
Li et al. Parasites & Vectors          (2023) 16:356  
https://doi.org/10.1186/s13071-023-05975-y

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Parasites & Vectors

Single‑cell RNA sequencing reveals 
a peripheral landscape of immune cells 
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Abstract 

Background  Schistosomiasis, also known as bilharzia, is a devastating parasitic disease. This progressive and debili-
tating helminth disease is often associated with poverty and can lead to chronic poor health. Despite ongoing 
research, there is currently no effective vaccine for schistosomiasis, and praziquantel remains the only available 
treatment option. According to the progression of schistosomiasis, infections caused by schistosomes are classified 
into three distinct clinical phases: acute, chronic and advanced schistosomiasis. However, the underlying immune 
mechanism involved in the progression of schistosomiasis remains poorly understood.

Methods  We employed single-cell RNA sequencing (scRNA-seq) to profile the immune landscape of Schistosomiasis 
japonica infection based on peripheral blood mononuclear cells (PBMCs) from a healthy control group (n = 4), chronic 
schistosomiasis group (n = 4) and advanced schistosomiasis group (n = 2).

Results  Of 89,896 cells, 24 major cell clusters were ultimately included in our analysis. Neutrophils and NK/T cells 
accounted for the major proportion in the chronic group and the healthy group, and monocytes dominated 
in the advanced group. A preliminary study showed that NKT cells were increased in patients with schistosomiasis 
and that CXCR2 + NKT cells were proinflammatory cells. Plasma cells also accounted for a large proportion of B cells 
in the advanced group. MHC molecules in monocytes were notably lower in the advanced group than in the chronic 
group or the healthy control group. However, monocytes in the advanced group exhibited high expression of FOLR3 
and CCR2.

Conclusions  Overall, this study enhances our understanding of the immune mechanisms involved in schistosomia-
sis. It provides a transcriptional atlas of peripheral immune cells that may contribute to elimination of the disease. This 
preliminary study suggests that the increased presence of CCR2 + monocyte and CXCR2 + NKT cells might participate 
in the progression of schistosomiasis.
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Background
Schistosomiasis is one of the most devastating parasitic 
diseases, affecting more than 250 million people world-
wide [1]. Human schistosomiasis is mainly caused by 
Schistosoma haematobium, S. mansoni and S. japoni-
cum [2]. Schistosoma haematobium and S. mansoni are 
predominantly present in Africa, the Middle East and 
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South America, while schistosomiasis in China is pri-
marily caused by S. japonicum [3]. This progressive and 
debilitating helminth disease is often linked to poverty 
and chronic poor health. Moreover, there is no effective 
vaccine, and the only available treatment is praziquantel, 
which cannot prevent reinfection and may lead to drug 
resistance. Therefore, elimination of schistosomiasis 
requires a deeper understanding of its pathogenesis and 
development of new therapeutic strategies against schis-
tosome infection.

Schistosome infections are divided into three distinct 
clinical phases according to the progression of schistoso-
miasis: acute, chronic and advanced schistosomiasis [4]. 
Schistosome infection occurs in humans when in con-
tact with fresh water contaminated by cercariae. Acute 
schistosomiasis, also known as Katayama fever, presents 
a range of symptoms, including fever, diarrhea, abdomi-
nal pain, fatigue and malaise [5, 6]. In chronic schistoso-
miasis, mature schistosomes produce many eggs, leading 
to immunopathological reactions and chronic inflam-
matory lesions [7]. Schistosoma mansoni and S. japoni-
cum reside in the mesenteric veins and cause intestinal 
disease; S. haematobium resides in the pelvic venous 
plexus and is involved in lesions of the bladder wall [8, 
9]. In advanced schistosomiasis, schistosome eggs, rather 
than adult worms, cause morbidity by driving forma-
tion of granulomas and fibrosis in the liver and intestinal 
tract [10]. Advanced schistosomiasis, which is associated 
with poor survival and prognosis, is usually accompa-
nied by portal hypertension, ascites, splenomegaly and 
gastroesophageal variceal bleeding or granulomatous 
disease of the colon [11]. Although acute schistosomiasis 
is rare, chronic or advanced schistosomiasis is common 
in endemic areas. Unfortunately, there is currently no 
effective drug capable of preventing the transition from 
chronic schistosomiasis to advanced schistosomiasis.

