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Abstract 

Background  Hybridization events between Triatoma spp. have been observed under both natural and laboratory 
conditions. The ability to produce hybrids can influence different aspects of the parent species, and may even result 
in events of introgression, speciation and extinction. Hybrid sterility is caused by unviable gametes (due to errors 
in chromosomal pairing [meiosis]) or by gonadal dysgenesis (GD). All of the triatomine hybrids analyzed so far have 
not presented GD. We describe here for the first time GD events in triatomine hybrids and highlight these taxonomic 
and evolutionary implications of these events.

Methods  Reciprocal experimental crosses were performed between Triatoma longipennis and Triatoma mopan. Inter‑
crosses were also performed between the hybrids, and backcrosses were performed between the hybrids and the par‑
ent species. In addition, morphological and cytological analyzes were performed on the atrophied gonads of the hybrids.

Results  Hybrids were obtained only for the crosses T. mopan♀ × T. longipennis♂. Intercrosses and backcrosses did 
not result in offspring. Morphological analyses of the male gonads of the hybrids confirmed that the phenomenon 
that resulted in sterility of the hybrid was bilateral GD (the gonads of the hybrids were completely atrophied). Cyto‑
logical analyses of the testes of the hybrids also confirmed GD, with no germ cells observed (only somatic cells, which 
make up the peritoneal sheath).

Conclusions  The observations made during this study allowed us to characterize, for the first time, GD in tri‑
atomines and demonstrated that gametogenesis does not occur in atrophied gonads. The characterization of GD 
in male hybrids resulting from the crossing of T. mopan♀ × T. longipennis♂ highlights the importance of evaluating 
both the morphology and the cytology of the gonads to confirm which event resulted in the sterility of the hybrid: 
GD (which results in no gamete production) or meiotic errors (which results in non-viable gametes).
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Background
Chagas disease (CD) is a neglected disease caused by the 
protozoan Trypanosoma cruzi (Chagas, 1909) (Kineto-
plastida, Trypanosomatidae) which affects about 6–7 
million people worldwide [1]. Although T. cruzi can be 
transmitted in various ways, such as by blood transfusion, 
organ transplantation and orally [1]), the WHO considers 
vector transmission through the direct consumption of/
contact with feces and/or urine of triatomines contami-
nated with T. cruzi to be the main transmission mode [1]. 
As such, vector control is considered t be the main meas-
ure to mitigate new cases of CD [1].

There are currently 160 species described in the sub-
family Triatominae (157 extant species and 3 fossil 
species), grouped into 18 genera and five tribes (Alber-
proseniini, Bolboderini, Cavernicolini, Rhodniini and 
Triatomini) [2–6]. The Triatomini tribe is composed of 
nine genera (Dipetalogaster Usinger, 1939; Eratyrus Stål, 
1859; Hermanlentia Jurberg & Galvão, 1997; Linshcosteus 
Distant, 1904; Mepraia Mazza, Gajardo & Jörg, 1940; 
Nesotriatoma Usinger, 1944; Panstrongylus Berg, 1879; 
Paratriatoma Barber, 1938; Triatoma Laporte, 1832) [2], 
with Triatoma being the most diversified of these and the 
genus with the largest number of species [2].

The genus Triatoma is paraphyletic [7, 8], which has 
led to several complexes and subcomplexes being pro-
posed [9–11]. The Phyllosoma complex is a monophyl-
etic grouping composed of the Phyllosoma and Dimidiata 
subcomplexes [9, 12]. Among the species of the Phyllo-
soma subcomplex, Triatoma longipennis (Usinger, 1939) 
is the main vector of T. cruzi in northern, western and 
central Mexico [13], with infection rates of between 20% 
and 33% [14]. To date, this species has been recorded in 
11 Mexican states: Aguascalientes, Chihuahua, Colima, 
Durango, Guanajuato, Hidalgo, Jalisco, Michoacan, 
Nayarit, Sinaloa and Zacatecas [15, 16]. In contrast, 
among the species of the Dimidiata subcomplex, the dis-
tribution of Triatoma mopan Dorn et al., 2018, a species 
related to Triatoma dimidiata (Latreille, 1811) [17], is 
more limited than that of T. longipennis, with distribution 
restricted to the Rio Frio cave, Cayo District, Belize [17]. 
The authors of this latter study point out that specimens 
of T. mopan collected in the Rio Frio cave were found to 
be infected with T. cruzi [17].

