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Abstract 

Background  Angiostrongyliasis is a highly dangerous infectious disease. Angiostrongylus cantonensis larvae migrate 
to the mouse brain and cause symptoms, such as brain swelling and bleeding. Noncoding RNAs (ncRNAs) are 
novel targets for the control of parasitic infections. However, the role of these molecules in A. cantonensis infection 
has not been fully clarified.

Methods  In total, 32 BALB/c mice were randomly divided into four groups, and the infection groups were inoculated 
with 40 A. cantonensis larvae by gavage. Hematoxylin and eosin (H&E) staining and RNA library construction were 
performed on brain tissues from infected mice. Differential expression of long noncoding RNAs (lncRNAs) and mRNAs 
in brain tissues was identified by high-throughput sequencing. The pathways and functions of the differentially 
expressed lncRNAs were determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology 
(GO) analyses. The functions of the differentially expressed lncRNAs were further characterized by lncRNA‒micro‑
RNA (miRNA) target interactions. The potential host lncRNAs involved in larval infection of the brain were validated 
by quantitative real-time polymerase chain reaction (qRT‒PCR).

Results  The pathological results showed that the degree of brain tissue damage increased with the duration of infec‑
tion. The transcriptome results showed that 859 lncRNAs and 1895 mRNAs were differentially expressed compared 
with those in the control group, and several lncRNAs were highly expressed in the middle–late stages of mouse infec‑
tion. GO and KEGG pathway analyses revealed that the differentially expressed target genes were enriched mainly 
in immune system processes and inflammatory response, among others, and several potential regulatory networks 
were constructed.

Conclusions  This study revealed the expression profiles of lncRNAs in the brains of mice after infection with A. can-
tonensis. The lncRNAs H19, F630028O10Rik, Lockd, AI662270, AU020206, and Mexis were shown to play important 
roles in the infection of mice with A. cantonensis infection.
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Background
Parasitic diseases, especially helminth infections, which 
are among the most important neglected tropical dis-
eases (NTDs), pose a serious threat to humans globally 
[1]. More than 2 billion people worldwide are infected 
with helminths, resulting in more than 12 million disabil-
ity-adjusted life years (DALYS) [2, 3].

For example, the global prevalence of Ascariasis is 
reported to be 446 million infections, hookworms cause 
173 million infections, schistosomiasis affects more than 
200 million people in 74 countries, and the World Health 
Organization estimates that globally, more than 600 mil-
lion people are infected by Strongyloides stercoralis [4–6]. 
Angiostrongylus cantonensis is a zoonotic parasitic nema-
tode with a complex indirect life cycle [7, 8] and is one 
of the most common pathogens causing eosinophilic 
meningoencephalitis [9]. The third-stage larvae of A. can-
tonensis are its infective form [10], and its life cycle is 
completed mainly in rats and snails; gastropods, such as 
slugs and snails, are its intermediate hosts and mammals, 
such as rats, are its final hosts [11]. More than 20 verte-
brate species, including humans, may serve as accidental 
hosts, while amphibians and fish may serve as transfer 
hosts [12–14]. A.  cantonensis may develop into adult 
nematodes in rats only; mice and humans are nonpermis-
sive hosts [15]. A. cantonensis cannot mature into worms 
in mice. Humans are mainly infected by raw or semiraw 
consumption of pathogen-carrying fruits and vegetables 
and undercooked intermediate hosts [16]. Early symp-
toms of A.  cantonensis infection includes nausea, vom-
iting, breathing difficulties, headaches, and low-grade 
fever. Later, the infection progresses to severe chronic 
headache, paralysis, and even coma or death [17].

The disease is prevalent mainly in Southeast Asia, the 
Caribbean, the Pacific basin, and other regions [18]. In 
recent years, the global number of cases of infection with 
A.  cantonensis has increased annually [9]. The disease 
burden of A. cantonensis is likely underestimated [11]. In 
China, the first case of human infection with A. canton-
ensis was reported in Taiwan in 1944 when A. cantonen-
sis was found in the cerebrospinal fluid of a young man 
exhibiting meningeal symptoms and eosinophils in the 
cerebrospinal fluid [19]. From 1945 to 2008, a total of 769 
cases were reported in China, accounting for approxi-
mately 27.22% of the global number of cases and posing a 
serious threat to people’s health [16].

