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Abstract 

Background:  Aedes mosquitoes are important invasive species contributing to the spread of chikungunya, dengue 
fever, yellow fever, zika virus, and other dangerous vector-borne diseases. Aedes albopictus is native to southeast Asia, 
with rapid expansion due to human activity, showing a wide distribution in the Korean peninsula. Aedes flavopictus is 
considered to be native to East Asia, with a broad distribution in the region, including the Korean peninsula. A better 
understanding of the genetic diversity of these species is critical for establishing strategies for disease prevention and 
vector control.

Methods:  We obtained DNA from 148 specimens of Ae. albopictus and 166 specimens of Ae. flavopictus in Korea, and 
amplified two mitochondrial genes (COI and ND5) to compare the genetic diversity and structure of the two species.

Results:  We obtained a 658-bp sequence of COI and a 423-bp sequence of ND5 from both mosquito species. We 
found low diversity and a nonsignificant population genetic structure in Ae. albopictus, and high diversity and a non-
significant structure in Ae. flavopictus for these two mitochondrial genes. Aedes albopictus had fewer haplotypes with 
respect to the number of individuals, and a slight mismatch distribution was confirmed. By contrast, Ae. flavopictus 
had a large number of haplotypes compared with the number of individuals, and a large unimodal-type mismatch 
distribution was confirmed. Although the genetic structure of both species was nonsignificant, Ae. flavopictus exhib-
ited higher genetic diversity than Ae. albopictus.

Conclusions:  Aedes albopictus appears to be an introduced species, whereas Ae. flavopictus is endemic to the Korean 
peninsula, and the difference in genetic diversity between the two species is related to their adaptability and intro-
duction history. Further studies on the genetic structure and diversity of these mosquitos will provide useful data for 
vector control.
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Background
Arthropod-borne viruses are transmitted by blood-suck-
ing insects to animals and humans. Most of them are 
transmitted by mosquitoes [1, 2]. There are 43 genera and 
3583 species of mosquitoes in the world; however, spe-
cies belonging to the genera Aedes, Anopheles, and Culex 
are the main vectors of mosquito-borne diseases [3, 4]. In 
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particular, mosquitoes belonging to the genus Aedes are 
the main vectors for spreading fatal diseases such as chi-
kungunya, dengue fever, yellow fever, and Zika virus, that 
often occur in Asian countries [5–7]. As mosquito-borne 
diseases may grow in the future due to fast globalization 
and climate change, information on genetic studies effec-
tive in vector monitoring is needed to prevent infectious 
diseases [2, 8].

Mitochondrial genes are widely used in research on 
molecular evolution and population genetics of vec-
tor insects. Because they have a relatively high mutation 
rate and high levels of polymorphism and divergence 
due to their inherent sensitivity, they are highly useful 
as molecular markers [9–12]. Many vector studies have 
investigated where the population was introduced using 
mitochondrial genes [13, 14]. In particular, there have 
been many studies using COI and ND5 as markers, for 
example, to determine whether a species has been intro-
duced or to determine the genetic diversity of a popula-
tion [15, 16]. Population structure and genetic diversity 
between populations can affect vector capacity [17]. An 
understanding of these factors is necessary for vector 
control [18].

Aedes albopictus, originally from Southeast Asia, has 
recently spread throughout all parts of the world except 
Antarctica, and is considered one of the most dangerous 
alien species [19–21]. The first record of Ae. albopictus in 
South Korea was in 1940, and its distribution has recently 
expanded throughout the Korean peninsula [22, 23]. 
Together with Aedes aegypti, substantial research atten-
tion has been paid to Ae. albopictus as major players in 
the transmission of vector-borne diseases [24–26]. The 
main reason for the global spread is that larvae are intro-
duced through used tires, bamboo, etc., due to human 
activities [27, 28]. Additionally, the range of habitats they 
can live in has widened as a result of the temperature rise 
due to global warming [29, 30]. Eggs of Ae. albopictus 
have been shown to tolerate cold weather, and have the 
potential to expand its distribution in colder regions [31, 
32].

