ip (5′-TTT​ACA​
AAA​TTC​TAA​AAA​CCAT-3′) and Rr17k.539n (5′-TCA​
ATT​CAC​AAC​TTG​CCA​TT-3′), which amplify a 539  bp 
fragment, and Rr17k.90p (5′-GCT​CTT​GCA​ACT​TCT​
ATG​TT-3′) and Rr17k.539n (5′-TCA​ATT​CAC​AAC​
TTG​CCA​TT-3′), which amplify a 450 bp fragment [32]. 
Sequencing of Rickettsia-positive nested PCR amplicons 
was conducted by Bionics Co. (Seoul, Korea). To iden-
tify the species using Rickettsia-positive nested PCR 
amplicons, the gltA gene and ompA gene were PCR-
amplified. The sequences of the primers were as follows: 
gltA, 5′-GGC​TAA​TGA​AGC​GGT​AAT​AAA​TAT​GCTT-3′ 

https://www.ezbiocloud.net/
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(forward) and 5′-TTT​GCG​ACG​GTA​TAC C CAT​AGC​
-3′ (reverse); ompA, 5′-CAC​YAC​CTC​AAC​CGC​AGC​-3′ 
(forward), and 5′-AAAGT TAT​ATT​TCC​TAA​ACC​YGT​
ATAAKTAT​CRG​C-3′ (reverse) [33].

A BLAST search was used to compare the obtained 
sequence of the gltA gene and ompA gene to those avail-
able in GenBank (USA). The obtained sequences were 
compared for similarity to sequences deposited in Gen-
Bank using BLAST. Gene sequences, excluding the 
primer regions, were aligned using the multisequence 
alignment program in Clustal Omega (Cambridgesh-
ire, UK) [34]. The phylogenetic trees were constructed 
by Molecular Evolution Genetics Analysis (MEGA  X) 
software using the maximum-likelihood method and 
employing the Tamura-nei model of nucleotide substitu-
tion with 1000 bootstrap replications [35].

Results
The microbiome composition of ticks analyzed 
with iSeq 100
The high-throughput sequencing of the 16S rRNA gene 
of 37 H. longicornis tick samples using iSeq  100 pro-
duced an average total read count of 7454 and 72 aver-
age number of OTUs from 37 tick samples. At the species 
level, all samples were dominated by Coxiella AB001519 

(5.48–89.51% of the total community, average: 39.87%) 
(Fig. 1). Williamsia maris (0.04–41.83% of the total com-
munity, average: 14.56%), which was the second most 
abundant species, was also detected in all samples. Rick-
ettsia rickettsii was detected in 16 out of 37 tick samples 
(Fig. 1).

Detection of rickettsiae using PCR
For the same set of samples, nested PCR of the 17 kDa 
surface protein gene determined 16 samples as posi-
tive for rickettsiae; the same samples were positive 
with NGS using iSeq  100. To identify the strain of 
Rickettsia spp. in our samples, species-specific PCR 
was performed using primers for partial sequences of 
gltA and ompA, and the resulting phylogenetic trees 
were obtained (Fig.  2). The PCR amplicon sequences 
of the gltA gene of all 16 Rickettsia-positive sam-
ples in the nested PCR demonstrated 100% homol-
ogy to previously reported DNA sequences, which 
are ‘Candidatus Rickettsia jingxinensis’ isolate Xian-
Hl-79 (MH932024), ‘Ca. R. jingxinensis’ isolate F18 
(MN550898), and ‘Ca. Rickettsia longicornii’ isolate 
ROK-HL727 (MG906678) (Fig.  2a, Additional file  2: 
Figure S1). For ompA, DNA sequences from Rickettsia 
revealed 95.9–99.5% homology to ‘Ca. R. longicornii’ 

Fig. 1  The microbiome composition of each tick at the species level (n = 37). Species accounting for more than 1% of total reads are shown. Tick 
samples 1–16 (red) were found to harbor Rickettsia rickettsii (relative abundance > 0.1%)
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isolate ROK-HL727 (MG906676), ‘Ca. R. jingxinen-
sis’ isolate Xian-Hl-79 (MH932069), and ‘Ca. R. jingx-
inensis’ isolate F18 (MN550905) (Fig.  2B, Additional 
file  3: Figure S2, Additional file  1: Table  S1). Among 
the 16 Rickettsia-positive samples, 11 samples had 
99.5% identity with those of ‘Ca. R. longicornii’ iso-
late ROK-HL727 (MG906676) and ‘Ca. R. jingxinen-
sis’ isolate Xian-Hl-79 (MH932069) and 98.6% identity 
with the sequence of ‘Ca. R. jingxinensis’ isolate F18 
(MN550905). Four samples showed relatively lower 

sequence identity (95.9–98.6%), which also showed 
poor sequencing quality (double peaks). One sample 
could not be sequenced (sample 13).