Noncoding RNAs (ncRNAs) are RNAs that do not 
encode proteins and account for approximately 98% of 
the human genome [20, 21]. NcRNAs include riboso-
mal RNA (rRNA), transfer RNA (tRNA), long noncod-
ing RNA (lncRNA), circular RNA (circRNA), microRNA 
(miRNA), etc.; lncRNAs are conserved RNAs with a 
length of > 200 nucleotides [22, 23]. With the flourishing 

development of high-throughput technologies, the role 
of lncRNAs in the growth and development of living 
organisms as well as in disease processes has gradually 
been revealed. LncRNAs are key genetic regulators of dif-
ferent biological processes and are involved in regulating 
epigenetic regulation, cell differentiation, the cell cycle, 
and immune response [24]. An increasing number of 
studies have shown that lncRNAs can act as competitive 
endogenous RNAs that bind to miRNAs and participate 
in various biological processes [25, 26].

A growing emphasis has been placed on zoonotic 
diseases with the idea of “One Health” [27], of which 
A.  cantonensis is one of the most important emerg-
ing diseases. At present, the main treatment for angios-
trongyliasis is the use of anthelmintic drugs, which can 
relieve symptoms and reduce disease duration. However, 
this treatment may also lead to the release of intracellu-
lar contents from dying worms to increase the inflam-
matory response. Moreover, lncRNAs show promise as 
novel biomarkers and therapeutic targets for various dis-
eases [28]. Consequently, for better prevention and treat-
ment of angiostrongyliasis and to interrupt transmission 
of the disease, this study used a BALB/c mouse model to 
mimic a human infection model to screen differentially 
expressed lncRNAs in the brain tissue of infected mice 
and validate their dynamic changes during the course 
of the infection. This study will provide therapeutic tar-
gets and new diagnostic protocols for the treatment of 
angiostrongyliasis. In addition, the functions of the dif-
ferentially expressed lncRNAs were further identified by 
lncRNA‒miRNA target interactions.

Methods
Mouse model establishment and hematoxylin and eosin 
(H&E) staining
Achatina  fulica were originally obtained from Kaiping, 
Guangdong, China, and the lung tissues were dissected, 
isolated, and ground. The third-stage larvae of A.  can-
tonensis were removed from the ground homogenate. 
Thereafter, 32 6–8 week-old BALB/c female rats (Shang-
hai Jihui Co., Ltd.) were randomly divided into a negative 
control group and an infected group at a ratio of 3:5. Each 
mouse in the experimental group was gavaged with 40 
third-stage larvae, and the mice in the negative control 
group were gavaged with saline. After larval infection, 
brain tissues were collected at 1, 7, 14, and 21 days, fixed 
in 4% paraformaldehyde, embedded in paraffin, dewaxed 
in xylene, immersed in different concentrations of etha-
nol and stained with H&E. Pathological changes in the 
brains of infected mice at different infection times were 
observed through H&E staining. After H&E staining, the 
nuclei were stained blue, and the cytoplasm was stained 
pink [29].
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Ribonucleic acid extraction library construction
Total RNA was extracted from mouse brain tissue sam-
ples at 14 days after infection using TRIzol reagent, RNA 
purity was assessed, RNA quantification was performed 
using a NanoDrop 2000 spectrophotometer (Thermo Sci-
entific, USA), and RNA integrity was assessed using an 
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa 
Clara, CA, USA). Samples that passed quality control 
were used for subsequent library construction. Riboso-
mal RNA was removed using the Ribo-off rRNA Deple-
tion Kit (Vazyme, Nanjing, China). The transcriptome 
library was constructed using the VAHTS Universal V6 
RNA-seq Library Prep Kit according to the instructions. 
The whole transcriptome was sequenced and analyzed by 
Shanghai Ouyi Biotechnology Co.

RNA sequencing and differentially expressed gene analysis
The libraries were sequenced using the Illumina NovaSeq 
6000 sequencing platform, and 150  bp bipartite reads 
were generated. Approximately 125,994  M raw reads 
were obtained from each sample. Raw reads in fastq for-
mat were processed using fastp software, and clean reads 
were obtained by removing low-quality reads for subse-
quent data analysis [30]. Negative control group compar-
isons were performed using HISAT2 software [31]. The 
read counts for each gene were obtained by HTSeq-count 
[32], and gene expression (FPKM) calculations were per-
formed to select differentially expressed genes [33].