Hybridization events between species of the genus 
Triatoma have been observed under natural [18–20] 
and laboratory conditions [21–26]. The ability to pro-
duce hybrids can influence different aspects of the parent 
species, and may even result in events of introgression, 

speciation and extinction [27]. In this context, several 
studies have evaluated the hybridization capacity and, 
above all, the reproductive barriers that prevent the for-
mation of hybrids or result in hybrids being unviable 
(causing mortality, infertility or lower fitness for these 
organisms) [21–26, 28–30].

By studying species for the presence of interspecific 
barriers under laboratory conditions, it has been possible 
to assess the specific status of species, based on the bio-
logical concept of species [21, 25, 28–30]. Furthermore, 
by evaluating the ability of species to produce hybrids, 
the systematic and evolutionary relationship between dif-
ferent species can be confirmed, as hybrids, in general, 
are produced only among phylogenetically related spe-
cies [25, 26, 28–30].

Reproductive barriers already characterized in Tri-
atominae include the habitat [30, 31] and mechanical 
isolation [31, 32] as prezygotic barriers, and infeasibility 
[33], sterility [29, 32] and collapse [34, 35] of the hybrid as 
postzygotic barriers. Hybrid sterility result from unviable 
gametes (due chromosomal pairing [meiosis] errors) [29, 
32] or the phenomenon of gonadal dysgenesis (GD) [36].

Triatomine gonads consist of two testes (in males) and 
two ovaries (in females) [37, 38]. The testis is an ellipsoid-
shaped organ located in the abdominal region, fixed by 
tracheas between the second and fifth segments (almost 
on the side edges), located below the diaphragm (more 
specifically within the perivisceral sinus) [38]. It is lined 
with a transparent peritoneal sheath [39], which cov-
ers seven testicular follicles (sites where gametogenesis 
occurs) [38, 40], as well as the vessels (1 vas deferens and 
7 vas efferens) and the seminal vesicle [38]. These follicles 
are important from a taxonomic point of view, as they 
vary in size between different genera [41–45].

Gonadal dysgenesis is associated with factors related 
to gonad atrophy in hybrids and can be unilateral or 
bilateral [36]. All of the triatomine hybrids analyzed so 
far have not presented GD [26, 29] and consequently, 
all recorded cases of hybrid sterility have been associ-
ated only with errors during meiosis [29, 32, 46–48]. We 
describe here for the first time a GD event in triatomine 
hybrids and highlight its taxonomic and evolutionary 
implications.

Methods
Experimental crosses
Reciprocal experimental crosses were performed 
between T. longipennis (origin: Mexico, Jalisco, El Grullo; 
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colony started in March 2008) and T. mopan (origin: 
Central America, Belize, Cayo, Belmopan; colony started 
in August 2013) (Fig.  1a; Table  1). In addition, inter-
crosses were performed between the hybrids (Fig.  1b; 
Table  1) and backcrosses were performed between the 
hybrids and the parent species (Fig.  1C, Table  1). The 
insects used in the experiment came from colonies kept 
in the Triatominae insectary of the School of Pharma-
ceutical Sciences, São Paulo State University (UNESP), 
Araraquara, São Paulo, Brazil. The experimental crosses 
were conducted in the Triatominae insectary according 
to the experimental protocols of Mendonça et al. [34]. In 
brief, the insects were sexed as fifth instar nymphs (N5), 
and males and females were kept separately until they 
reached the adult stage to guarantee the virginity of the 
insects used in the crosses. For the experimental crosses, 
five pairs from each set were placed in plastic jars (5 cm 
[diameter] × 10  cm [height]) and kept at room tem-
perature. The eggs were collected on a weekly basis and 
counted to evaluate the hatching rate. The eggs from the 
cross between T. longipennis♀ × T. mopan♂ were infertile 
(Table 1), and those from the cross between T. longipen-
nis♂ × T. mopan♀ were fertile (Table 1). The N5 hybrids 
resulting from the cross between T. mopan♀ × T. lon-
gipennis♂ (Fig.  1a) were sexed, separated and, after the 
imaginal molt, five intercrosses (Fig. 1b) were performed 
to assess hybrid fertility (Table  1). In addition, 10 back-
crosses with T. longipennis (5 for each direction) and 10 
with T. mopan (5 for each direction) were also performed 
to assess hybrid fertility (Table 1); the eggs were collected 
and counted and the hatching rate evaluated in the same 
way as reported for the N5 cross.

