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Abstract

Background Nematodes of the genus Heterorhabditis are important biocontrol agents as they form a lethal combi-
nation with their symbiotic Photorhabdus bacteria against agricultural insect pests. This study describes a new species
of Heterorhabditis.

Methods Six Heterorhabditis nematode populations were recovered from agricultural soils in Jammu and Kashmir,
India. An initial examination using mitochondrial and nuclear genes showed that they belong to a new species. To
describe this new species, a variety of analyses were conducted, including reconstructing phylogenetic relationships
based on multiple genes, characterizing the nematodes at the morphological and morphometric levels, performing
self-crossing and cross-hybridization experiments, and isolating and characterizing their symbiotic bacteria.

Results The newly discovered species, Heterorhabditis casmirica n. sp., shares 94% mitochondrial cytochrome C oxi-
dase subunit | gene (COI) sequence identity with Heterorhabditis bacteriophora and Heterorhabditis ruandica, and 93%
with Heterorhabditis zacatecana. Morphologically, it differs from H. bacteriophora in its infective juvenile phasmids
(present vs. inconspicuous) and bacterial pouch visibility in the ventricular portion of the intestine (invisible vs. visible);
genital papilla 1 (GP1) position (at manubrium level vs. more anterior), and in its b ratio (body length/neck length), ¢
ratio (tail length/bulb width), and D% [(excretory pore/neck length) x 100]. Other morphological differences include
anterior end to the nerve ring distance (77-100 vs. 121-130 um), V% [(anterior end of vulva/body length) x 100]
(46-57 vs. 41-47) in hermaphroditic females; rectum size (slightly longer than the anal body diameter vs. about three
times longer), phasmids (smaller vs. inconspicuous), body length (0.13-2.0 vs. 0.32-0.39 mm), body diameter (73—
150 vs. 160-220 um), anterior end to the excretory pore distance (135-157 vs. 174-214 um), and demanian ratios

in amphimictic females. Morphological differences with H. ruandica and H. zacatecana were also observed. Further-
more, H. casmirica n. sp. did not mate or produce fertile progeny with other Heterorhabditis nematodes reported
from India. It was also discovered that H. casmirica n. sp. is associated with ‘Photorhabdus laumondii subsp. clarkei
symbiotic bacteria.
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Conclusions The discovery of H. casmirica n. sp. provides novel insights into the diversity and evolution of Het-
erorhabditis nematodes and their symbiotic bacteria. This new species adds to the catalog of entomopathogenic

nematodes in India.

Keywords Entomopathogenic nematodes, Biological control agents, Species description, Nematode morphology,

Phylogenetics, Taxonomy, Photorhabdus

Background

Entomopathogenic nematodes belonging to the families
Heterorhabditidae and Steinernematididae are highly
effective biocontrol agents against agricultural pests.
These nematodes have independently evolved mutual
associations with insect pathogenic bacteria of the genera
Photorhabdus and Xenorhabdus, respectively [1-4]. At
the infective juvenile (IJ) stage, these nematodes, which
reside in the soil, actively search for insect hosts [5].
When an appropriate host is located, the IJs penetrate
the insect body through natural openings or by directly
breaking through the cuticle. They then release their bac-
terial symbionts upon sensing unknown chemical cues in
the hemolymph [6, 7]. The bacteria multiply and produce
virulence factors and toxins that kill the infected host [8—
10]. Furthermore, the bacteria secrete exoenzymes that
degrade the insect tissues and produce several metabo-
lites essential for nematode growth, development, and
reproduction [11, 12]. The bacteria also produce potent
secondary metabolites that act as antibiotics and deter
scavenging arthropods. Upon resource depletion, the
new generation of nematodes disperses in search of new
hosts [9, 13].

Heterorhabditis species are generally more virulent
than those of Steinernema [14]. However, they are less
speciose than Steinernema [15, 16]. Despite this, new
valid species of Heterorhabditis are often described and
added to the list. The genus Heterorhabditis comprises
21 valid species, including two recently described spe-
cies, Heterorhabditis ruandica from Rwanda and Het-
erorhabditis zacatecana from Mexico [15, 17]. Most of
the valid species described so far have been molecularly
characterized, except for Heterorhabditis egyptii [18]
and Heterorhabditis hambletoni [19], which have only
been morphologically characterized. The genus Heter-
orhabditis is globally distributed, although some spe-
cies are only reported in certain geographic regions. In
India, for instance, three species of Heterorhabditis have
been documented so far: Heterorhabditis indica [20, 21],
Heterorhabditis bacteriophora [22], and Heterorhabditis
baujardi [23]. Heterorhabditis indica, described by Poi-
nar et al. [20], is the only new species of the genus Heter-
orhabditis reported from India to date.

In this study, we present the discovery of, and charac-
terize, a new entomopathogenic nematode species, Het-
erorhabditis casmirica n. sp., and its symbiotic bacteria,
recovered from the union territory of Jammu and Kash-
mir, India. Our study contributes to the characterization
of soil biodiversity in general and advances our efforts to
understand the biodiversity of an important group of bio-
logical control agents, which are essential tools for eco-
friendly and sustainable agricultural practices.

Methods

Nematode origin

Six populations of nematodes, namely HM, HMS8, HP1,
HPH, HH1, and HH4, were obtained from soil samples
collected in the northwestern part of the union territory
of Jammu and Kashmir, India. The samples were col-
lected from soils around the roots of walnut and willow
trees in the Anantnag district (Global Positioning System
coordinates 33.828914, 75.100091; altitude 1606 m above
sea level). Each one of these six populations was isolated
from different soil samples. Each soil sample was sepa-
rated by about 2 km from each other. Nematodes were
isolated from soil samples using Corcyra cephalonica as
a bait insect. Insects with nematode infestation symp-
toms were washed with double distilled H,O, sterilized
with 0.1% NaOCl,, and then placed in White traps to
recover the new generation of IJs [24]. Recovered nem-
atodes were reared using Galleria mellonella larvae as
hosts under laboratory conditions [25, 26]. The IJs were
stored in 250-mL tissue culture flasks in a biological oxy-
gen demand incubator at 15 °C [27, 28]. The new species
has been registered at ZooBank under urn:Isid:zoobank.
org:pub:BBFC7CC6-7294-4548-AA7F-5CD5293E4103.