Immunopathology plays a critical role in the develop-
ment of schistosomiasis. The interaction between schis-
tosomes and human immune cells is complex and is 
not fully understood. Both clinical and preclinical stud-
ies have shown that eosinophilia and increased IgE lev-
els are hallmarks of the acute stage of the disease [12]. 
There is an obvious type 1 T helper cell (Th1) response 
to schistosome antigens, as characterized by increased 
levels of proinflammatory cytokines such as interferon 
gamma (IFN-γ), interleukin-1 (IL-1), tumor necrosis fac-
tor alpha (TNF-α) and IL-6. Following the production of 
eggs, soluble egg antigens (SEAs) stimulate a shift from 
Th1 to Th2 cell-dominant immunity, which is character-
ized by high levels of IL-4 and IL-10 [13, 14]. Th2-type 
cytokines such as IL-4, IL-5, and IL-13 are increased, 
whereas IFN-γ production is decreased. Additionally, 
animal studies show that mice deficient in IL-10 or IL-4 

experience 100% mortality because of enhanced Th1 
polarization during the acute illness [15].

The deposited eggs can induce formation of granulo-
mas, which are infiltrated by lymphocytes, neutrophils, 
macrophages and eosinophils [16]. Over time, the long-
term chronic inflammation caused by eggs can lead to 
hepatic fibrosis [17]. However, human studies in this 
field are limited, and animal studies cannot fully reflect 
the functional and phenotypic diversity of immune cells 
in patients with schistosomiasis. Thus, further research 
is needed to explore the underlying immune mecha-
nism. Moreover, a deeper understanding of the immune 
landscape in different stages of schistosome infection 
will not only contribute to treatment and elimination of 
schistosomiasis but also provide insight into the protec-
tive effects of schistosome infection in some autoimmune 
diseases.

Single-cell RNA sequencing has been widely used to 
profile the transcriptomes of immune cells in various 
diseases [18–21]. Although scRNA-seq has been per-
formed to describe a single-cell atlas of schistosomes in 
different life stages, scRNA-seq is rarely applied to map 
the immune landscape in patients with schistosomiasis 
[22, 23]. Our study aimed to profile the immune charac-
teristics of chronic schistosomiasis and advanced schis-
tosomiasis by single-cell RNA sequencing, which can 
dissect cellular heterogeneity based on transcriptomes 
at the single-cell level [24]. By revealing the features of 
immune cells in the peripheral blood of patients with 
Schistosomiasis japonica, this study will further clarify 
the pathogenesis of schistosomiasis and help to identify 
potential targets for diagnosis and treatment of schisto-
some infection.

Methods
Human subjects
Peripheral blood mononuclear cells (PBMCs) were iso-
lated from patients with chronic Schistosomiasis japon-
ica or advanced Schistosomiasis japonica; PBMCs from 
healthy volunteers served as a control. The character-
istics of the enrolled patients are shown in Additional 
file  1: Table  S1. The diagnosis of chronic Schistosomia-
sis japonica was based on criteria including history of 
contaminated water exposure and praziquantel treat-
ment, seropositivity of anti-schistosome antibodies-IgG 
and typical ultrasonic findings (linear strong echoes) 
[25]. The inclusion criteria for advanced Schistosomia-
sis japonica cases were as follows: long-term repeated 
history of contaminated water exposure and definitive 
praziquantel treatment, portal hypertension, ascites, 
splenomegaly or gastroesophageal variceal bleeding. 
The study involved several exclusion criteria, including 
seropositivity for hepatitis B or C virus, alcohol-induced 
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cirrhosis, autoimmune liver or other autoimmune disease 
or tumor. Our study was approved by the Ethics Commit-
tee of the 3rd Xiangya Hospital of Central South Univer-
sity and received written informed consent.