The association between the presence of Rickettsia 
and the microbiome in ticks
We investigated the association between the presence 
of Rickettsia and the microbiome composition in ticks. 
The average of the total read counts for the Rickettsia-
positive group (n = 16) and the Rickettsia-negative group 

16 samples

Candidatus Rickettsia jingxinensis isolate Xian-Hl-79 MH932024

Candidatus Rickettsia jingxinensis isolate F18 MN550898

Candidatus Rickettsia jingxinensis isolate ROK-HL727 MG906678

Rickettsia japonica YH AP017602

Rickettsia rickettsii U59729

Rickettsia prowazekii M17149

Rickettsia slovaca U59725

Rickettsia sibirica U59734

Rickettsia conorii U59730

Rickettsia parkeri U59732

Rickettsia africae U59733

(a)

Sample no. 16

Sample no. 2

Sample no. 14

11 samples

Sample no. 12

Candidatus Rickettsia jingxinensis isolate F18 MN550905

Candidatus Rickettsia jingxinensis isolate ROK-HL727 MG906676

Candidatus Rickettsia jingxinensis isolate Xian-Hl-79 MH932069

Rickettsia rickettsii KU321853 

Rickettsia slovaca U43808

Rickettsia sibirica U43807

Rickettsia parkeri MF737615

Rickettsia africae RAU43790

Rickettsia japonica YH AP011533

Rickettsia conorii  MF737641

(b)

Fig. 2  Phylogenetic trees based on partial sequences of gltA (a) and ompA (b) genes. Sequences of the Rickettsia spp. detected in the present 
study were aligned with those retrieved from the GenBank database. The phylogenetic trees were constructed in MEGA X software using the 
maximum-likelihood method, employing the Tamura-nei model of nucleotide substitution with 1000 bootstrap replications
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(n = 21) were 8033 and 7012, respectively. The number of 
OTUs were not significantly different between the Rick-
ettsia-positive and Rickettsia-negative groups (Fig.  3a). 
However, the Shannon index (bacterial diversity) was 
significantly different between the two groups (Fig.  3b). 
The results of PCoA (Fig.  3c) showed that the samples 
were not well organized as per Rickettsia positivity, but in 
those using permutational multivariate analysis of vari-
ance (PERMANOVA), Rickettsia positivity was found to 
be a significant factor in determining the tick microbi-
ome composition (P = 0.001). Following this, we analyzed 
the bacterial composition between the two groups and 
found that Coxiella AB001519 accounted for 29.27% and 
48.25% of the total reads in the Rickettsia-positive and 
Rickettsia-negative groups, respectively (Fig. 4). The dif-
ferentially abundant bacterial species between the groups 
were identified using the ALDEx2 algorithm. The rela-
tive abundance of Coxiella AB001519 was higher in the 
Rickettsia-negative ticks than Rickettsia-positive ticks 
(the expected P value of Wilcoxon rank test = 0.022); 
conversely, the relative abundance of Actinomycetospora 
chiangmaiensis was higher in the Rickettsia-positive ticks 
than Rickettsia-negative ticks (the expected P value of 
Wilcoxon rank test = 0.008). This pattern was also seen in 
the swarm plots of the relative abundances (Fig. 5a, b).

Discussion
Ticks can transmit bacterial, parasitic, and viral patho-
gens (often zoonotically) and often harbor more than 
one agent simultaneously [36]. Thus, obtaining broader 
information about pathogens in ticks is important from 
the perspective of proper diagnosis and treatment of 
these diseases [37]. In this study, we demonstrated that 
the recently released NGS instrument, iSeq 100, is useful 
for screening of bacteria in ticks. NGS approaches have 
the ability to identify a wide range of known or unknown 
pathogens or discover new organisms from a single test 
[19] without the need to design specific primers for each 
pathogen. This method makes it possible to identify path-
ogens immediately, not only in ticks, but also in arthro-
pods that serve as vectors and reservoirs for pathogens, 
such as mosquitoes, tsetse flies, and sand flies.

Considering this advantage, in this study, we screened 
the tick-borne bacteria using iSeq  100 and found that 
16 of the 37 ticks harbored pathogens of R. rickettsii. 
For an accurate taxonomic classification of the spe-
cies of the detected Rickettsia spp., we used conven-
tional PCR to amplify gltA and ompA sequences of the 
Rickettsia spp. and compared them with sequences 
deposited in GenBank using BLAST. In the phyloge-
netic analysis performed using MEGA  X software, the 
sequence similarity to sequences of ‘Ca. R. jingxinensis’ 

isolate Xian-Hl-79, ‘Ca. R. jingxinensis’ isolate F18, and 
‘Ca. R. longicornii’ isolate ROK-HL727 was 100% for 
gltA, indicating a close relationship between rickettsial 
isolates from H. longicornis from Korea with those from 
other East Asian countries. The close clustering of the 
Chinese and Korean strains of Rickettsia spp. may indi-
cate a close epidemiological link between these strains.

Ixodid ticks (e.g., H. longicornis, H. flava, Ixodes per-
sulcatus, and I. nipponensis) in Asia have the poten-
tial to be primary vectors/repositories of rickettsiae of 
medical and veterinary importance [15]. In 2006, the 
first case in Korea of R. japonica was isolated from a 
spotted fever patient [13]. Recent studies show a high 
prevalence of the emerging pathogen, Rickettsia raoul-
tii, in canine ticks [38].