Nematode morphological and morphometric
characterization, light and scanning electron microscopy
Hermaphroditic females, males and amphimictic females
were obtained by dissecting G. mellonella cadavers in
Ringer’s solution 4 and 6 days after infestation, respec-
tively [26, 28]. The IJs were collected from White traps
after emerging from the G. mellonella cadavers. The
nematodes were then killed with hot water, fixed in TAF
solution (2 mL triethanolamine, 7 mL of 40% commercial
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formaldehyde solution, and 91 mL distilled water), trans-
ferred to anhydrous glycerin, and mounted on perma-
nent glass slides with additional layers of paraffin wax to
prevent flattening during microscopy [29, 30]. Morpho-
logical measurements (in micrometers) were taken using
Nikon DS-L2 image acquisition software on a phase-
contrast microscope (Nikon Eclipse 80i). Twenty speci-
mens at each developmental stage were measured. Light
microscopy (LM) and scanning electron microscopy
(SEM) photographs were obtained using various nema-
tological techniques detailed by Abolafia [31]. In brief,
nematodes fixed in 4% formalin solution were processed
to anhydrous glycerin using Siddiqi’s method with lacto-
phenol-glycerin solutions [32]. Subsequently, the nema-
todes were permanently mounted on glass microscope
slides using the glycerin-paraffin method [33, 34]. The
LM photographs were captured using a Nikon Eclipse
80i microscope (Olympus, Tokyo, Japan) with differen-
tial interference contrast optics and a Nikon Digital Sight
DS-U1 camera. For SEM, nematodes preserved in glyc-
erin were removed from permanent microscope slides by
removing the cover glass, rehydrated in distilled water,
dehydrated in a graded ethanol-acetone series, criti-
cally point dried with liquid CO,, mounted on SEM stubs
with copper tape, coated with gold in a sputter coater,
and finally observed with a Zeiss Merlin microscope
(5 kV) (Zeiss, Oberkochen, Germany) [35]. The LM and
SEM micrographs, obtained at different magnifications
for each structure, were processed and combined using
Adobe Photoshop Creative Suite (Microsoft, Redmond,
WA).

Comparisons were made between all the valid
described species of Heterorhabditis based on morpho-
logical, morphometric and molecular characters, using
the keys published by Machado et al. [17]. Demanian
indices and other ratios were calculated following the
method outlined by de Man [36]. The stoma morphol-
ogy was described using the terminology provided by De
Ley et al. [37], the spicule and gubernaculum morphol-
ogy was described using the terminology established by
Abolafia and Pefa-Santiago [38] and the terminology for
pharynx follows the proposals of Bird and Bird [39] and
Baldwin and Perry [40].

Self-crossing and cross-hybridization experiments

Self-crossing and cross-hybridization experiments were
carried out on lipid agar plates following the methodol-
ogy described by Dix et al. [41]. Heterorhabditis casmir-
ica n. sp. isolates HM, HM8, HP1, HPH, HH1, and HH4
were crossed with each other and allowed to interact with
Indian populations of H. bacteriophora (P4, P5 and KAS),
H. indica (TH7, TH8 and TH9) and H. baujardi (HeTD4)
nematodes. Control experiments were also conducted
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by self-crossing all the nematode species/strains. In each
experiment, 20 second-generation males and 20 second-
generation virgin females of each species were placed on
35-mm-diameter lipid agar plates and incubated at 25 °C.
Progeny production was observed daily for 7 consecutive
days. The experiments were conducted twice under the
same conditions.

Nematode molecular characterization and phylogenetic
relationships

Genomic DNA was extracted from individual hermaph-
roditic females isolated from insect cadavers infested
with H. casmirica n. sp. HM, HM8, HP1, HPH, HH1, or
HH4, as described [42]. Briefly, individual virgin females
were washed separately with Ringer’s solution and then
washed in phosphate-buffered saline (pH 7.2). Virgin
females were then individually transferred to sterile poly-
merase chain reaction (PCR) tubes (0.2 mL) containing
20 pL extraction buffer (17.6 pL nuclease-free distilled
H,O, 2 pL of 5X PCR buffer, 0.2 pL 1% Tween, and 0.2 pL
proteinase K). Samples were frozen at —20 °C for 60 min
or overnight and then immediately incubated in a PCR
thermocycler at 65 °C for 1.2 h, followed by incubation
at 95 °C for 10 min. The lysates were cooled on ice and
centrifuged at 6500 g for 3 min. The resulting superna-
tants were used as DNA templates to amplify differ-
ent taxonomically relevant gene markers. A fragment of
ribosomal rRNA (rRNA) containing the internal tran-
scribed spacer (ITS) regions (ITS1-5.8S-ITS2) was ampli-
fied using primers 18S (5'-TTGATTACGTCCCTGCCC
TTT-3") (forward) and 28S (5'-TTTCACTCGCCGTTA
CTAAGG-3’) (reverse) [43]. A fragment of rRNA con-
taining the D2-D3 regions of the 28S rRNA was ampli-
fied using primers D2F (5'-CCTTAG TAACGGCGA
GTGAAA-3") (forward) and 536 (5"-CAGCTATCCTGA
GGAAAC-3’) (reverse) [44]. The 12S mitochondrial gene
was amplified using primers 505F (5'-GTTCCAGAA
TAATCGGCTAGAC-3") (forward) and 506R (5'-TCT
ACTTTACTACAACTTACT CCCC-3") (reverse) [44]
and the mitochondrially encoded cytochrome oxidase
subunit I gene (MT-COI) was amplified using primers
HCF (5-TTACATGATACTTATTATG-3’) (forward)
and HCF (5-CTGATAACTGTGACCAAATACATA
-3”) (reverse) [45]. The PCR reactions consisted of 2 pL
of DNA extract, 12.5 pL of DreamTaq Green PCR Master
Mix (Thermo Scientific, USA), 0.75 pL of each forward
and reverse primer at 10 uM and 9 pL of nuclease-free
distilled H,O. The PCR reactions were performed using
a thermocycler (Applied Biosystems Veriti 96-Well Ther-
mal Cycler) with the following settings: (i) for ITS, D2—
D3 and 12S—one cycle of 3 min at 94 °C followed by 35
cycles of 30 s at 94 °C, 30 s at 50 °C, 1 min 30 s at 72 °C,
followed by a single final elongation step at 72 °C for
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20 min; (ii) for the MT-COI gene—one cycle of 3 min at
94 °C followed by 38 cycles of 10 s at 94 °C, 30 s at 40 °C,
60 s at 72 °C, followed by a single final elongation step at
72 °C for 10 min [46]. PCR was followed by electrophore-
sis (45 min, 100 V) of 5 puL of PCR products in a 1% Tris—
boric acid-ethylenediaminetetraacetic —acid-buffered
agarose gel stained with SYBR Safe DNA Gel Stain (Invit-
rogen, Carlsbad, CA). PCR products were purified using
the FastGene Gel/PCR extraction kit (Nippon Genetics,
Japan) and sequenced using reverse and forward prim-
ers by Sanger sequencing (Bioserve, Hyderabad, India).
The obtained sequences were manually curated, trimmed
and deposited at the National Center for Biotechnology
Information (NCBI) under the accession numbers given
in Additional file 1: Table S4. To complete this data set
and to obtain genomic sequences of nematodes that
belong to all the valid described species of the genus
Heterorhabditis, we searched the database of the NCBI
by using the Basic Local Alignment Search Tool and
the accession numbers of the sequences obtained pre-
viously [17, 47]. The resulting sequences were used to
reconstruct phylogenetic relationships by the maximum
likelihood method based on the following nucleotide
substitution models: Tamura—Nei (TN93+G+I) (MT-
COI) and Kimura 2-parameter (K24+G) (D2-D3) (ITS).
To select the best substitution models, best-fit nucleo-
tide substitution model analyses were carried out in
MEGA 11 [48-51]. Sequences were aligned with MUS-
CLE (v3.8.31) [52]. The trees with the highest log likeli-
hood are shown. The percentage of trees in which the
associated taxa clustered is shown next to the branches.
Initial tree(s) for the heuristic search were obtained auto-
matically by applying neighbor—joining and BION]J algo-
rithms to a matrix of pairwise distances estimated using
the maximum composite likelihood approach, and select-
ing the topology with a superior log-likelihood value. In
some cases, a discrete gamma distribution (+G) was used
to model evolutionary rate differences between sites, and
the rate variation model allowed for some sites to be evo-
lutionarily invariable (+I). The trees are drawn to scale,
with branch lengths measured in the number of substitu-
tions per site. Graphical representation and edition of the
phylogenetic trees were performed with Interactive Tree
of Life v3.5.1 [53, 54].