Fig. 1  Examples of experimental crosses between Triatoma mopan♀ 
× Triatoma longipennis♂ (a), intercrossing between hybrid♀ × 
hybrid♂ (b) and backcrossing between hybrid♀ × T. mopan♂ (c). Bar: 
1 cm

Table 1  Experimental crosses performed between T. mopan, T. longipennis and hybrids

a  C1, C2 are replicates of the experimental crosses
b Hybrids of the cross between T. mopan♀ × T. longipennis♂

Crossing experiments Number of eggs Egg fertility, n (%)

C1a C2a Total

Reciprocal crosses between parents

 Triatoma mopan♀ × Triatoma longipennis♂ 49 112 161 98 (61%)

  T. longipennis♀ × T. mopan♂ 61 83 144 00 (00%)

Intercrosses

 Hybrid♀a × Hybrida♂ 00 00 00 –

Backcrosses

  Hybrid♀a × T. mopan♂ 00 00 00 –

 T. mopan♀ × Hybrid♂a 33 35 68 00 (00%)

 ♀ Hybridb × T. longipennis♂ 00 00 00 –

 T. longipennis♀ × Hybrid♂a 54 59 113 00 (00%)

Control

 T. mopan♀ × T. mopan♂ 35 42 77 58 (75%)

  T. longipennis♀ × T. longipennis♂ 90 87 177 138 (78%)
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Morphology of the gonads
Ten adult male hybrids resulting from the cross between 
T. mopan♀ × T. longipennis♂ were dissected at intervals 
of 5, 15 and 30  days after the imaginal molt. The mor-
phology of the male gonads was analyzed under a ster-
eomicroscope microscope (SM) (model MZ APO; Leica 
Microsystems GmbH, Wetzlar, Germany) fitted with the 
Motic Advanced 3.2 Plus Image Analysis System (Motic, 
Hong Kong) to evaluate the presence of GD (which may 
be uni- or bilateral) [36]. In addition, the gonads of 10 
adult males of the parental species (T. longipennis and T. 
mopan) were also dissected and analyzed under the SM 
(control group).

Cytological analysis
Ten male hybrids were dissected, and the testes were 
removed and stored in methanol:acetic acid solution 
(3: 1). Slides were prepared by the cell crushing tech-
nique (as described by Alevi et  al. [49]), and the cyto-
logical analyses were performed with the aim to evaluate 
whether spermatogenesis was normal in gonads with 
GD, using the lacto-acetic orcein technique [49, 50]. As a 
control group, the gonads of 10 adult males of T. mopan 
and T. longipennis were also dissected and analyzed cyto-
logically. The slides were examined by light microscopy 
under a Jena model Jenaval light microscope (Carl Zeiss 
AG, Jena, Germany) coupled to a digital camera; the Axio 
Vision LE 4.8 image analyzer system (Carl Zeiss AG) with 
a 400-fold increase was used to analyze the images.

Results and discussion
Hybrids were obtained only for the T. mopan♀ × T. lon-
gipennis♂ crosses (Fig.  1a) (crosses between T. mopan♂ 
× T. longipennis♀ showed a prezygotic barrier) (Table 1). 
Intercrosses (Fig. 1b) were performed to evaluate the fer-
tility of the first-generation hybrid (F1) and demonstrated 
that the hybrids are sterile (Table 1). To evaluate whether 
hybrids of both sexes were sterile, backcrosses were 
performed with T. mopan and T. longipennis (Table  1; 
Fig. 1c). None of the backcrossing directions resulted in 
offspring, confirming the postzygotic barrier of hybrid 
sterility (Table 1).

