Tagwireyi et al. Parasites & Vectors (2022) 15:237 Pa ra S IteS & Ve CtO rS

https://doi.org/10.1186/513071-022-05346-z

RESEARCH Open Access

, e : ®
Climate change diminishes the potential s

habitat of the bont tick (Amblyomma hebraeum):
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Abstract

Background: Understanding the response of vector habitats to climate change is essential for vector management.
Increasingly, there is fear that climate change may cause vectors to be more important for animal husbandry in the
future. Therefore, knowledge about the current and future spatial distribution of vectors, including ticks (Ixodida), is
progressively becoming more critical to animal disease control.

Methods: Our study produced present (2018) and future (2050) bont tick (Amblyomma hebraeum) niche models

for Mashonaland Central Province, Zimbabwe. Specifically, our approach used the Ensemble algorithm in Biomod2
package in R 3.4.4 with a suite of physical and anthropogenic covariates against the tick’s presence-only location data
obtained from cattle dipping facilities.

Results: Our models showed that currently (the year 2018) the bont tick potentially occurs in 17,008 km?, which is
60% of Mashonaland Central Province. However, the models showed that in the future (the year 2050), the bont tick
will occur in 13,323 km?, which is 47% of Mashonaland Central Province. Thus, the models predicted an ~ 13% reduc-
tion in the potential habitat, about 3685 km? of the study area. Temperature, elevation and rainfall were the most
important variables explaining the present and future potential habitat of the bont tick.

Conclusion: Results of our study are essential in informing programmes that seek to control the bont tick in Masho-
naland Central Province, Zimbabwe and similar environments.

Keywords: Area under the curve (ROC), Climate change, Ensemble modelling, True skill statistic (TSS), Variance
L inflation factor (VIF)

Background Amblyomma and Rhipicephalus [1, 2]. Some of these
There is a notable increase in tick distribution and tick-  species, e.g., the bont tick (Amblyomma hebraeum), are
borne diseases, particularly in the tropical and sub- challenging to control as they have very high reproduc-
tropical regions. Tick species of particular interest in  tive rates and sometimes develop resistance to standard
the tropics include species in the genera Hyalomma, remedies. In addition, the bont tick has a wide spatial dis-

tribution because of its ability to survive in both dry and

humid environments [3, 4]. Thus, the bont tick is a signif-
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Ticks spend much of their life away from their host. As
such, ticks are prone to the effects of climatic and other
environmental dynamics [6]. The predicted change in
climate, primarily to warmer conditions, motivates the
modelling of future distribution of ticks using climate
change scenarios [7]. Those niche models use various
environmental variables, including elevation tempera-
ture, rainfall and humidity [8]. Recently, Land Use Land
Cover Change (LULCC) has been a significant covariate
in modelling tick species and tick host distribution and
is often used in modelling overlaps in space and time
between human activities and ticks habitats [9].

The present and future distribution of ticks must be
known to support vector management programmes [10].
However, while bont ticks are notorious for animal hus-
bandry, their present and future spatial distribution and
the drivers of that distribution are primarily unknown.
This study used bont tick presence-only data and a suite
of climate change scenarios data and environmental
covariates to model the present and future distribution of
one of the most notorious ticks in Mashonaland Central
province, Zimbabwe. The objectives of this study were
twofold: (1) identify the change in the potential habitat
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of bont tick between current time (2018) and future 2050
and (2) identify the drivers of the spatial distribution of
bont tick. Results of this study are essential in inform-
ing programmes that seek to control the bont tick in
Mashonaland Central Province, Zimbabwe, and similar
environments.

Methods

Study site

The study area was Mashonaland Central Province,
Zimbabwe, located between 30.04° E-32.75° E and
17.97° S-15.40° S, comprising 28,347 km? of land (Fig. 1).
According to the Zimbabwe National Census 2012 statis-
tics, the province’s population was 1,152,520 inhabitants.
A wide range of land tenure types coexists in the prov-
ince, including communal areas, newly resettled small
scale farming (Al), newly resettled large scale farming
(A2), small-scale commercial farming, extensive-scale
commercial farming and old resettlement areas [11].
The province comprises regions of varying agricultural
potential, including Agro-ecological Region 2, which
receives as much as 1000 mm of annual rainfall, to Agro-
ecological Region 5, which receives < 450 mm of annual
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Fig. 1 Location of Mashonaland Central Province in northeastern Zimbabwe showing the 270 presence-only bont tick and dip tank location data
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rainfall [12]. The area experiences a wet season (October
to April) and a dry season (May to October).