Symbiotic relationships

The Photorhabdus entomopathogenic bacteria associated
with the different H. casmirica n. sp. nematode popu-
lations were isolated as described previously [55, 56].
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Briefly, larvae of G. mellonella (Lepidoptera: Pyralidae)
were exposed to 100 nematode IJs. Three to 4 days later,
insect cadavers were surface sterilized and cut open with
a surgical blade. Bacteria-digested internal organs were
spread onto Luria—Bertani (LB) agar plates and incu-
bated at 28 °C for 24—48 h. Photorhabdus—like colonies
were then streaked on fresh LB agar plates until mono-
cultures were obtained. A single primary form colony
was then selected and used for further experiments.
Bacteria primary forms were determined by examin-
ing colony morphology, colony texture, pigment pro-
duction, and bioluminescence. The strains were further
subcultured and maintained on LB agar plates at 28 °C.
An initial molecular characterization, using 16S rRNA
gene sequences, was carried out to determine the taxo-
nomic affiliation of the obtained bacterial cultures as
described previously [3, 4, 17, 56]. Phylogenetic recon-
struction and sequence comparisons based on whole
genome sequences were carried out to confirm the tax-
onomic affiliation of the obtained bacterial cultures as
described previously [3, 55, 56]. Briefly, genomic DNA
was extracted and purified using the GenElute Bacterial
Genomic DNA Kit (Sigma-Aldrich, Switzerland) follow-
ing the manufacturer’s instructions. The resulting DNA
was used for library preparation using the TruSeq DNA
PCR-Free LT Library Prep (FC-121-3003) kit. Indexed
libraries were then pooled at equimolar concentrations
and sequenced [2X 150 base pairs (bp)] on an Illumina
HiSeq 3000. Raw Illumina reads were quality trimmed
using Trimmomatic 0.39 [57]. The resulting reads were
assembled with SPAdes 3.14.1 (k-mer sizes of 31, 51, 71,
91, and 111 bp) [58]. Scaffolds with a mean read depth
smaller than 20% of the median read depth of the longer
scaffolds (> 5000 bp) as well as scaffolds that were shorter
than 200 bp were removed. The final assemblies were
polished using Pilon 1.22 [59]. Phylogenetic relationships
were reconstructed based on the assembled genomes and
the genome sequences of all valid published species of the
genus [3, 55, 56]. For this, core genome alignments were
created using Roary 3.6.2 [60]. Based on this alignment, a
maximum likelihood tree was constructed using Fasttree
2.1.10 based on the Jukes—Cantor plus CAT nucleotide
evolution model [61].

Results and discussion

Six populations of Heterorhabditis nematodes (HM,
HMS, HP1, HPH, HH1, and HH4) were isolated from
agricultural soils in Kashmir, India. Initial molecular and
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Fig. 1 a-m Heterorhabditis casmirica n. sp. (drawings). a, d, g Anterior end of hermaphroditic female, amphimictic female and male, respectively. b,
e, h, j, 1 Neck region of hermaphroditic female, amphimictic female, male, second-stage juvenile (J2) and third-stage juvenile (J3), respectively. ¢, f, i,
k, m Posterior end of hermaphroditic female, amphimictic female, male, J2 and J3, respectively
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Fig. 2 a-j Heterorhabditis casmirica n. sp. (light microscopy images). a, d, g Anterior end of hermaphroditic female, amphimictic female and male,
respectively. b, e, h Neck region of hermaphroditic female, amphimictic female and male, respectively (arrowhead indicates the excretory pore). ¢,
f Posterior end of hermaphroditic female and amphimictic female, respectively. i, j Posterior end of male at spicule and bursa levels, respectively
[arrowhead indicates the genital papillae (GP)]
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Fig. 3 a-i Heterorhabditis casmirica n. sp. (light microscopy images). a—f Spicule and gubernaculum variability. g Hermaphroditic female. h
Amphimictic female. i Male
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Fig. 4 a-h Heterorhabditis casmirica n. sp. (light microscopy images). a, e Entire body of J2 and J3, respectively. b, f Neck region of J2 and J3,
respectively (arrowhead indicates the excretory pore). ¢, g Posterior end of J2 and J3, respectively (arrowhead indicates the anus). d, h Cuticle of J2
and J3, respectively (arrowheads indicate the lateral field)
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morphological characterization showed that they are
genetically identical, morphologically very similar, and
represent a novel species closely related to H. bacterio-
phora. The nematode population HM was chosen as the
type material to describe this newly discovered species.

Heterorhabditis casmirica n. sp.

Morphological and morphometric characteristics of H.
casmirica n. sp are presented in Figs 1, 2, 3, 4, 5, 6 and
Tables 1, 2, 3, 4, 5.