Aedes flavopictus is known to be native to East Asia, 
and is divided into three subspecies depending on the 
region. The subspecies are morphologically and geneti-
cally distinct [33, 34]: Ae. flavopictus, Ae. flavopictus 
downsi, and Ae. flavopictus miyarai. Among the three, 
Ae. flavopictus is distributed in the Korean Peninsula, 
and records show that they have existed here for a long 
time, but there have been few molecular studies on this 
species, so the extent of its genetic diversity is not fully 
known [33, 35, 36]. Aedes flavopictus eggs have been 
found to survive in colder environments than Ae. albop-
ictus eggs [37], and the distribution of eggs has expanded 
from East Asia to European countries in recent times 

[38–40]. According to the results of continuous monitor-
ing on the Korean Peninsula, the frequency of appear-
ance of Ae. flavopictus is not high [23, 41–43]. Aedes 
flavopictus is not known to act as a vector like Ae. albop-
ictus and other Aedes species, but it has previously been 
shown that it may propagate dengue fever [33, 44, 45].

Since the two species are distributed over a wide area 
in Korea and Japan and share a common habitat [34, 46, 
47], research on their overlapping distribution is gradu-
ally increasing. Furthermore, there is a possibility of 
interspecific crossing [48–50]. Not only do the distribu-
tions overlap, but the two morphologies are also similar 
[34, 40, 51], and Japanese studies have shown that the two 
are phylogenetically close to each other [52, 53]. As Ae. 
albopictus and Ae. flavopictus are closely related species 
and have similar ecological roles and habitats, they can 
be compared to each other.

The Korean Peninsula has various climates and geo-
graphical environments, and the diversity of arthropods 
that transmit arthropod-borne viruses is also high [54, 
55]. There are 11 genera and 56 species of mosquitoes in 
Korea, including 19 species in the genus Aedes. The pres-
ence of Ae. albopictus and Ae. flavopictus was recorded 
in Korea in the past [22, 35, 56, 57]. Since malaria and 
Japanese encephalitis occur frequently in Korea, studies 
have only focused on the vectors of these conditions, and 
the genus Aedes has not been thoroughly investigated 
[58–60]. There are cases in which foreign mosquitoes 
have become indigenous, thereby bringing infections 
from abroad. Additionally, Korea has steadily imported 
patients, so it is not possible to say that it is a clean coun-
try for viruses mediated by Aedes; therefore, a preemp-
tive control strategy needs to be established [61, 62].

This study compares the genetic diversity and genetic 
structure of two species of Aedes mosquitoes living in 
Korea using two mitochondrial genes, with the aim of 
monitoring mosquito populations. With this work, we 
intend to create genetic data that infer the genetic state of 
vectors, to establish a vector control strategy.

Methods
Sampling and DNA extraction
A total of 314 individual mosquitos were sampled in 
Korea between 2017 and 2020, including 148 individuals 
of Ae. albopictus from 19 locations and 166 individuals of 
Ae. flavopictus from 14 locations (Fig. 1). All specimens 
were sampled from the forests, parks and rural areas 
(Additional file 1: Figures S1–S3). Adult mosquitoes were 
collected using nets and BG-Sentinel traps (Biogents AG, 
Germany). All mosquitoes were identified according to 
the Korean mosquito taxonomic keys [22, 57]. These two 
species differ in the patch at the root of the front wing. 
Specimens were individually preserved in tubes filled 
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with 80% ethanol and stored at 4  °C until DNA extrac-
tion. DNA was extracted from one to three legs of each 
sample using the DNeasy Blood & Tissue Kit (Qiagen, 
Valencia, CA, USA).

Polymerase chain reaction (PCR) and sequencing
Two regions of mitochondrial genes (COI and ND5) 
were amplified by PCR using the following primer pairs: 
albCOIF (5′-TTT​CAA​CAA​ATC​ATA​AAG​ATA​TTG​G-3′) 
and albCOIR (5′-TAA ACT​TCT​GGA​TGA​CCA​AAA​
AATCA-3′) for COI [63], and ND5_6500F (5′-TCC​TTA​
GAA​TAA​AAT​CCC​GC-3′) and ND5_7398R (5′-GTT​
TCT​GCT​TTA​GTT​CAT​TCTTC-3′) for ND5 [64]. For 
COI, PCR amplifications were performed in a 25 μl reac-
tion volume containing 0.5 μl of isolated DNA, 2.5 μl of 
10× Taq buffer, 2.0 μl of MgCl2 (25 mM), 0.7 μl of dNTP 
solution (2.5 mM each), 0.5 μl of each primer, and 0.3 μl 
of Taq DNA polymerase (Takara Bio Inc., Kusatsu, Shiga, 
Japan). The PCR cycling conditions were as follows: an 
initial denaturation step at 95  °C for 5 min; followed by 
35 cycles of denaturation at 95  °C for 30 s, annealing at 
45  °C for 30  s, and elongation at 72  °C for 45  s; with a 
final extension at 72 °C for 7 min. For ND5, the PCR mix-
ture was the same as that used for COI. The amplifica-
tion conditions were as follows: initial denaturation at 
98 °C for 5 min; followed by 10 cycles at 95 °C for 1 min, 
45  °C for 1  min, and 72  °C for 1  min 30  s; 30 cycles at 