Differentially expressed gene analysis was performed 
using DESeq2 software, where genes that met the 
thresholds of q value (adjusted P value) < 0.05 and fold 
change > 2 or fold change < 0.5 were defined as differen-
tially expressed genes (DEGs) [34]. Hierarchical cluster-
ing analysis of DEGs was performed using R (v 3.2.0) to 
demonstrate the expression patterns of genes across sam-
ples and groups. Subsequently, Gene Ontology (GO) and 
Kyoto Gene and Genome Encyclopedia (KEGG) pathway 
enrichment analyses of DEGs based on hypergeometric 
distribution algorithms were used to screen for signifi-
cantly enriched functional entries [35, 36].

Quantitative real‑time PCR (qPCR) validation
In total, six DE lncRNAs were selected for qRT‒PCR 
analyses to validate the DEG‒Seq results and their 
dynamics during infection. Reverse transcription was 
performed using a reverse transcription system kit 
(TaKaRa, Japan). The primer sequences are shown in 
Additional file 1, with GAPDH serving as the internal ref-
erence primer. Quantitative real-time PCR (qRT‒PCR) 
analysis was performed using SYBR® Green Real-Time 
Fluorescent Quantitative PCR Premix (TaKaRa, Japan).

Protein‒protein interaction (PPI) network construction
The STRING database (http://​string-​db.​org/) was 
used to predict interactions between proteins, and a 
combined PPI score greater than 0.4 for differentially 
expressed mRNAs was used as a critical value [29]. 
Network mapping of the relationships of the top 50 
DE mRNAs was performed on the basis of interaction 
score sorting.

LncRNA–mRNA interaction study
The correlation between the six samples in the infected 
group and the negative control group was calculated 
using the Pearson correlation test. The correlation anal-
ysis set a threshold of an absolute value of the corre-
lation coefficient greater than or equal to 0.80 and a P 
value less than or equal to 0.05. Differentially expressed 
lncRNAs and genes from the same differential compari-
son group were identified using Circos plotting soft-
ware [37].

A hypergeometric distribution test was utilized to 
identify the miRNAs with the greatest impact among 
the differentially expressed lncRNAs. For the total 
differential lncRNA enrichment results, the top 300 
miRNA‒lncRNA interaction pairs with smaller P val-
ues were selected in order of P value, and the R network 
package was used to map the lncRNA‒miRNA targets 
[38].

Statistical analysis
Statistical analysis was performed using GraphPad 
Prism ver. 8.0.2 (GraphPad Software, Inc., San Diego, 
CA, USA). The expression level of each gene was rep-
resented as an FC according to the 2–△△Ct method. 
The Student’s t test was used to analyze the differences 
between the groups. All the data are expressed as the 
mean ± standard deviation. All experiments were per-
formed on no fewer than three biological replicates. 
Significance was defined as a P value < 0.05 [39].

Results
Animal model construction and pathological changes 
in brain tissue
A. cantonensis larvae were found in the brains of mice 
14  days after A.  cantonensis infection. These findings 
confirmed the successful establishment of an animal 
model of A.  cantonensis infection [40]. For the mouse 
infection model, no obviously abnormal brain tis-
sue was observed at 1  day or 7  days. After 14  days of 
infection, a few cone cells with degeneration and cyto-
plasmic consolidation were occasionally observed in 
the hippocampus, with some degree of damage, and 
increased inflammatory cell infiltration was observed 

http://string-db.org/


Page 4 of 14Cheng et al. Parasites & Vectors          (2024) 17:205 

Fig. 1  Hematoxylin and eosin staining of mouse brain tissue samples. Negative control group (A), 1 day after infection (B), 7 days after infection (C), 
14 days after infection (D), and 21 days after infection (E)
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around the brain tissue and in the ventricles; eosino-
phils were also observed. These symptoms were signifi-
cantly exacerbated on the 21st day postinfection, and 
parasites were detected in the brain tissue (Fig. 1).