Hermaphroditic females

Hermaphroditic female body C-shaped when heat
relaxed, body robust, always containing many juve-
niles, in some specimens a few eggs were visible. Cuticle
almost smooth, about 0.8 to 1.6 um thick. Lateral fields
and phasmids not distinguishable under LM. Anterior
end tapering anteriorly. Labial region with six prominent
lips, each with a terminal conoid labial papilla. Cephalic
papillae not observed with LM. Amphidial apertures
pore-like. Stoma rhabditoid type, 1.1-1.7 times the lip
region width, with a short cheilostom with a hardly vis-
ible refringent rounded cheilorhabdia, gymnostom with
refringent bar-like rhabdia, well-developed, and funnel-
shaped stegostom surrounded by the pharyngeal collar
and bearing minute rhabdia. Pharynx with sub-cylindri-
cal procorpus, slightly swollen metacorpus, robust isth-
mus, and poorly developed, spheroid basal bulb with
inconspicuous valves. Nerve ring surrounding the isth-
mus, at 55-74% of neck length. Excretory pore at basal
bulb level or intestine level, at 94—120% of neck length.
Cardia conoid. Reproductive system didelphic—amphi-
delphic. Ovaries well developed, reflexed. Oviducts
poorly differentiated. Uteri with numerous embryonated
eggs. Vagina short. Vulva a transverse slit, with smooth
top and scarcely prominent lips, close to mid-body. Rec-
tum slender, about 0.9-1.4 times the anal body diameter.
Anal region swelling posteriorly. Tail conoid with nar-
rower pointed terminus, lacking a mucron. Phasmids
inconspicuous.

(See figure on next page.)
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Amphimictic females

Body arcuate with general morphology similar to that of
hermaphroditic females. Body tapering toward anterior
end; labial papillae acute and prominent. Reproductive
system didelphic—amphidelphic with ovaries well devel-
oped, reflexed, oviducts and uteri poorly visible, vagina
very short, and vulva small with a transverse slit open-
ing. Rectum slightly longer than that of hermaphroditic
females, about 1.7-1.9 times longer than the anal body
diameter. Anal lips usually prominent. Tail conoid longer
than that of hermaphroditic females, with acute tip lack-
ing a mucron. Phasmids very small, located at 50-62% of
tail length.

Males

Body curved ventrally (open C-shape) or sometimes
straight when heat relaxed. Anterior end truncate. Lip
region with six scarcely separated lips and six conoid
liplets at oral margin; six labial papillae at liplet tips and
four cephalic papillae at the base of the dorsal and ventral
lips. Amphidial aperture pore-like, just posterior to the
lateral lips. Stoma 0.8—1.4 times the lip region width, with
short cheilostom and hardly visible refringent rounded
cheilorhabdia, short gymnostom with refringent bar-like
rhabdia, and long, funnel-shaped stegostom surrounded
by the pharyngeal collar and bearing minute rhabdia.
Pharynx with subcylindrical procorpus, scarcely swollen
metacorpus, isthmus robust and slightly narrower than
metacorpus, and basal bulb poorly developed, spheroid,
with poorly developed valvular apparatus. Nerve ring
located surrounding isthmus, at 55-69% of neck length.
Excretory pore located at basal bulb or intestine level,
at 99-107% of neck length. Cardia conoid, protruding
into intestine. Intestine without differentiation although
with narrower walls at anterior end. Reproductive system
monorchid, with testis anteriorly reflexed and vas def-
erens well developed. Spicules well developed, separate,
with small, almost quadrangular manubrium with very
refringent dorsal and ventral walls, frequently smaller at
the left spicule, calamus developed, and almost straight
lamina with acute tip, poorly developed dorsal hump, and
ventral velum slightly developed. Gubernaculum robust,

Fig. 5 a—n Heterorhabditis casmirica n. sp. (scanning electron microscopy images). a, f, k Lip region (frontal view) in hermaphroditic female,
amphimictic female and male, respectively (arrowheads indicate the amphids). b, g, I Lip region in hermaphroditic female (ventral view),
amphimictic female (lateral view) and male (sublateral view), respectively (arrowheads indicate the amphids). ¢ Vulva of hermaphroditic female.
d, i Tail (lateral view) in hermaphroditic female and amphimictic female, respectively (arrowheads indicate the phasmid). e, j Tail (ventral view)
in hermaphroditic female and amphimictic female, respectively. h Excretory pore (arrowhead) of amphimictic female. m, n Male posterior end
(lateral and ventral views, respectively) (arrowheads indicate the bursal papillae)



Page 10 of 28

Bhat et al. Parasites & Vectors (2023) 16:383

Fig. 5 (Seelegend on previous page.)
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Fig. 6 a—n Heterorhabditis casmirica n. sp. (scanning electron microscopy images). a, d, e Lip region of J2 (lateral, dorsal and frontal views,
respectively) (arrowheads indicate the amphids). b Neck region of J2. ¢, h Tail of J2 (lateral and ventral views, respectively). f Excretory pore
(arrowhead) of J2. g Cuticle at the mid-body region of J2.1i, j Lip region of J3 (lateral and frontal views, respectively) (arrowheads indicate

the amphids). k Excretory pore (arrowhead) of J3. I Lateral field of J3. m, n Tail of J3 (lateral and ventral views, respectively) (arrowheads indicate
the phasmids)
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Table 1 Morphometrics of the infective juvenile (1) and adult generations of Heterorhabditis casmirica n. sp. (population HM)

Characters Male (holotype) Males (paratypes)  Hermaphrodites (paratypes) Females (paratypes) IJs (paratypes)

n 1 20 20 20 20

Body length (L) 8755 754+80 (608-914) 34664392 (2851-4219) 14324172 (1273-1990) 563 +22 (512-599)
a (L/BD) 183 18+2.8(15-24) 24432 (19-27) 20+£1.9(14-25) 23+1.1(20-25)

b (L/NL) 7.6 73104 (64-82) 24+46(16-39) 11+0.8(10-13) 45402 (40-5.2)
c (/7 305 29+3.8 (24-35) 72+32 (56-84) 19+3.2(16-31) 54+05 (4.7-6.4)
¢’ (T/ABD) 13 1.2+02(1.1-1.6) 1.8+02(14-22) 1.9+0.1 (1.6-2.5) 6.0+0.7 (5.1-8.0)
V9% (VA/Lx 100) -2 - 52+2.7 (46-57) 49+2.1 (45-52) -

Maximum body diameter (BD) 46.2
Excretory pore—anterior end (EP) 83.9
Width at excretory pore (WEP) 278