Single‑cell RNA sequencing
Our study consisted of three groups, including patients 
with chronic Schistosomiasis japonica, advanced Schis-
tosomiasis japonica and healthy controls. PBMCs were 
isolated by density gradient centrifugation using Ficoll-
Paque Plus medium and washed with Ca/Mg-free phos-
phate-buffered saline (PBS). To remove the red blood 
cells, 2  ml GEXSCOPE® red blood cell lysis buffer was 
added, and the sample was incubated at 25 °C for 10 min. 
The sample was then centrifuged at 500×g for 5  min, 
and the cells was resuspended in PBS. The samples were 
centrifuged at 400×g for 5  min at 4  °C, and the super-
natant was discarded. After removing red blood cells, 
PBMCs were isolated by centrifugation at 400×g for 
10 min at 4  °C. The supernatant was discarded, and the 
PBMCs were resuspended in PBS to obtain a single-cell 
suspension. Single-cell suspensions with 1 × 105  cells/
ml were loaded onto microfluidic devices. According to 
the GEXSCOPER protocol, single-cell RNA sequencing 
libraries were constructed using GEXSCOPER Single-
Cell RNA Library Kit (Singleron Biotechnologies, Nan-
jing, China, Catalogue Number: 4180021), and individual 
libraries were pooled for sequencing after dilution to 
4 nM [26]. The pooled samples were sequenced using a 
NovaSeq 6000 (Illumina, San Diego, CA, USA) with 150-
bp paired end reads.

scRNA‑seq quantification
Raw reads were processed to generate gene expression 
profiles using an internal pipeline. Briefly, after filtering 
read one without poly T tails, the cell barcode and UMI 
were extracted. Adapters and poly A tails were trimmed 
(fastp V1) before aligning read two to GRCh38 with 
ensemble version 92 gene annotation (fastp 2.5.3a and 
featureCounts 1.6.2) [27]. Reads with the same cell bar-
code, UMI and gene were grouped together to calculate 
the number of UMIs per gene per cell. The RNA sequenc-
ing data were analyzed such as for cell type identification 
and clustering analysis, with the Seurat program (http://​
satij​alab.​org/​seurat/, R package, v.3.2.1) [28, 29].Unique 
molecular identifier (UMI) count tables were loaded into 
R (R version 4.0.2) using the read.table function. KEGG 
functional enrichment analysis was performed on differ-
entially expressed genes (DEGs) to reveal pathways sig-
nificantly associated with the genes specifically expressed 
[30]. We used CellChat to perform cell-cell interaction 
analysis, which is based on known interactions among 
signaling ligands, receptors and their cofactors. The 

average gene expression of each cell type was used as 
input data for GSVA pathway enrichment analysis. The 
cell differentiation trajectory was reconstructed using 
Monocle2, and differentially expressed genes were used 
to sort cells in order of spatial-temporal differentiation.

Flow cytometry
After peripheral blood was collected, fresh anticoagu-
lated whole blood was stained with BD Multitest 6-color 
TBNK reagent (CD45-PerCP-Cy5.5, CD3-FITC, CD4-
PE-Cy7, CD8-APC-Cy7, CD19-APC, CD16-PE, CD56-
PE, Catalogue Number: 662967). Flow cytometry was 
performed using a BD FACS Canto II, and the results 
were analyzed using FlowJo 10.4 software (Tree Star, 
Ashland, OR, USA).

Statistical analysis
The significance level was assessed by an unpaired t-test, 
and all data are expressed as the means ± SD. P val-
ues < 0.05 were considered statistically significant. Calcu-
lations were performed using GraphPad Prism software 
package 8.0 (GraphPad Prism, San Diego, CA, USA).

Results
Single‑cell RNA sequencing and cell types at different 
stages of Schistosomiasis japonica
PBMCs were isolated from patients with chronic Schis-
tosomiasis japonica (n = 4; the chronic group), advanced 
Schistosomiasis japonica (n = 2; the advanced group) and 
healthy controls (n = 4; the HC group). Immune cells 
from single-cell suspensions were sequenced by single-
cell RNA sequencing, and further biological analysis was 
performed on the sequencing data (Fig. 1a). To perform 
quality control (QC) analyses, cells containing < 25% 
mitochondrial genes were included, and cells with unique 
feature counts < 200 or > 10,000 were filtered out. A total 
of 89,896 cells were obtained for further analysis. The 
UMAP plot showed 24 major cell clusters in the three 
groups (Fig.  1b). We annotated all clusters according to 
marker genes and identified monocytes, NK/T cells, B 
cells, dendritic cells, neutrophils, basophils and red blood 
cells (Fig. 1c, d). By analyzing the percentage of different 
cells in three groups, the percentages in the advanced 
Schistosomiasis japonica group were found to be obvi-
ously different from those of the chronic Schistosomia-
sis japonica and healthy controls groups. The clusters of 
advanced Schistosomiasis japonica were composed pre-
dominantly of monocytes, while neutrophils and NK/T 
cells dominated in chronic Schistosomiasis japonica and 
healthy controls (Fig. 1e).