Identification of differentially expressed lncRNAs 
and mRNAs
After quality trimming, an average of 104.088  M clean 
reads were obtained for each sample. The sequencing 
quality data are provided in Additional file 1 (Additional 
file 2: Table S2). The mean Q30 score was 94.34% (i.e., the 
probability of a correct base call was 94.34%), demon-
strating the good quality of the RNA-sequencing (RNA-
seq) data.

The sequencing data revealed a total of 859 differen-
tially expressed lncRNAs (differences > 2, q < 0.05), 574 
of which were upregulated and 285 of which were down-
regulated (Fig. 2A, B Additional file 3: Table S3). In addi-
tion, 1895 differentially expressed mRNAs (difference in 
ploidy > 2, q < 0.05) were screened, of which 1790 mRNAs 
were upregulated and 105 mRNAs were downregulated 
(Fig. 3A, B, Additional file 4: Table S4).

GO analysis and KEGG pathway analysis
The expression of many lncRNAs/mRNAs was signifi-
cantly dysregulated in mice infected with A. cantonensis 
14 days after infection. To reveal the function of aberrant 
lncRNAs/mRNAs, we performed GO and KEGG path-
way enrichment analyses.

The top 10 GO terms were sorted by the correspond-
ing −log10p value under each of the three categories 
in descending order; the top 10 GO terms were plot-
ted as the top 30 GO enrichment analysis results (Addi-
tional file  5: Table  S5 and Additional file  6: Table  S6). 
GO analysis of the differentially expressed contiguous 
genes of the lncRNAs revealed (Fig. 4A) that the most 
significantly enriched biological processes (BPs) were 
complement activation, regulation of synaptic vesicle 
initiation, synaptic vesicle docking, chemical in  vivo 
homeostasis, complement binding, and peptide antigen 
binding. The most significantly enriched cellular com-
ponents (CCs) were mitochondrial ribosomes, mito-
chondrial large ribosomal subunits, and translation 
release factor complexes. The most significant molecu-
lar functions (MFs) were complement binding, peptide 
antigen binding, and translation release factor activ-
ity, among others. GO terms of differentially expressed 
mRNAs (Fig. 4B), including immune system processes, 
inflammatory response, and involvement in the outer 
side of the constituent plasma membrane, were signifi-
cantly enriched.

KEGG pathway analysis identified differentially 
expressed lncRNA genes (Fig.  5A and Additional file  7: 
Table  S7), which were mainly associated with anti-
gen processing and presentation signalling pathways, 
graft-versus-host disease, and cell adhesion molecules. 
Analysis of the differentially expressed mRNAs revealed 
cytokine‒cytokine receptor interactions, the NOD-like 

Fig. 2  Differentially expressed lncRNA profiles. Differential lncRNA grouping clustering graph (A): the graph indicates relatively high expression 
lncRNA in red and relatively low expression lncRNA in blue. Differential expression volcano graph (B): the differences resulting from the comparison 
are reflected in the volcano graph, with nonsignificantly different lncRNA in gray and significantly different lncRNA in red and green; the horizontal 
axis is log2FoldChange, and the vertical axis is −log10 P value



Page 6 of 14Cheng et al. Parasites & Vectors          (2024) 17:205 

receptor signalling pathway and phagosomes (Fig. 5B and 
Additional file 8: Table S8).

LncRNA and mRNA coexpression and protein interaction 
network analysis
To explore the relationships between differentially 
expressed lncRNAs and differentially expressed mRNAs, 
we performed lncRNA‒mRNA coexpression analyses 
and constructed lncRNA‒mRNA network maps (Fig. 6A, 
B, Additional file  9: Table  S9 and Additional file  10: 

Table  S10). The PPI network of the top 50 DE genes is 
shown in the STRING database, and the interaction 
scores between them were all greater than 0.999 (Fig. 6C 
and Additional file 11: Table S11).

Target gene network analysis and qPCR validation
The STRING database was used to predict protein‒pro-
tein interactions and map the PPI network of six lncR-
NAs (Additional file  12: Table  S12). The results showed 
that H19, F630028O10Rik, Lockd, AI662270, AU020206, 

Fig. 3  Differentially expressed mRNA profiles. Differential mRNA grouping clustering graph (A): the graph indicates relatively high expression 
mRNAs in red and relatively low expression mRNAs in blue. Differential expression volcano graph (B): the differences resulting from the comparison 
are reflected in the volcano graph, with nonsignificantly different mRNAs in gray and significantly different mRNAs in red and green; the horizontal 
axis is log2FoldChange, and the vertical axis is −log10 P Value

Fig. 4  GO enrichment analysis results. The horizontal axis is the GO entry name, and the vertical axis is −log10 P value
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and Mexis were significantly associated with the target 
genes (Fig. 7A).