36+7.4(24-48)
114+4.3 (102-120)
24+32(19-29)

Nerve ring—anterior end (NR) 60.3 72+6.1 (58-80)
Pharynx length (PL) 98.5 108+7.8 (96-114)
Neck length (NL) 1117 112482 (100-118)
Bulb length (BL) 16.9 18422 (14-23)
Bulb width (BW) 137 12+1.3(10-15)
Tail length (T) 286 25+45(16-32)
Anal body diameter (ABD) 225 18+3.1 (14-25)
Spicule length (SL) 435 41429 (38-48)
Gubernaculum length (GL) 238 22+2.0(18-26)
D% (EP/NL % 100) 96.4 102+2.3 (99-107)
E% (EP/Tx 100) 2953 325+31(268-394)
SW9% (SL/ABD x 100) 193.2 212427 (160-252)
GS% (GL/SLx 100) 54.6 53+4.3 (45-63)

Body width at vulva - -
Vulva—anterior end (VA) - -
Vulva—posterior end (VP) - -

230450 (140-341)
194485 (180-211)
93+122(71-108)
86+9.1 (77-100)
186+9.0 (168-202)
191495 (174-207)
34+2.8 (28-40)
26+1.4(22-30)
82+12(72-114)
44+4.4 (36-56)

102£4.8 (94-120)
236423 (205-292)

182+17(152-218)

91+17(70-135)
146+7.5 (135-157)
49+56 (41-61)
95+6.3 (84-111)
137£7.6(126-149)
141+8.3 (132-156)
28+2.2(25-33)
20+£1.6 (18-23)
75+59 (64-83)
26+2.0(22-30)

103+4.0 (99-116)
177 +15 (156-209)

90417 (70-132)

20+1.0 (17-24)
106+6 (98-129)
18+1.3 (14-24)
89+4.3 (79-94)
116+5.1(99-127)
119454 (104-132)
15+13(12-19)
85+16(6.7-13)
99+7.8 (85-115)
15+1.7 (11-20)

90£3.8(83-97)
115+9.1 (93-125)

1545152 (1312-1883)
1918+ 182 (1466-2429)

708 +80 (631-918) -
726 107 (617-1076) -

All data, with the exception of n, ratios and percentages, are given in micrometers, and are shown as the mean +SD (range)

2 Dashes indicate that these characters are absent in these generations

straight or slightly curved ventrally, 40-63% of spicule
length, with manubrium visibly hook-like. Tail conoid
with acute tip, ventrally curved posteriorly, flanked by the
bursa. Bursa peloderan bearing nine pairs of bursal papil-
lae 1+2/3+ 3: three precloacal and six postcloacal, with
genital papilla 4 (GP4) and genital papilla 7 (GP7) open
outside.

Infective sheathed juveniles (third-stage juvenile ensheathed
in cuticle of second-stage juvenile)

Body straight when heat relaxed. Sheath (second-stage
cuticle) present. Cuticle with longitudinal ridges except
for the anterior part of the body, with annuli at the lip
region and with tessellate pattern posterior to the lip
region. Lip region lacking differentiated lips, bearing six
labial papillae and cephalic papillae not visible. Amphidial
aperture pore-like, having a cuticular dimple-like struc-
ture at its anterior part. Oral opening triradiate, closed.
Stoma tubular, about twice as wide as the lip region.
Pharynx slender, with corpus subcylindrical, isthmus

narrower and slender, and basal bulb pyriform without
developed valves. Nerve ring surrounding the isthmus, at
64-76% of neck length. Excretory pore at isthmus level,
at 81-94% of neck length. Hemizonid clearly visible.
Cardia conoid, surrounded by the intestinal tissue. Bac-
terial pouch not visible. Lateral fields not well differenti-
ated from cuticle. Rectum narrow, not clearly discernible.
Anus not well developed. Tail conoid-elongate with finely
rounded terminus, without mucron. Terminal hyaline
part 30—45% of tail length. Phasmids not visible.

Infective non-sheathed juveniles (third-stage juvenile)

Body with habitus straight when heat relaxed. Cuti-
cle with transversal striae (annuli). Lateral field with
two prominent longitudinal ridges. Lip region rounded,
lacking differentiated lips, and labial and cephalic papil-
lae not visible. Amphidial apertures oval. Oral opening
rounded, closed, bearing a small dorsal tooth. Stoma,
pharynx, nerve ring and excretory pore location similar
to the sheathed stage. Hemizonid well developed. Cardia
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conoid, surrounded by intestinal tissue. Rectum narrow
and hardly visible. Anus closed. Tail conoid with refrin-
gent acute tip without mucron. Phasmids very small,
located at posterior part of tail.

Diagnosis of H. casmirica n. sp.

Heterorhabditis casmirica n. sp. is characterized by hav-
ing females and males with six conoid oral liplets, pore-
like amphids and a robust pharynx, pharynx slender in
juveniles, nerve ring surrounding the isthmus and excre-
tory pore at basal bulb or intestine level in adults and
at isthmus level in juveniles. Hermaphroditic females
2.8—-4.2 mm long, with conoid tail (72-114 pm long,
¢=56-84, ¢’ =1.4-2.2) with narrower tip; amphimictic
females 1.2-2.0 mm long, with conoid tail (64-83 pum
long, ¢=16-31, ¢’ =1.6-2.5); males 0.6-0.9 mm long,
with ventrally curved tail (16-32 um long, ¢=24-32,
¢’ =1.1-1.6), bursa with nine bursal papillae, spicules
38—48 um long with manubrium with refractive walls,
frequently smaller at the left spicule, gubernaculum
18-26 um long with hook-like manubrium; juvenile with
a tubular stoma and narrow and slender pharynx, sec-
ond-stage juvenile (J2) 0.4—0.5 um long, with cuticle with
longitudinal ridges and conoid-elongate tail with finely
rounded tip, and third-stage juvenile (J3) 0.5-0.6 pm
long, with transversal annuli, a lateral field with two
longitudinal ridges, oral opening with dorsal tooth and
conoid tail with refringent acute tip.

Morphological relationships of H. casmirica n. sp.

with other closely related species

Heterorhabditis casmirica n. sp. shares morphologi-
cal similarities with Heterorhabditis bacteriophora [62],
Heterorhabditis beicherriana [63], Heterorhabditis egyp-
tii [18], Heterorhabditis georgiana [64], Heterorhabdi-
tis ruandica [17], and Heterorhabditis zacatecana [17].
However, several distinct morphological and morpho-
metric characteristics can be used to differentiate H. cas-
mirica n. sp. from these closely related species (Tables 2,
3,4,5).