In our study, the sequences of gltA and ompA are 
identical or highly homologous to those of ‘Ca. R. jingx-
inensis’ isolate Xian-Hl-79, ‘Ca. R. jingxinensis’ isolate 
F18, and “Ca. R. longicornii’ isolate ROK-HL727. ‘Ca. 
R. jingxinensis,’ a novel Rickettsia species in Rhipiceph-
alus microplus and H. longicornis ticks, was first dis-
covered in China (Shenyang and Wuhan) [39–41] and 
subsequently reported in Korea (Chungnam, Jeonbuk, 
and Gwangju) [42, 43]. Many associated ‘Ca. R. jingx-
inensis’ sequences have been deposited in GenBank. 
Of these, a gltA sequence (KU853023) was recovered 
from a patient, suggesting its potential pathogenicity to 
humans [44]. The pathogenicity of ‘Ca. R. longicornii’ 
is yet to be determined. However, 99.6% identity was 
detected with the ‘Ca. R. longicornii’ ompA sequence of 
an isolate from rodent spleen tissue obtained in Korea, 
and 99.9% identity was detected with the ‘Ca. R. longi-
cornii’ gltA sequence of an isolate from a human blood 
sample obtained in China [18, 44]. These results sug-
gest that ‘Ca. R. longicornii’ has the potential to infect 
mammalian hosts, including humans [45].

Although not detected in our samples, Borrelia burg-
dorferi, B. afzelii, and B. garinii, which are implicated 
in Lyme disease, have been isolated from Ixodes persul-
catus, I. nipponensis, and I. granulatus, which are dis-
tributed in parts of Korea [46, 47]. In addition, several 
Lyme disease (borreliosis) cases have been reported in 
Korea [48–51].

Coxiella AB001519, known as a Coxiella-like symbiont 
of H. longicornis, was detected in all 37 samples [52]. A 
bacterium belonging to Coxiella was reported as the pri-
mary endosymbiont of Amblyomma americanum ticks 
and was found to improve the reproductive health of the 
ticks [53–55]. Coxiella AB001519 was first identified in 
Japan in a phylogenetic association with the Coxiella-like 
endosymbiont of H. longicornis, and the Coxiella-like 
endosymbiont presenting more than 99% homology with 
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Fig. 3  Alpha and beta diversities of the microbiome of Rickettsia-positive groups and Rickettsia-negative groups. a The number of operational 
taxonomic units (OTUs) and b Shannon index between the Rickettsia-positive (n = 16) and Rickettsia-negative (n = 21) groups. c Microbiome 
composition of Rickettsia-positive and Rickettsia-negative groups are shown by principal coordinate analysis (PCoA)
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Coxiella AB001519 in Thailand, China, and Korea was 
found in H. longicornis [56–58].

In the present study, the relative abundance of A. chi-
angmaiensis found to be significantly higher in Rickettsia 

spp.-positive samples than in Rickettsia spp.-negative 
samples. A. chiangmaiensis, a Gram-positive bacterium, 
was isolated from the soil of a tropical rainforest in 
northern Thailand in 2008 [59]. Actinomycetospora spp. 

Fig. 4  The average microbiome composition of Rickettsia-positive ticks (n = 16) and Rickettsia-negative ticks (n = 21) at the species level. Species 
accounting for than 1% of total reads are shown
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Fig. 5  Swarm plots of the relative abundance of a Coxiella AB001519, and b Actinomycetospora chiangmaiensis in Rickettsia-positive ticks (n = 16), 
and Rickettsia-negative ticks (n = 21)
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are commonly found in the environment and are known 
to infect ticks [60].

Although we confirmed the ability of iSeq  100 to 
detect potential pathogens using PCR, the rarefaction 
curves of some samples did not show a plateau in their 
read counts (Additional file 4: Figure S3). To cover the 
whole microbial diversity, sufficient reads should be 
sequenced. To this end, it would be helpful to load a 
small number of samples in one run or to use a machine 
with a larger sequencing capacity, such as MiSeq.

The targeted NGS using the bacterial 16S rRNA V4 
region in this study cannot identify the exact strain 
of pathogens. However, this technique can theoreti-
cally detect all potentially pathogenic taxa in samples 
including Rickettsia spp., Coxiella spp., Borrelia spp., 
Bartonella spp., Francisella spp., and Anaplasma spp., 
and simultaneously analyze 96 samples. The cost of 
iSeq 100 reagents required for one run is approximately 
US  $2000, and the sequencing takes 18  h to com-
plete. Therefore, we believe that this method is useful 
in screening pathogens in arthropod vectors such as 
ticks, and can be followed by subsequent experiments 
to identify the exact strain of the suspected pathogens.

Conclusions
In this study, iSeq  100 was used to investigate the 
microbiome of H. longicornis and the potentially path-
ogenic Rickettsia strain was detected in 16 out of 37 
ticks. We believe that this approach can be used for 
large-scale pathogen screening of arthropods, which 
can be used in vector-borne disease control programs.
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