http://satijalab.org/seurat/
http://satijalab.org/seurat/
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Increased NKT cells in patients with schistosomiasis
We detected 36,983 NK/T cells that were clustered 
into seven main clusters (Fig.  2a). Cluster (3) expressed 
GZMB but not CD3E, which suggested that they were 
NK cells. Cluster (2) and Cluster (4) were NKT cells with 
GZMB and CD3E. Only Cluster (2) expressed CXCR2, 
while Cluster (4) did not express it. Cytotoxic T cells 

(CD3E + CD8 +) were classified into Cluster (0) and 
Cluster (5). CD8 + Cluster (5) might have weak cytotoxic 
activity due to the lack of GZMB. Cluster (6) contained 
T cells with strong proliferative ability and expression 
of MKI67. Cluster (1) contained CD4 + T cells (Fig. 2b). 
NKT cells and MIKI67 + T cells were obviously increased 
in the chronic group and the advanced group compared 

Fig. 1  Overview of the 89,896 single cells isolated from PBMCs from three groups. (a) Flowchart of our study including grouping, PBMCs, 
sequencing and analyzing. (b) UMAP plot of different clusters and three groups [chronic Schistosomiasis japonica patients (CSJ, n = 4), advanced 
Schistosomiasis japonica patients (ASJ, n = 2) and healthy controls (HC, n = 4)]. (c) Expression of marker genes in different clusters. (d) UMAP plot 
of annotation clusters. (e) The percentage change tendency of each cell cluster in the three groups
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to the HC group. In particular, CXCR2 + NKT cells 
accounted for an important component in the advanced 
group (Fig. 2c). KEGG pathway analysis was performed, 
and the DEG-enriched pathways of CXCR2 + NKT cells 
are involved in natural killer cell-mediated cytotoxic-
ity and chemokine signaling pathways; NKT cells are 
also involved in natural killer cell-mediated cytotoxic-
ity and phagosomes. Oxidative phosphorylation was 
among the DEG-enriched pathways of MKI67 + T cells 
(Fig. 2d). Cytotoxic score analysis showed that NKT cells 
and NK cells had significant cytotoxicity, and inflam-
matory score analysis showed CXCR2 + NKT cells to be 
proinflammatory cells (Fig. 2e, f ). Flow cytometry results 
showed significantly higher rates of NKT cells in patients 
with schistosomiasis (both the chronic group and the 

advanced group) than in the healthy controls, with no 
significant differences between the chronic group and the 
advanced group (Fig. 2g).

We generated a trajectory plot to explore the relation-
ship between NKT cells [Cluster (2)] and CXCR2 + NKT 
cells [Cluster (4)], which included three states. Clus-
ter ( 2) was mainly in state 1 and state 2, and Cluster (4) 
belonged to state 3. Pseudotime analysis showed that 
Cluster (4) appeared at the end of the trajectory (Fig. 3a). 
In the process of differentiation, proinflammatory genes 
(S100A8 and CXCL8) were upregulated in CXCR2 + NKT 
cells (Fig. 3b). We utilized CellChat to analyze cell-to-cell 
communication between T cells and other immune cells. 
The results showed CXCR2 + NKT cells, neutrophils 
and monocytes to be closely related in the IL1 signaling 

Fig. 2  Increased NKT cells in patients with schistosomiasis. (a) UMAP plots of the 36,983 NK/T cells for seven clusters. (b) Violin plots of genes 
in each NK/T cells cluster. (c) The percentage change tendency and contribution of each NK/T cell cluster in the three groups. (d) KEGG pathway 
enrichment data of NKT cells, CXCR2 + NKT cells and MKI67 + T cell(1). (e, f) Violin plots showing the cytotoxic score and inflammatory score of T cells. 
(g) The percentage of NKT cells in T cells. The significance level was assesses by an unpaired t-test, and the data are shown as the mean ± SD value 
(*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001)
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pathway (Fig. 3c, d). Contribution analysis of each L − R 
pair showed that IL1B–IL1R2 was the most dominant 
L − R in the IL1 signaling pathway (Fig.  3e). The recep-
tors of IL1B (IL1R1, IL1R2 and IL1RAP) were mainly 
expressed in CXCR2 + NKT cells (Fig. 3f ).