IJs of H. casmirica n. sp. can be differentiated from
those of H. bacteriophora by difterences in the c ratio
(4.7-6.4 vs. 5.7-7.0), the presence of a bacterial sac
(invisible vs. visible in the ventricular portion of the
intestine), and size of phasmids (very small at the pos-
terior part of the tail vs. inconspicuous). Compared to
H. beicherriana 1Js, those of H. casmirica n. sp. differ in
the shape of amphidial apertures (oval vs. inconspicu-
ous), the position of the excretory pore (at isthmus
level vs. at the beginning of the basal bulb), visibility
of the bacterial sac (invisible vs. visible), and the size
of phasmids (very small at the posterior part of the
tail vs. inconspicuous). When compared to H. egyptii,
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H. casmirica n. sp. differs in IJ tail length (85-115 vs.
53-75 um), anterior end to excretory pore distance
(98-129 vs. 81-94 um), ¢ ratio (4.7-6.4 vs. 6.8-9.1),
and D% (83-97 vs. 74—82). When compared to H. geor-
giana, H. casmirica n. sp. IJs exhibit distinctions in vis-
ibility of the bacterial cell (invisible vs. visible posterior
to cardia), with that in J2 and J3 occupying more than
one half of the tail length (vs. about one half), and in
phasmid size (very small at the posterior part of the tail
vs. inconspicuous). When compared to H. ruandica, H.
casmirica n. sp. IJs can be distinguished by the anterior
end to nerve ring distance (79-94 vs. 52-64 pm), the
position of the excretory pore (at isthmus level vs. at
or just posterior to the basal bulb), tail length (85-115
vs. 49-64 um), neck length (114-138 vs. 75-102 pm),
¢ ratio (4.7-6.4 vs. 3.4-5.8), and presence of a cephalic
tooth (small vs. large). When compared to H. zacate-
cana, the IJs of H. casmirica n. sp. differ in maximum
body diameter (17-24 vs. 23-27 pm), the position of
the excretory pore (at isthmus level vs. at or just pos-
terior to the basal bulb), the anterior end to nerve ring
distance (79-94 vs. 69-72 um), neck length (114-138
vs. 78-99 um), tail length (85-115 vs. 52-63 pm), ¢
ratio (4.7-6.4 vs. 8.2-10), and ¢’ ratio (5.1-8.0 vs.
4.3-6.7). A detailed comparison of the morphology of
the IJs of H. casmirica n. sp. with those of other Heter-
orhabditis species is given in Table 2.

The males of H. casmirica n. sp. can be distinguished
from those of H. bacteriophora based on the neck length
(106-118 vs. 99-105 pm), b ratio (6.4-8.2 vs. 9.1), ¢’
ratio (1.1-1.6 vs. 1.8), D% (99-107 vs 117 pum), spicules
with a rectangular manubrium with strongly refringent
walls (vs rectangular with scarcely refringent walls),
gubernaculum more than a half of the spicule length
(vs. shorter) and GP1 at the level of the manubrium (vs.
more anterior in the type population). In comparison
to male H. beicherriana, differences include body size
(0.6-0.9 vs. 0.9-1.2 mm), maximum body diameter (24—
48 vs. 51-73 pum), the distance from the anterior end to
the excretory pore (102-120 vs. 130-157 pum), the dis-
tance from the anterior end to the nerve ring (58—80 vs.
81-108 um), the tail length (16-32 vs. 32—45 pm), D%
(99-107 vs. 102-120 pm), GP1 at spicule level (vs. more
anterior), the shape of the spicule manubrium (quadran-
gular vs. oblongate) and gubernaculum (more than half of
the spicule length vs. similar length). Compared to males
of H. egyptii, differences lie in the c ratio (24—35 vs. 19.5).
When compared to males of H. georgiana, differences lie
in the position of the excretory pore (at bulb or intestine
level vs. posterior to the basal bulb only), spicules with
rectangular manubrium with strongly refringent walls
(vs rectangular with scarcely refringent walls) and guber-
naculum (more than a half of the spicule length vs. a half
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of the spicule length). Compared to males of H. ruan-
dica, differences include the shape of the spicule manu-
brium (well developed, quadrangular and with strongly
refringent walls vs. poorly developed, triangular and not
refringent), the shape of the gubernaculum manubrium
(hook-like vs. straight) and gubernaculum (more than a
half of the spicule length vs. a half). Compared to males
of H. zacatecana, differences include the shape of the
spicule manubrium (quadrangular with strongly refrin-
gent walls vs. rounded and not refringent), bursa with
GP1-GP2 distance shorter (less than the corresponding
body diameter vs. slightly longer), GP2—GP3 slightly sep-
arated (vs. very closed), spicule manubrium (with angu-
lar anterior end vs. with rounded anterior end), the shape
of the gubernaculum manubrium (hook-like vs. slightly
curved) and gubernaculum more than a half of the spic-
ule length (vs. shorter). Lastly, differences from males of
H. hambletoni include the distance from the anterior end
to the nerve ring (58-80 vs. 80—90 um). With respect to
the males of all of the other species, H. casmirica n. sp.
has a different spicule morphology (manubrium with
thick and refringent walls and lacking a dorsal hump vs.
thin walls and a small dorsal hump) and gubernaculum
with a hook-like manubrium (vs. straight).

The hermaphroditic females of H. casmirica n. sp. can
be distinguished from those of H. bacteriophora based on
several characteristics, including the distance from the
anterior end to the nerve ring (77-100 vs. 121-130 um),
and a larger V% (46—57 vs. 41-47). The hermaphroditic
females of the new species can be differentiated from
those of H. beicherriana by the distance from the anterior
end to the nerve ring (77-100 vs. 135-243 pm), and a
smaller anal body diameter (36-56 vs. 51-92 pm). Addi-
tionally, hermaphroditic females of H. casmirica n. sp.
differ from those of H. egyptii by the distance from the
anterior end to the nerve ring (77-100 vs. 101-147 pum);
from those of H. georgiana by the distance from the ante-
rior end to the excretory pore (180-211 vs. 200—-277 um)
and the distance from the anterior end to the nerve ring
(77-100 vs. 143-217 pm); from those of H. ruandica in
tail shape (conoid vs. conoid-elongate) and size (longer
vs. short), visible uteri (vs. not well visible), the a ratio
(19-27 vs. 12—16), and c ratio (56—84 vs. 34-51); from
those of H. zacatecana by shorter length (0.28-0.42 vs.
0.44—0.62 mm), the distance from the anterior end to the
nerve ring (77-100 vs. 96—169 pm), visible oviducts and
uteri (vs. not well visible), and shorter neck length (154—
176 vs. 174—231 um).