95 °C for 1 min, 46 °C for 1 min, and 72 °C for 1 min 30 s; 
and a final extension at 72  °C for 3  min. PCR products 
were separated by 2% agarose gel electrophoresis (Sigma-
Aldrich,    Germany) and sequenced by Cosmo Genetech 
(Seoul, Korea) using the ABI 3730xl DNA Analyzer 
(Applied Biosystems, Foster City, CA, USA).

Data analyses
The sequences of the two mitochondrial genes were 
aligned using the ClustalW plugin on Geneious Prime 
2020.1.2 (https://​www.​genei​ous.​com) and prepared as 
concatenated sequences. DnaSP 6.12.03 [65] was used 
for the genetic diversity analysis of mitochondrial DNA, 
in which the number of haplotypes (H), number of seg-
regating sites (S), haplotype diversity (Hd), nucleotide 
diversity (π), and average number of nucleotide differ-
ences (k) were examined.

Pairwise FST values were estimated using Arlequin 3.5 
software [66] to investigate genetic differentiation among 
the populations. Principal coordinate analysis (PCoA) 
was performed with GenAlEx version 6.51b2 [67] based 
on pairwise FST values.

Analyses of molecular variance (AMOVA) were per-
formed using Arlequin 3.5 [66] with the locus-by-locus 
option and using 1000 permutations to determine the 
population structure. Specimens were grouped according 
to regional groups in South Korea: Group 1 comprised 
specimens from Gyeonggi-do, Group 2, Gangwon-do; 
Group 3, Chungcheong-do; Group 4, Gyeongsang-do, 
and Group 5, Jeolla-do.

To better understand the genealogical relationships, 
the haplotypes were constructed using the TCS method 
as implemented in PopART 1.7 [68].

To investigate the demographic history of populations, 
deviations from selective neutrality were tested by Taji-
ma’s D [69] and Fu’s FS [70] metrics using Arlequin 3.5 
[66]. To confirm whether a population had undergone 
sudden expansion, a mismatch distribution was deter-
mined using DnaSP 6.12.03 [65].

Results
Mitochondrial gene sequence analysis resulted in a CO1 
sequence of 658  bp and an ND5 sequence of 423  bp in 
the 19 populations (148 individuals) of Ae. albopictus, 
and sequences of the same length were obtained for the 
14 populations (166 individuals) of Ae. flavopictus (Addi-
tional file  2: Table  S1). The average winter temperature 
and average precipitation during the sampling year were 
obtained based on data from the Korea Meteorological 
Agency (https://​data.​kma.​go.​kr/​cmmn/​main.​do). In the 
two mitochondrial DNA concatenated sequences, there 
were 25 haplotypes in Ae. albopictus and 107 haplotypes 
in Ae. flavopictus.

Fig. 1  Map of Korea with the sampling locations used in this study. 
The squares indicate Aedes albopictus and the triangles indicate Aedes 
flavopictus. In some populations the two species overlap. DIVA-GIS 
(version 7.5, www.​diva-​gis.​org) was used to produce a distribution 
map based on the geographic coordinates of the locality

https://www.geneious.com
https://data.kma.go.kr/cmmn/main.do
http://www.diva-gis.org
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The genetic diversity analysis revealed a relatively low 
number of haplotypes in Ae. albopictus compared to the 
total number of individuals, with relatively low haplotype 
diversity (0.396) and nucleotide diversity (0.00075) in the 
entire population. The highest haplotype diversity was 
found for the 2018 Anyang and Gyeongju populations, 
and the lowest values were 0 for six populations. The 
2018 Anyang and Gyeongju populations also exhibited 
the highest nucleotide diversity. Ae. flavopictus showed 
a relatively high number of haplotypes compared to the 
total number of individuals, and high levels of haplo-
type diversity (0.990) and nucleotide diversity (0.00894) 
were found in the entire population. Analysis of the two 

species revealed that Ae. flavopictus exhibited higher lev-
els in various genetic diversity indices (Table 1).