Expansion of plasma cells in advanced Schistosomiasis 
japonica
We examined 4717 B cells, which were divided into five 
main clusters. The UMAP plot showed different distribu-
tions for the three groups (Fig. 4a). CD79A was expressed 
in all clusters, and MS4A1 was mainly expressed in Clus-
ter (0) and Cluster (1). Cluster (2), Cluster (3) and Cluster 
(4) contained plasma cells, characterized by high expres-
sion of IGHA1 or IGHG1 (Fig. 4b). There were obviously 
increased plasma cells in the advanced group (Fig.  4c). 
The enriched KEGG pathways of B cells (1) and B cells 
(2) are related to ribosome and antigen processing and 
presentation; plasma cells (1), plasma cells (2) and plasma 
cells (3) are involved in protein processing in the endo-
plasmic reticulum, oxidative phosphorylation and pro-
tein export (Fig. 4d). We also generated a trajectory plot 
to investigate the relationship between B cells (2), plasma 
cells (1), plasma cells (2) and plasma cells (3), which 
included five states. Pseudotime analysis showed B cells 
(2) and plasma cells (1) in all states; plasma cells (2) and 
plasma cells (3) appeared at the two ends of trajectory 
branch 2 (Fig.  4e). The results showed that HLA-DRA 
and MS4A1 were downregulated in the process of dif-
ferentiation. XBP1, a key transcription factor for plasma 
cells, was found upregulated in plasma cells (Fig. 4f ).

Differential enrichment of heterogeneous monocytes 
in Schistosomiasis japonica
Myeloid cells were further investigated, and 47,743 were 
included in our analysis. These cells were grouped into 
11 clusters. There were four clusters of neutrophils, four 
clusters of monocytes, one cluster of cDCs, one cluster of 
pDCs and one cluster of basophils (Fig. 5a, b). Monocytes 
were clearly increased in the advanced group (Fig.  5c). 
GSVA was performed to identify differences between 
different monocytes. Mon(1) was primarily related to 
the inflammatory response. Mon(2) was associated 
with notch signaling and TNF-α signaling via NF-κB. 
Mon(3) was involved in protein secretion and bile acid 

metabolism, and Mon(4) was related to TGF-β signaling 
(Fig. 5d). Inflammatory genes (S100A8 and S100A9) were 
highly expressed in the Mon(1). CXCL16 and CX3CR1 
were mainly shown in Mon(2). CCL5 and GZMB were 
present in Mon(3), and IL17RA was highly expressed in 
Mon(4) (Fig. 5e). FOLR3 and CCR2 were predominantly 
expressed in monocytes in the advanced group (Fig. 5f ). 
The advanced group showed low expression of MHC 
molecules (HLA-A, HLA-B, HLA-C, TAPBP, TAP1, HLA-
DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DPA1, 
HLA-DPB1, PSME1 and CIITA) (Fig. 5g).

Discussion
Schistosomiasis remains a devastating parasitic disease, 
especially in developing countries in sub-Saharan Africa, 
the Middle East, South America and Southeast Asia. 
With no vaccine and only one drug for treatment, there 
is an urgent need for further research to investigate the 
immune mechanisms involved in schistosomiasis and to 
identify potential therapeutic targets. In this study, we 
used scRNA-seq to explore the basic biology of immune 
cells in peripheral blood of patients with Schistosomiasis 
japonica. Our study for the first time to our knowledge 
mapped the immune cell landscape in the peripheral 
blood of patients with schistosomiasis, revealing the 
complexity and heterogeneity of immune cells in differ-
ent stages of schistosome infection. This research enabled 
identification of stage-specific immune cells and marker 
genes, activation of molecular pathways and immune 
function evaluation. Hence, this study deepens our 
understanding of the immune mechanisms in schistoso-
miasis and provides a transcriptional atlas of peripheral 
immune cells facilitating elimination of schistosomiasis.

scRNA-seq is a powerful technique for providing a 
transcriptional atlas of immune cells and for analyzing 
the heterogeneity of cell populations. With its high res-
olution, scRNA-seq has been widely applied in various 
diseases [20, 31, 32]. In this study, scRNA-seq analysis 
revealed transcriptional signatures of various peripheral 
immune cells in patients in different stages of Schistoso-
miasis japonica.