Amphimictic females of H. casmirica n. sp. can be
differentiated from those of H. bacteriophora by their
shorter rectum (slightly longer than the anal body diam-
eter vs. about three times longer in the type population),
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smaller phasmids (vs. inconspicuous), shorter length
(0.13-2.0 vs. 0.32-0.39 mm), smaller maximum body
diameter (73-150 vs. 160-220 pm), the distance from
the anterior end to the excretory pore (135-157 vs. 174—
214 pm), and demanian ratios. Compared to H. beicher-
riana, amphimictic females of H. casmirica n. sp. have a
shorter tail (conoid vs. conoid-elongate), with an acute
tip (vs. finely rounded tip), differ in their phasmids (very
small vs. inconspicuous), and have a smaller anal body
diameter (22-30 vs. 35-81 pm). In comparison to H.
egyptii, amphimictic females of H. casmirica n. sp. have a
shorter tail (conoid vs. conoid-elongate), longer distance
from the anterior end to the excretory pore (135-157 vs.
69-106 pm), and longer neck length (132-156 vs. 106—
125 pm). Additionally, amphimictic females of H. cas-
mirica n. sp. differ from those of H. georgiana by having
smaller phasmids (vs. inconspicuous), and from those of
H. ruandica by having a longer neck (132-156 vs. 107—
132 um), different a ratio (14—15 vs. 15-20), and smaller
phasmids (vs. inconspicuous). Finally, compared to
amphimictic females of H. zacatecana, those of the new
species have a smaller maximum body diameter (73-150
vs. 160-228 pm), different b ratio (10-13 vs. 16-21), ¢
ratio (16-31 vs. 31-63), smaller phasmids (vs. incon-
spicuous), and smaller anal body diameter (22-30 vs.
31-41 pm). Summaries of the similarities and differences
between males, hermaphroditic females, and amphimic-
tic females of H. casmirica n. sp. and other Heterorhab-
ditis species are presented in Tables 3, 4, 5, respectively.

Life cycle

Heterorhabditis casmirica n. sp. is a highly pathogenic
nematode species that can be easily raised on G. mel-
lonella larvae at a temperature ranging from 18 to 24 °C.
The life cycle of this new species is comparable to that of
other Heterorhabditis species. When G. mellonella larvae
are exposed to 50—100 IJs, they die within 36-48 h and
appear bright reddish after 48-72 h. First- and second-
generation adults of H. casmirica n. sp. can be found
in the insect cadavers 5-6 and 7-9 days after infection,
respectively. The pre-infective juveniles left the host
body, matured for a few days, and then migrated to the
water traps after 15-21 days.

Type host and locality

The specific host for H. casmirica n. sp. is currently
unknown as these nematodes were isolated from soil
samples using the insect baiting technique [24, 77, 78].
Heterorhabditis casmirica n. sp. populations were col-
lected from soil samples in the union territory of Jammu
and Kashmir, located in the northwest region of India,
and specifically in the Himalayan Pir Panjal region.
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Type material

The type material for H. casmirica n. sp. (holotype male,
15 hermaphroditic female paratypes, 15 male paratypes,
15 amphimictic female paratypes and 19 J3, all belonging
to the HM population) were deposited in the National
Nematode Collection of India, Indian Agricultural
Research Institute, New Delhi. Nematode cultures are
maintained at the Sher-e-Kashmir University of Agricul-
tural Sciences and Technology of Kashmir, India.

Etymology

The specific name “casmirica” is derived from the Kash-
mir division (Casmiria in Latin), the geographical region
where the nematodes used to describe the new species
were collected.

Cross-hybridization experiments

No viable offspring were observed when H. casmirica n.
sp. nematodes of the HM strain were allowed to inter-
act with Indian populations of H. bacteriophora, H.
indica, and H. baujardi. However, fertile progenies were
observed when six different populations of H. casmir-
ica n. sp. nematodes were allowed to interact, indicating
that these populations are conspecific but reproductively
isolated from closely related species, including H. bac-
teriophora, H. indica, and H. baujardi. Fertile prog-
eny was also observed when all the nematode strains
self-fertilized.

Nematode molecular characterization

The six populations of H. casmirica n. sp. were molecu-
larly characterized based on the sequences of various
genetic regions, including the ITS region of the rRNA
(NCBI accession numbers 0Q517936-0Q517941),
the D2-D3 expansion segments of 28S rRNA (NCBI
accession numbers 0Q517947-0Q517952), mitochon-
drial 12S rRNA (NCBI accession numbers OQ517975-
0Q517980), and MT-COI (NCBI accession numbers
0Q517969-0Q517974). The ITS region of H. casmirica
n. sp. is 771 bp in length, with ITS1 comprising 389 bp,
5.8S comprising 154 bp, and ITS2 comprising 228 bp. The
MT-COI region flanked by primers HCF and HCR of H.
casmirica n. sp. shows sequence similarity scores ranging
from 75 to 94% with other Heterorhabditis species, and
differs in 17-57 nucleotide positions (Table 6). Consid-
ering this genetic region, H. casmirica n. sp. is closely
related to H. bacteriophora, H. ruandica, and H. zacate-
cana (Table 6). Heterorhabditis bacteriophora and H.
ruandica both share 94% similarity with H. casmirica n.
sp. and differ in 17 nucleotide positions. Heterorhabditis
zacatecana shares 93% similarity with H. casmirica n. sp.,
and differs in 21 nucleotide positions. Fewer differences
between H. casmirica n. sp. and its more closely related

Page 19 of 28

species were observed in the rRNA gene sequences.
When compared with H. casmirica n. sp., H. bacterio-
phora and H. zacatecana both share 99.7% similarity and
differ in two nucleotide positions, while H. ruandica
shares 99.5% similarity and differs in four nucleotide
positions in the ITS rRNA sequences flanked by primers
TW81 and AB28 (Additional file 1: Table S2). All these
three species share 100% similarity in the D2-D3 rRNA
sequences flanked by primers D2A and D3B (Additional
file 1: Table S3). Currently, very few mitochondrial 12S
rRNA gene sequences are publicly available for molecular
comparisons and phylogenetic analysis. Nevertheless, the
sequences obtained in this study were deposited in the
NCBI database for future taxonomic studies.