Aedes albopictus showed nonsignificant pairwise FST 
values overall, but the Geoje population showed a high 
level of significance in structure compared to the other 
populations. By contrast, Ae. flavopictus showed low 
overall FST values, among which those of the Yeosu and 
Yeoncheon populations were significant (Fig.  2; Addi-
tional file 3: Tables S2, S3). In both species, there were no 
significant pairwise FST values among domestic popula-
tions except for a few populations.

AMOVA showed low genetic variance among both spe-
cies, but high variance within populations. In particular, 

Table 1  Sampling locations, summary of molecular diversity for each species of this study

Bold cases represent significance at P < 0.05

Species Population Sample size H S k Hd π Tajima’s D Fu’s FS

Aedes albopictus 2017_Wonju 18 5 4 0.725 0.549 0.00067 −1.12822 −2.0958
2020_Wonju 18 2 3 0.333 0.111 0.00031 −1.71304 0.65061

Yeoncheon 5 1 0 0 0 0 0 0

Yangsan 12 6 4 1.152 0.758 0.00107 −0.45947 −2.89747
2020_Anyang 4 2 1 0.500 0.500 0.00046 −0.61237 0.17185

2018_Anyang 4 4 6 3.167 1.000 0.00293 −0.31446 −1.15708

Chuncheon 7 1 0 0 0 0 0 0

Cheongyang 2 1 0 0 0 0 0 0

Daejeon 8 1 0 0 0 0 0 0

Gwacheon 7 3 2 0.571 0.524 0.00053 −1.23716 −0.9218

Geoje 5 2 1 0.600 0.600 0.00056 1.22474 0.62615

Gwangju 2 1 0 0 0 0 0 0

Gyeongju 2 2 3 3.000 1.000 0.00278 0 1.09861

Jeung-do 5 3 2 1.000 0.800 0.00093 0.24314 −0.47542

Jeonju 28 3 2 0.143 0.140 0.00013 −1.5106 −2.26798

Sokcho 13 3 2 0.308 0.295 0.00028 −1.46801 −1.40150

Seoul 3 2 1 0.667 0.667 0.00062 0 0.20067

Yeoju 3 1 0 0 0 0 0 0

Yeosu 2 1 0 0 0 0 0 0

Aedes flavopictus 2017_Wonju 6 6 19 8.667 1 0.00802 0.25884 −1.18145

2017_Uiwang 21 16 50 15.281 0.971 0.01414 0.39649 −1.61069

2020_Uiwang 10 9 29 9.089 0.978 0.00841 −0.54358 −1.86104

Yeoncheon 2 2 1 1.000 1 0.00093 0 0

Yangsan 17 14 26 6.75 0.971 0.00624 −0.49372 −5.0955

Asan 22 15 49 9.779 0.939 0.00905 −1.07423 −2.0798

Bonghwa 18 16 25 5.693 0.987 0.00527 -0.86027 -9.17073

Chuncheon 2 2 9 9 1 0.00833 0 2.19722

Cheongyang 9 8 15 4.944 0.972 0.00457 −0.50238 −2.75282

Gwacheon 10 9 26 10.133 0.978 0.00937 0.48927 −1.59674

Gwangju 17 8 33 7.721 0.816 0.00714 −0.85617 1.62731

Pyeongchang 9 7 27 8.861 0.917 0.00820 −0.53942 0.02987

Sokcho 6 5 14 5.333 0.933 0.00493 −0.79924 −0.2382

Yeosu 17 6 20 5.412 0.691 0.00501 −0.33724 2.44814
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Ae. flavopictus showed higher variance than Ae. albopic-
tus, indicating that it can form a genetic structure within 
populations (Table 2).