Our scRNA-seq analysis identified 24 major cell clus-
ters based on classical marker genes. Previous studies 
have demonstrated involvement and significance of 
Th1 and Th2 immune responses in mice and patients 

(See figure on next page.)
Fig. 3  Pseudotime trajectory of T cells and CellChat between different cell clusters. (a) Pseudotime trajectory of NKT cells ]Cluster (2)] 
and CXCR2 + NKT cells [Cluster (4)]; dark blue is the start of pseudotime. (b) Scatter plots showing expression changes of inflammatory genes 
(S100A8, CXCL8 and CXCR2) over time. (c) Heatmaps of the differential number of interactions between different cell clusters in the IL1 signaling 
network. (d) Circle plots displaying the IL1 signaling network between different cell clusters. (e) Relative contribution of each ligand-receptor pair 
to the IL1 signaling network. (f) Dot plot of IL1R1, IL1R2 and IL1RAP in T cells
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Fig. 3  (See legend on previous page.)
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infected with S. japonicum; however, the cellular basis 
remains poorly defined [33]. Consistent with previous 
studies, our results revealed that different T-cell subsets 
are involved in the pathogenesis of different stages of 
Schistosomiasis japonica. In addition, we observed dif-
ferences in other immune cells between patients with 
chronic schistosomiasis and advanced schistosomiasis, 

particularly monocytes and B cells. Although previous 
studies have reported their roles in schistosomiasis, 
the transcriptional signatures of these cells will defi-
nitely promote understanding of their roles and mecha-
nism in Schistosomiasis japonica [34, 35]. Furthermore, 
scRNA-seq is capable of identifying rare immune cells 
as well as comprehensively defining the function of 
different immune cells. Thus, further analysis of these 

Fig. 4  Expansion of plasma cells in advanced Schistosomiasis japonica. (a) UMAP plots of the 4717 B cells for five clusters and three groups. (b) 
Expression of marker genes of different B cells. (c) The percentage contribution of each B cells cluster in the three groups. (d) KEGG pathway 
enrichment data of different cells. (e) Pseudotime trajectory of B cells (2), plasma cells (1), plasma cells (2) and plasma cells (3);  dark blue is the start 
of pseudotime. (f) Scatter plots showing the expression changes of inflammatory genes (HLA-DRA, MS4A1 and XBP1) over time



Page 9 of 12Li et al. Parasites & Vectors          (2023) 16:356 	

scRNA-seq data will contribute to identification of 
novel immune cells in S. japonicum infection.

Our analysis results showed that neutrophils accounted 
for the major proportion in the chronic group and the 
healthy group but that monocytes dominated in the 
advanced group. The higher level of neutrophils in 
chronic schistosomiasis is associated with formation 
of granulomas, as granulomas in patients with Schis-
tosomiasis japonica have a high ratio of neutrophils 
[36]. However, the granulomas may become degraded 
in advanced schistosomiasis. Although peripheral 

blood-based analysis is unable to fully reveal immune 
cells surrounding S. japonicum egg-induced granulo-
mas, scRNA-seq analysis of PBMCs contributed to our 
mechanistic study of the transition from chronic schisto-
somiasis to advanced schistosomiasis. For further inves-
tigation, we performed analyses of different cell types. 
NK/T cells were divided into seven main clusters. NKT 
cells were obviously increased in the chronic group and 
the advanced group compared with the HC group. There 
were increased CXCR2 + NKT cells in the advanced 
group, which had high expression of proinflammatory 