Nematode phylogenetic reconstructions

Phylogenetic analyses based on different genetic markers
show that H. casmirica n. sp. belongs to the “bacterio-
phora” clade, which is currently composed of H. bacterio-
phora, H. beicherriana, H. georgiana, H. ruandica, and H.
zacatecana (Figs. 7, 8, 9). MT-COI is particularly useful
for the differentiation of all of these closely related spe-
cies, and clearly shows that H. casmirica n. sp. and H.
bacteriophora, its more closely related species, form two
independent subclusters (Fig. 7). However, sequences of
the ITS and D2-D3 regions of the rRNA gene, although
allowing for the differentiation of certain species (Figs. 7,
8), provide lower phylogenetic resolving power than
the MT-COI gene, as reported by Dhakal et al. [46] and
Machado et al. [17]. Hence, MT-COI is particularly useful
for the molecular discrimination of closely related spe-
cies of the genus Heterorhabditis.

Morphological and molecular relationships between H.
casmirica n. sp. and specimens of H. bacteriophora present
in India
At the morphological level, H. casmirica n. sp. differs
from previously reported Indian isolates of H. bacterio-
phora [22, 30] (Additional file 1: Table S1). In particular,
we observed that the males differ in spicule manubrium
with strongly refringent walls (vs with scarcely refrin-
gent walls), gubernaculum more than a half of the spic-
ule length (vs. shorter) and GP1 at manubrium level (vs.
more anterior in the type population). The amphimictic
females differ in smaller phasmids (vs. inconspicuous).
The IJs differ in the distance from the anterior end to
the nerve ring (79-94 vs. 48-74 um), presence of bacte-
rial sac (invisible vs. visible in the ventricular portion of
the intestine), and size of phasmids (very small at pos-
terior part of tail vs. inconspicuous) (Additional file 1:
Table S1).

At the molecular level, H. casmirica n. sp. differs in 17
nucleotide positions in the MT-COI gene from several
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Fig. 7 Maximum-likelihood phylogenetic tree between the newly described Heterorhabditis casmirica n. sp. and described species

of Heterorhabditis based on nucleotide sequences of MT-COI flanked by primers HCF and HCR. Numbers at nodes represent bootstrap values based
on 100 replications. Bars represent average nucleotide substitutions per sequence position. National Center for Biotechnology Information (NCBI)
accession numbers of the nucleotide sequences used for the analyses are shown in Additional file 1: Table S4. The scale bar shows the number

of substitutions per site
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94% similarity with these isolates. In addition, the Indian  positions in the ITS rRNA gene. Lastly, these two species
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Fig. 8 Maximum-likelihood phylogenetic tree between the newly described Heterorhabditis casmirica n. sp. and described species

of Heterorhabditis based on nucleotide sequences of the internal transcribed spacer (ITS) (ITS1-5.85-1TS2) ribosomal RNA (rRNA), flanked
by primers 18S and 26S. Numbers at nodes represent bootstrap values based on 100 replications. Bars represent average nucleotide substitutions
per sequence position. NCBI accession numbers of the nucleotide sequences used for the analyses are shown in Additional file 1: Table S4. The scale

bar shows the number of substitutions per site
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Fig. 9 Maximum-likelihood phylogenetic tree reconstructed from the nucleotide sequences of the D2-D3 expansion segments of the 28S rRNA
(D2-D3), flanked by primers D2A and D2B. Accession numbers of the nucleotide sequences used for the analyses are shown in Additional file 1:
Table S4. Numbers at nodes represent bootstrap values based on 100 replications. Bars represent average nucleotide substitutions per sequence

position
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Fig. 10 Phylogenetic reconstruction based on core genome sequences of Photorhabdus bacterial strains; 2,227,040 nucleotide positions (2216 core
genes) were used in the analysis. Numbers at the nodes represent Shimodaira—Hasegawa-like branch supports. Bar represents average nucleotide
substitutions per sequence position. NCBI accession numbers of the genome sequences used for the reconstruction are shown in Additional file 1:

Table S5.The scale bar shows the number of substitutions per site

do not differ in the sequences of the D2-D3 rRNA gene.
Notably, the Indian populations DH7, DH8, CH21, P5
and P6 share 100% similarity with the type population
of H. bacteriophora across all the gene markers used,
and hence corroborate the conclusions of previous stud-
ies [22, 30]. The phylogenetic study further confirms
the distinctiveness of the Indian populations of H. bac-
teriophora from H. casmirica n. sp. and establishes their
similitude with the type population of H. bacteriophora
(Figs. 7, 8,9).

Symbiotic relationships

Phylogenetic reconstructions based on core genome
sequences and sequence comparisons show that the bac-
terial symbionts isolated from H. casmirica n. sp. are very
similar and belong to the subspecies Photorhabdus lau-
mondii subsp. clarkei (Fig. 10). The digital DNA-DNA
hybridization (ADDH) scores between BOJ477, the type
strain of the species P laumondii subsp. clarkei, and
strains HH4, HPH, and HP1, isolated from H. casmirica
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n. sp. HH4, HPH and HP1, are 94.3%, which is above the
70 and 79% thresholds that delimit prokaryotic species
and subspecies, and confirms that they are conspecific
[79].

A side note on the nomenclature of Heterorhabditis
marelatus

The term “marelatus” was created by combining the Latin
words “mare” meaning sea and “latus” meaning side in an
attempt to translate the type locality “seaside” into Latin
[70]. Hence, marelatus was formed as a noun, not as an
adjective. Sudhaus [80] changed the specific epithet of
the species Heterorhabditis marelatus to “marelata.” This
change was perhaps motivated by the fact that the genus
noun Heterorhabditis is feminine and that, in Latin, the
specific epithet should agree in gender with the genus.
However, nouns in Latin do not vary according to gender,
and therefore we propose that the correct term is “marela-
tus” Hence, we propose that the original species nomencla-
ture, Heterorhabditis marelatus, should be maintained.

Conclusions

Six populations of Heterorhabditis nematodes were
identified in the present study that exhibited clear
distinctions in their morphology, morphometric and
molecular characteristics, as well as reproductive iso-
lation and phylogenetic separation from all known
Heterorhabditis species. We propose the name Heter-
orhabditis casmirica n. sp. for this new species, which
is the second new Heterorhabditis entomopathogenic
nematode species reported from the Indian subcon-
tinent. Our results highlight the importance of using
both classical taxonomy and molecular markers (M7T-
COI, ITS, small subunit, and large subunit) to accu-
rately describe new Heterorhabditis species and their
bacterial symbionts. The discovery of H. casmirica n.
sp. and its associated bacterial symbiont expands our
understanding of the biodiversity and distribution of
these biocontrol agents and underscores their potential
in the development of new biocontrol strategies against
insect pests.

Abbreviations
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