Administratively, Mashonaland Province consists of eight
districts: Bindura, Centenary, Mt Darwin, Guruve, Mbire,
Rushinga, Shamva and Mazowe. Agriculture is the basis
of the economy as the province is predominantly rural
[13]. As such, the majority of the inhabitants of the prov-
ince are small-holder farmers whose livelihoods depend on
crops (e.g. maize, wheat, tobacco) and livestock (e.g. cattle,
sheep, goats and poultry). However, cattle farming experi-
ences economic losses due to tick-borne diseases, typical to
resource-poor cattle owners in Africa [14].

Like other provinces in Zimbabwe, Mashonaland Cen-
tral Province’s tick control is based on dipping cattle in
plunge dips (concrete plunge tanks) containing acaricides
diluted in large volumes of water. Farmers have to dip
their cattle weekly during the wet season and fortnightly
during the dry season. It has been the responsibility of
the government to supply acaricides. However, the com-
munal farmer pays a reasonable fee to the Department of
Veterinary Services so that their herds of cattle benefit
from the tick control exercise [14]. Dipping in acaricides
has been a compulsory exercise since its legislation in
1914, and it has been one of the successful methods of
tick control in livestock [15].

Tick species geographical data

Veterinary extension officers collected ticks at all the cat-
tle dipping facilities for which location coordinates were
known. The procedure of getting the ticks involves man-
ually restraining every tick-infested animal at the dipping
facility to allow the physical examination. The veterinary
officers used the morphological identification method
to identified the tick species following [16] plus guides
including [17] and completed tick inspection forms using
morphology. The veterinary officers are experts in tick
species identification. Since cattle dipping is done weekly
during the wet season and fortnightly during the dry
season, veterinary officers inspected cattle for ticks and
recorded tick presence data every month from 2010. The
tick species collected for the 2018 year of study were Rhi-
picephalus decoloratus (African blue tick), Rhipicephalus
sanguineus (s.l.) (brown dog tick), Rhipicephalus evertsi
(red-legged tick) and Amblyomma hebraeum (bont tick).

Predictor variables
We used bioclimatic data obtained from the WorldClim
Version 2 Server for both present (2018) and future
(2050) predictions [18]. Specifically, we used the CCSM4
climate change scenario rcp45 with a spatial resolution of
2.5 min (Table 1).
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Table 1 All Predictor variables before multicollinearity test

Code Variable

BIO1 Annual mean temperature

B102 Mean diurnal range

BIO3 Isothermality

BIO4 Temperature seasonality

BIOS Maximum temperature of warmest month
BIO6 Min temperature of coldest month
BIO7 Temperature annual range

BIO8 Mean temperature of wettest quarter
BIO9 Mean temperature of driest quarter
BIO10 Mean temperature of warmest quarter
BIO11 Mean temperature of coldest quarter
BIO12 Annual precipitation

BIO13 Precipitation of wettest month

BIO14 Precipitation of driest month

BIO15 Precipitation seasonality

BIO16 Precipitation of wettest quarter
BIO17 Precipitation of driest quarter

BIO18 Precipitation of warmest quarter
BIO19 Precipitation of coldest quarter

DEM Digital elevation model

LandC Land cover

We obtained the topographic and landcover variables
from the ESA Climate Change Initiative [19] (Table 1).
To model LULCC, we used the Land Change Modeler
of Terrset Geospatial Monitoring and Modelling System
because of its capability to incorporate Markov-Chain
[20]. To model future land use and cover change up to
2050, we used a first-order Markov-Chain, a stochas-
tic model for quantitative land change detection [21]. In
addition, the Earth Explorer Aster Global DEM provided
the elevation covariate [22] (Table 1).

All predictor variables were obtained in raster for-
mats and adjusted to 1-km resolution and converted to
ASCII format using ArcGIS 10.5 (Environmental Systems
Research Institute, Redlands, CA, USA).