Fig. 5  Differential enrichment of myeloid cells in Schistosomiasis japonica. (a) UMAP plots of 47,743 myeloid cells for 11 clusters. (b) Feature plot 
of marker genes of myeloid cells. (c) The percentage of each cluster in the three groups. (d) GSVA enrichment data of monocytes. (e) Dot plot 
of genes in monocytes. (f) Violin plots of CCR2 and FOLR3 in the three groups. (g) Bubble plots of MHC molecules in the three groups in monocytes
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genes (S100A8 and CXCL8). Our results showed that 
CXCR2 + NKT cells might migrate to the liver via chem-
otaxis and exhibit both cytotoxic and proinflammatory 
activity. Our previous study also showed that GZMB + T 
cells are increased in schistosome-associated liver fibro-
sis [37]. Previous studies have also demonstrated the 
importance of NKT cells in hepatic inflammation and 
fibrosis. However, the opposite effects of NKT cells occur 
in hepatic fibrosis in different liver diseases and stages 
[38–41]. On the one hand, NKT cells may inhibit activa-
tion of HSCs or kill HSCs to attenuate the proinflamma-
tory effects and hepatic fibrosis. On the other hand, NKT 
cells might promote the progression of hepatic fibrosis 
through production of the type 2 profibrotic cytokines 
IL-4 and IL-13 [42–44]. In addition, NKT cells might 
influence the Th1/Th2 balance of the immune response in 
murine schistosomiasis [45]. However, our data showed 
low expression of IL4, IL5 and IL13 in T cells, possibly 
due to the difference between peripheral blood and the 
liver. Further investigation in NKT cells in hepatic fibro-
sis of human schistosomiasis is warranted.

We also analyzed myeloid cells. Monocytes were clearly 
increased in the advanced group. There were three dif-
ferent clusters of monocytes. Mon(1) had high expres-
sion of S100A8 and S100A9, which might promote the 
inflammatory response. CXCL16 and CX3CR1 were 
mainly expressed in Mon(2), while CCL5 and GZMB 
were mainly expressed in Mon(3). Some research has 
shown that macrophages can exhibit NK cell-like cyto-
toxic activity in a perforin/granzyme B-dependent man-
ner [46]. CCR2, a promising target for treatment of liver 
fibrosis, was highly expressed in the advanced group 
and is essential for monocyte chemotaxis to the liver 
[47]. CCR2+ monocytes might play a profibrotic role in 
schistosome-associated liver fibrosis and also be a target 
for treatment of schistosomiasis. Abundant expression 
of FOLR3 was observed in the advanced group. FOLR3 
binds to folate and reduced folic acid derivatives and 
mediates delivery of 5-methyltetrahydrofolate to the inte-
rior of cells. This preliminary result offers evidence that 
FOLR3 might play a potential role in the development 
of advanced schistosomiasis, though more studies are 
needed to investigate this relationship. Monocytes of the 
advanced group, unlike those of the other two groups, 
showed low expression of MHC molecules (HLA-A, 
HLA-B, HLA-C, TAPBP, TAP1, HLA-DQA1, HLA-
DQB1, HLA-DRA, HLA-DRB1, HLA-DPA1, HLA-DPB1, 
PSME1 and CIITA). Monocytes are antigen-presenting 
cells (APCs). Our results indicated that monocytes in 
patients with advanced schistosomiasis are equipped 
with a dampened capability of antigen presentation. 
Although an in vitro study indicated that SEA attenuates 
IFN-γ-induced MHC class II expression is partly through 

interaction between SEA and TLR4, the mechanism of 
decreased MHC molecule expression in the advanced 
infection group remains unclear [48]. Decreased MHC 
molecule expression is associated with a schistosome-
mediated suppression of the host immune response to 
evade immune attack, as MHC molecules play an impor-
tant role in initiation and regulation of immune reactions 
[48]. Evidence has shown that patients with schistoso-
miasis are more prone to infection by HIV, Kaposi’s sar-
coma-associated herpesvirus and virulence of hepatitis 
B and C viruses [49]. However, the association between 
decreased MHC molecule expression and increased sus-
ceptibility to those viruses is not fully understood.

Our research provides a profile of the peripheral 
immune landscape of human S. japonicum infection. 
However, there are still several limitations in our study, 
including a small sample size for each group and the ina-
bility of peripheral blood to fully reflect the mechanisms 
of advanced schistosomiasis. Due to the small sample 
size of each group, our results are preliminary, and fur-
ther research with larger sample sizes is needed. In con-
clusion, our results provide further understanding of the 
pathogenesis of human schistosomiasis, and the role of 
CCR2+ monocytes and CXCR2+ NKT cells in schistoso-
miasis requires further study.
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