In the haplotype network, Ae. albopictus showed a sim-
ple star-like form, in which several haplotypes diverged 
from one of the largest haplotypes, and hap_1 had the 
highest frequency of 78% in all populations. Private 
haplotypes, most of which were singleton haplotypes, 
accounted for 22%. Aedes flavopictus exhibited a complex 
haplotype network, which was found to have a higher 
haplotype frequency compared to the total number of 

individuals. Most of the network was composed of sin-
gleton haplotypes. When comparing the two species, Ae. 
flavopictus had more haplotypes than Ae. albopictus and 
showed a complex haplotype network (Fig. 3).

With respect to demographic history, Ae. albopictus 
showed negative but low values for Tajima’s D (−0.36713) 
and Fu’s FS (−0.44574) in the whole population. Negative 
values of Tajima’s D (−0.34726) and Fu’s FS (−1.37746) 
were also found for the entire population of Ae. flavopic-
tus. In both species, Ae. flavopictus showed negative Fu’s 
FS values. For the mismatch distribution, the result of Ae. 

Fig. 2  Principal coordinate analysis (PCoA) plot of pairwise population FST values for the locations sampled in Korea in this study. a Aedes albopictus; 
b Aedes flavopictus 
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albopictus was nonsignificant, whereas Ae. flavopictus 
showed a large unimodal shape, indicating the possibility 
of sudden expansion of the population (Fig. 4).

Discussion
Based on the above results, two conclusions can be 
drawn. Higher genetic diversity was observed in Ae. fla-
vopictus than in Ae. albopictus, and the two species of 
mosquitoes generally showed low levels of genetic struc-
ture except for some populations.

There are two hypotheses addressing the overall low 
diversity of Ae. albopictus in Korea. The first concerns 
the spread of Wolbachia to the mitochondria: in many 
arthropods, selective sweeps arising from widespread 
Wolbachia infections often lead to low diversity, therefore 
posing a high possibility of unreliable results [71]. Previ-
ous studies have shown that intracellular Wolbachia was 
detected in 17 populations in Korea, and these groups 

are known to have low mitochondrial diversity [72, 73]. 
However, there is no clear evidence of Wolbachia in 
many samples, and further analysis of the nuclear genes, 
as well as the mitochondrial genes, will be needed to 
reveal the impact of Wolbachia on genetic diversity in 
the population [72, 74]. The second hypothesis is that 
the introduced Ae. albopictus may have been affected 
by Korea’s harsh winter climate, which is different from 
that of the country of origin. Ae. albopictus is considered 
to be an invasive species that has recently spread abroad 
from its origin in Southeast Asia [19, 20]. These mos-
quitos have adapted to the environment of each country 
since their introduction, but previous studies have shown 
that they also have low diversity in the countries from 
which they were introduced [13, 15]. The environment 
in Southeast Asia, the native habitat of Ae. albopictus, is 
hot and humid, facilitating the spread of Ae. albopictus 
[75]. However, winters are quite severe in Korea, with 

Table 2  Analysis of molecular variance (AMOVA) of this study

Species Source of variation Degrees of freedom Percentage of 
variation (%)

Aedes albopictus Among groups 4 −5.6

Among populations within groups 14 46.4

Within populations 129 59.2

Aedes flavopictus Among groups 4 4.0

Among populations within groups 9 9.6

Within populations 152 86.3

Fig. 3  TCS networks constructed with PopART for haplotypes. a Aedes albopictus; b Aedes flavopictus. Circle sizes reflect haplotype abundance and 
percentage of color in the circles shows the haplotype frequency
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cold, dry weather. The average temperature is less than 
10  °C. This environment could lead to a decrease in the 
population size of this mosquito, resulting in decreased 
genetic diversity [60, 76]. In the domestic populations, 
the Geoje population is different from other populations. 
This is believed to arise from genetic differences due to 
the physical distance between mosquitoes introduced by 
human activities. The distance traveled by mosquitoes 
in the natural environment is, however, only a few kilo-
meters [77], and there are study results showing that the 
populations have been genetically structured in hetero-
geneous habitats due to their limited dispersive abilities 
[78].