Variable selection

To deal with multicollinearity, we used the Variance Infla-
tion Factor (VIF), where the covariate with a VIF > 10 was
excluded in the modelling following Tagwireyi et al. [23].
The VIF was calculated in R using USDM package [24].
After excluding the collinear variables, we remained with
ten for both the present and future modelling (Tables 2
and 3).
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Table 2 Variables used for present (2018) distribution of the
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Table 4 Variable importance for the present (2018) distribution

Bont tick model
Code Variable Variance Code Variable Variable

inflation contribution

factor

B102 Mean diurnal range 0.10

B102 Mean diurnal range 547 BIO3 Isothermality 0.02
BIO3 Isothermality 6.00 BIOS Maximum temperature of warmest month 035
BIOS Maximum temperature of warmest month 740 BIO13 Precipitation of wettest month 027
BIO13 Precipitation of wettest month 3.79 BIO14 Precipitation of driest month 0.00
BIO14 Precipitation of driest month 2.10 BIO15 Precipitation seasonality 015
BIOT5 Precipitation seasonality 8.65 BIO18 Precipitation of warmest quarter 0.22
BIO18 Precipitation of warmest quarter 1.46 BIO19 Precipitation of coldest quarter 0.05
BIO19 Precipitation of coldest quarter 530 DEM Digital elevation model 0.36
DEM Digital elevation model 1.07 LandC Land cover 0,08
LandC Land cover 1.05

Only variables with variance inflation factor (VIF) < 10 were used in the
modelling

Table 3 Variables used for future (2050) distribution of the bont

tick
Code Variable Variance
inflation
factor
B102 Mean diurnal range 518
BIO3 Isothermality 562
BIO5 Maximum temperature of warmest month 7.21
BIO13 Precipitation of wettest month 381
BIO14 Precipitation of driest month 2.01
BIO15 Precipitation seasonality 8.27
BIO18 Precipitation of warmest quarter 1.45
BIO19 Precipitation of coldest quarter 5.13
DEM Digital elevation model 1.03
LandC Land cover 1.05

Only variables with variance inflation factor (VIF) < 10 were used in the
modelling

Modelling procedure
The Ensemble algorithm in Biomod2 package was used
for the modelling in R 3.4.4 [25]. The approach selected
eight modelling techniques in fitting and averaging pre-
sent and future species habitat predictions. These are
generalized linear models (GLM), classification tree
analysis (CTA) artificial neural networks (ANN), sur-
face range envelope (SRE), generalized boosting model
(GBM), Breiman and Cutler’s random forest for classifi-
cation and regression (RF), mixture discriminant analysis
(MDA) and multiple adaptive regression splines (MARS).
The choice of eight modelling techniques was based on
each model’s efficiency, especially in the evaluation of model

response curves [26]. The default settings in all chosen mod-
elling techniques were used because default settings usually
come enhanced for species distribution models (SDMs) [27].
All models used a maximum of 100 iterations [26]. Both pre-
sent and future prediction models were created using 80% of
occurrences and pseudo-absence data; the remaining 20%
was used for model evaluation. Binary maps were then used
to classify maps as suitable or unsuitable following Muhoyi
etal. [28].

Model evaluation

The partial receiving operating characteristic (partial
ROC) [29] was for validating our Ensemble models by
making use of area under curve (AUC) analysis and true
skill statistics (TSS), which considers omission and com-
mission errors [30]. The TSS ranges from 0.0 to 1.0. A
TSS value in range 0—0.5 was considered a poor model
fit, 0.6 to 0.8 an acceptable fit and valid; any values > 0.8
were considered good to excellent [31]. The AUC criteria
considered a model with values from 0.0 to 0.6 as inferior,
0.6-0.9 as useful and > 0.9 as excellent following Ndaim-
ani et al. [32]. A TSS threshold of 0.6 was used to select
models for the Ensemble model, following Gallien et al.
[33].

Statistical analysis

The suitable area was calculated for both present and
future predictions from binary maps using the raster
zonal geometry calculation function in ArcGIS 10.5. To
assess whether there is a reduction or increase in the
suitable habitat, a two-sample test for equal proportions
using a chi-square test was executed.
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Results

The Ensemble model achieved excellent success in pre-
dicting the current habitat of the bont tick (TSS =0.900,
ROC=0.979). In addition, the approach was also excel-
lent at predicting the future potential distribution of bont
tick (TSS=0.898, ROC =0.976).

The variable importance analysis showed that eleva-
tion and maximum temperature of the warmest month,
precipitation of the warmest month and precipitation of
the wettest month are variables with high importance in
explaining the occurrences of bont ticks (Tables 4 and
5). For example, the species habitat suitability is high
in areas with moderate elevation ranging from 800 to
1000 m above sea level and high in areas with moderate
temperatures ranging from 26 to 29 °C. Conversely, land
cover, precipitation of coldest quarter and isothermality
have the lowest contribution in determining bont tick
habitat for present and future predictions.