Morphological analyses of the male gonads of the 
hybrids (Fig. 2c) and of the parents (Fig. 2a, b) confirmed 
that the phenomenon which resulted in the sterility of 
the hybrid was bilateral GD. The gonads of the hybrids 
were completely atrophied (Fig. 2c), with the morphology 
of the testis being different morphology from that of the 
parents (Fig.  2a, b). The testis of the triatomine parents 
had seven testicular follicles (where all phases of sper-
matogenesis occur [51]) [38, 41–45] and a transparent 

peritoneal sheath [40]; in contrast, the testis of the 
hybrids showed only the peritoneal sheath (without sem-
iniferous tubules) (Fig. 2c).

Cytological analyses of the testis of the hybrids con-
firmed GD based on the absence of germ cells and only 
somatic cells (with the latter forming the peritoneal 
sheath) (Fig. 3). In comparison, cytological analysis of the 
gonads of T. mopan and T. longipennis revealed the pres-
ence of spermatocytes, spermatids and spermatozoa (as 
has been well characterized in several studies in the sub-
family Triatominae [52–55]).

In their studies on Triatoma spp., Perlowagora-Szum-
lewics and Correia [56] and Perlowagora-Szumlewics 
et al. [57] observed, for example, that male hybrids result-
ing from crossing T. pseudomaculata Corrêa & Espínola, 
1964 × T. sordida (Stål, 1859), T. pseudomaculata × T. 
infestans (Klug, 1834), T. pseudomaculata × T. brasilien-
sis Neiva, 1911 and Rhodnius prolixus Stål, 1859 × Rho-
dnius neglectus Lent, 1954 are sterile, while females are 
fertile. Several interspecific crosses between Triatoma 
spp. [32], Panstrongylus spp. [47], Rhodnius spp. [46] and 
Psammolestes spp. [29] resulted in sterile hybrids. Most 
of these studies have cytologically analyzed the gonads of 
male hybrids and observed chromosomal pairing errors 
during meiosis, suggesting an association between the 
meiotic errors and hybrid sterility [29, 32, 46, 47].

Fig. 2  Male gonads of Triatoma mopan (a), Triatoma longipennis (b) 
and the hybrid (c). Note that the hybrid’s testes are atrophied (c). Bar: 
10 mm
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Study of the interspecific reproductive barriers 
of insect vectors of CD has taxonomic, systematic, 
genetic and evolutionary value [20, 23–25, 28–30, 
32–35, 46–48, 58, 59]. From a taxonomic point of view, 
characterization of pre- and/or postzygotic barriers 
confirms the specific status of the parental species [20, 
23, 25, 29, 30, 32–35, 46–48, 58], based on the biologi-
cal species concept [60, 61]. From a systematic point 
of view, in general, evolutionarily more distant spe-
cies have prezygotic barriers that prevent the forma-
tion of hybrids while evolutionarily closer species can 
produce hybrids that will be later declined (hybrid 
breakdown) by postzygotic barriers [26, 30, 59]. From 
a genetic and evolutionary point of view, the charac-
terization of reproductive barriers directly implies 
the genetic integrity of the parent species because it 
prevents events of interspecific gene flow and also, 
mainly, introgression [23, 28, 32].

The aim of crossing species belonging to two sub-
complexes grouped in the Phyllosoma complex (Phyl-
losoma and Dimidiata subcomplexes) was to assess 
whether these phylogenetically related subcomplexes 
[7, 8, 12] are reproductively isolated or not. Thus, 
the production of hybrids in one direction and, sub-
sequently, the breakdown of these hybrids by post-
zygotic barriers (GD) confirm that these subcomplexes 
are closer in terms of a systematic perspective (as 
initially suggested by molecular studies [7, 8, 12]); if 
they had ever been distant subcomplexes, pre-zygotic 
barriers would be present, making hybrid formation 
unviable.

Conclusions
We characterized, for the first time, GD in Triatominae 
and demonstrated that gametogenesis does not occur in 
atrophied gonads. The characterization of GD in hybrids 
resulting from the T. mopan♀ × T. longipennis♂ cross 
highlights the importance of evaluating both the mor-
phology and the cytology of the gonads to confirm which 
event resulted in the sterility of the hybrid: GD (which 
results in no gamete production) or meiotic errors (which 
results in non-viable gametes).
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