Korean Ae. flavopictus have high genetic diversity and 
a complex haplotype network. There are two hypotheses 
regarding their high diversity. The first is based on the 
fact that Ae. flavopictus is endemic to East Asia. Stud-
ies on mosquitoes of the genus Aedes show that genetic 
diversity in the original population is much higher, which 
supports the contention that the original population of 
Ae. flavopictus is Korean [79, 80]. The second hypothesis 
considers the adaptation to cold climates as an endemic 
species: Ae. flavopictus is an Asian species that does not 
exist in tropical regions, and lives in subtropical areas 
throughout the cool-temperate region [53]. This mos-
quito species has recently been found in the Netherlands, 
a more northerly region, and is considered highly likely 
to spread due to its ability to cope with environmental 
changes [39, 40]. Aedes flavopictus has excellent envi-
ronmental adaptability, and its eggs can survive in cold 
and dry conditions for long periods [35, 81]. Studies have 
also shown that it is genetically close to Aedes galloisi, a 
northern mosquito species in the same genus [52].

Differences in diversity between Ae. albopictus and Ae. 
flavopictus can be explained in several ways. A small mis-
match in distribution and a single haplotype shared by 

various populations indicate that the patterns observed 
in Ae. albopictus may have been affected by a decrease 
in effective population size, human introduction, and 
natural environmental changes [13, 15, 82, 83]. Envi-
ronmental and biological barriers, and factors such as 
human activity, climate change, migration, and genetic 
flow can affect the genetic diversity and structure of spe-
cies [84]. Aedes flavopictus, an endemic species, shows 
high genetic diversity, a large unimodal mismatch dis-
tribution, and a complex haplotype network. However, 
the unimodal form of its mismatch distribution indicates 
that the Ae. flavopictus population may have recently 
experienced a large population expansion. This success-
ful distribution and increasing population of the endemic 
Ae. flavopictus may have been affected by human demo-
graphics [25]; further, the complex form of the haplo-
type network indicates a high mutation rate, which can 
increase the rate of resistance development in insects [85, 
86]. The difference in genetic diversity between these two 
mosquito species living in Korea may also arise from the 
differences in effective population size due to their ability 
to adapt to the cold as well as their status as an endemic 
or introduced species. Although the distribution of these 
two species overlaps, Ae. albopictus can survive for up 
to 24 h at −10 °C in the form of diapause eggs [87], and 
the eggs of Ae. flavopictus can survive for a longer period 
[35, 37, 53]. The decreased survival rate of eggs can affect 
the effective population size, as fewer adults develop [88, 
89]. This difference in cold adaptation and consequent 
effects on the size of the effective population can lead to 
differences in genetic diversity [60, 90, 91]. Monitoring of 
vectors in Korea has shown that the frequency of Ae. fla-
vopictus appearance was not high, but the reason for the 
large potential population size in this study lies in the dif-
ference between the location and the collection method 
[23, 41–43]. Thus, continuous monitoring is needed 

Fig. 4  Mismatch distribution of two species populations in Korea. a Aedes albopictus; b Aedes flavopictus 
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because this species is highly likely to affect humans, as 
it has a large population size and considerable potential 
as a vector.

The differences in the genetic diversity of Ae. albopic-
tus and Ae. flavopictus populations revealed in this study 
suggest that the continuous monitoring of these spe-
cies with multiple possibilities as vectors is essential. To 
understand the genetic diversity of Aedes mosquito spe-
cies in Korea, sampling in more diverse regions and the 
use of different genetic markers will be conducted in fur-
ther studies.

Conclusions
This is the first paper comparing genetic diversity and 
the genetic structure of two Aedes mosquito species 
inhabiting Korea. The results showed that Ae. albopic-
tus, which is considered to be an introduced species, has 
lower genetic diversity than Ae. flavopictus, the endemic 
species. The low diversity of Ae. albopictus suggests that 
these mosquitos were introduced by humans, but did 
not fully adapt to the environment of the Korean Pen-
insula. The high diversity of Ae. flavopictus could be 
due to its greater adaptability to the environment of the 
Korean Peninsula as an endemic species, but may also be 
influenced by an increase in population and resistance 
to pesticides. However, in light of the rising tempera-
tures caused by climate change, the domestic inflow of 
patients, and the population density, the Korean Penin-
sula will continue to face the threat of mosquito-borne 
diseases. Studies of the genetic status of potential vec-
tor species will provide useful data for inferring effective 
population sizes and monitoring and managing mosquito 
populations.
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