Binary maps using the TSS=0.6 thresholds showed
the suitable habitat to be 17,008 km? for the present

Table 5 Variable importance for the future (2050) distribution

Page 5 of 9

model and 13,323 km? for the future model (Fig. 2a, b),
representing a decrease of bont tick potential habitat of
~ 13% (3685 km?) for Mashonaland Central Province,
Zimbabwe.

The proportion of suitable habitat for the present
model was 0.60, while that for the future model was
0.47. The chi-square test showed a significant difference
between the present and future habitat sizes (,\/2=3.4O,
df=1, P=2E-16).

Discussion

We observed that three covariates, i.e., rainfall, elevation
and temperature, are essential in explaining the predicted
spatial distribution of the bont tick for both the present
(2018) and future (2050). These three covariates directly
affect the living conditions of tick species and tick hosts
[34]. The potential occurrences of bont ticks were high
in moderate climatic conditions and moderate elevation.
However, a combination of very high temperatures and
high elevation and a combination of very low elevation
and very low temperature did not favour the occurrence
of the bont tick.

Based on the prediction results, there would be a sig-
nificant ~ 13% reduction in bont tick potential habitat by
2050. The mechanisms explaining the decline include an
increase in temperature, which leads to saturation deficit,
a thermodynamic factor that has an inverse relationship
with temperature [35]. Ticks spend part of their life cycle
stage of their time below the ground surface. Therefore,
below ground conditions are critical for their survival
[36]. Bont ticks prefer moderate ground conditions, nei-
ther too cold nor too hot. As such, the ~ 13% reduction
of bont tick habitat by 2050 reflects a strong association
between climate change and tick phenology [37].

model
Code Variable Variable
contribution
B102 Mean diurnal range 0.08
BIO3 Isothermality 0.02
BIOS Maximum temperature of warmest month 0.20
BIO13 Precipitation of wettest month 0.23
BIO14 Precipitation of driest month 0.00
BIO15 Precipitation seasonality 0.07
BIO18 Precipitation of warmest quarter 0.26
BIO19 Precipitation of coldest quarter 0.03
DEM Digital elevation model 0.19
LandC Land cover 0.06
a

D Not suitable
B suitable

Fig. 2 Binary maps of a current (2018) and b future (2050) potential distribution of bont tick in Mashonaland Central Province, Zimbabwe
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Current studies and literature suggest land cover-
land use as one of the essential factors in predicting the
potential distribution of tick species [1, 2]. However, in
our models, land cover and land use were not essential in
explaining the potential distribution of bont tick for pre-
sent and future predictions. Therefore, we speculate that
land use and land cover change in our study area is insig-
nificant to influence the spatial distribution of the bont
tick.

The response of probability of the presence of the bont
tick against the covariates for the present and the future
models had very few differences. The models showed
an increase in temperature (BIO5) leading to a decrease
in the probability of bont tick present, with high sensi-
tivity at around 26 °C to 29 °C (Figs. 3 and 4). Analysis
of the elevation response curve showed high sensitivity
response at moderate elevation (Fig. 3), with increases in
altitude leading to a low probability of bont tick presence.
Since elevation and temperature are related directly, the
exact mechanisms of the saturation deficit suggested by
Herrmann and Gern [37] could apply.

The weakness of our study is onefold. Using only cattle
controlling points for the tick presence data technically
excludes ticks not attached to cattle in the study. Future
researchers could improve the modelling process by using
other data collection methods with more comprehensive
sample coverage than our study. However, our results are
useful because of two major strengths of our approach.
The first strength is our use of authenticated bioclimatic
variables that have global spatial coverage. Thus, the vari-
ables are available to other scientists to validate our find-
ings [38]. Second, our models maintain high validity and
reliability by using the Ensemble model, which extracted
the best of eight models [39]. As such, the results of our
study are essential in informing programmes that seek to
control the bont tick in Mashonaland Central Province,
Zimbabwe, and similar environments.

Conclusion

We successfully evaluated the association between envi-
ronmental variables and bont tick occurrences in Mash-
onaland Central Province, Zimbabwe. We observed
that the most critical environmental covariates which
drive bont tick distribution are temperature, rainfall and
elevation. We also successfully predicted both present
(2018) and future (2050) bont tick potential habitat and
observed that there would be a huge reduction of the
potential habitat of the ticks by 2050. The study, however,
could not include other tick host species in the modelling
process; neither was it able to include tick samples out-
side tick control points. Therefore, we recommend con-
sidering tick data in all species that offer a host to bont
tick as well as considering the abundance of those species
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in future work. This study provides baseline information
for long-term tick eradication programmes.
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