To ensure the accuracy and reliability of the RNA-seq 
data, we performed RT‒PCR to validate the expression 
levels of the six lncRNAs. As shown in Fig. 7B, the qPCR 
results of the six differentially expressed genes were con-
sistent with the sequencing results.

Dynamic relative expression of DE lncRNAs in the cerebral 
tissue of mice infected with A. cantonensis
During the period of A.  cantonensis infection, H19, 
F630028O10Rik, Lockd, AI662270, AU020206 and Mexis 
showed dynamic fluctuations in the mouse model com-
pared with the negative control (Fig. 8).

In the models, the expression of these six genes was 
significantly upregulated at 14 and 21  days after infec-
tion with A. cantonensis compared with that in the con-
trol group at the same age, and the expression level was 
greatest on day 14. There was no significant difference in 
the expression of H19, Lockd, or Mexis between 14 and 
21  days. The expression levels of the other three genes 
decreased significantly after 21  days of infection with 
A. cantonensis compared with 14 days.

Discussion
Angiostrongyliasis is a zoonosis that is widely distributed 
in more than 30 countries [16]. This condition is often 
misdiagnosed, and there are no specific drugs available 
for treating this disease [16]. Therefore, revealing the 
expression profiles of A. cantonensis after infection in an 
animal model could provide a new theoretical basis for 

the development of more effective and specific therapeu-
tic methods [41].

In the present study, histopathological analysis of 
mouse brain tissue showed that with the progression of 
A.  cantonensis infection, there were different degrees of 
damage and worsening of the inflammatory response, 
characterized by a large number of inflammatory cells 
infiltrating the brain tissue and ventricles. High-through-
put sequencing identified differentially expressed lncR-
NAs in mouse brain tissues 14 days after A. cantonensis 
infection. A total of 574 lncRNAs were upregulated and 
285 lncRNAs were downregulated in the infected 
group compared with the negative control group. H19, 
F630028O10Rik, Lockd, AI662270, AU020206, and Mexis 
were not significantly differentially expressed on days 1 
and 7 of A. cantonensis infection, but these six lncRNAs 
were significantly highly expressed on days 14 and 21, 
and their expression levels peaked on day 14. This result 
is consistent with the degree of brain tissue injury and 
associated cytokine and miRNA changes after infection 
[40, 42]. Moreover, we searched the Homo sapiens library 
using the sequences of these six lncRNAs and found that 
the lncRNAs Lockd, Mexis, and F630028O10Rik were 
present in Homo sapiens, with similarity rates of 77.78%, 
76.39%, and 90.55%, respectively [43, 44]. LncRNAs can 
orchestrate various physiological processes, and their 
dysfunction affects a wide range of human diseases [22]. 
Thus, we speculated that these differentially expressed 
lncRNAs may also play important roles in the process of 
infection by A. cantonensis.

Previous studies have shown that lncRNA H19 plays 
an important role in regulating cellular functions in a 

Fig. 5  KEGG enrichment top20 bubble map. The horizontal axis enrichment score is the enrichment score, the larger the bubble the more 
differential genes are contained in the entry, the bubble color changes from purple–blue–green–red; the smaller the enrichment P value, 
the greater the significance
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variety of diseases [45, 46]. H19 can regulate cell prolif-
eration. LncRNA H19 overexpression inhibited mTOR 
phosphorylation and promoted ULK1 phosphoryla-
tion, further promoting cell proliferation, migration, 
and autophagy [47]. Additionally, H19 can promote 
tumor cell growth, invasion, and migration through 

the H19/miR-200a/CDK6/ZEB1 axis [48]. H19 can 
regulate immunity. In systemic lupus erythematosus 
(SLE), lncRNA H19 is significantly upregulated and 
inhibits the proliferation of Treg cells and promotes 
the conversion of Treg cells to Tfh cells through the 
direct inhibition of IL-2 production, which results in 

Fig. 6  Coexpression circos plot (A) The outermost circle is the schematic of the autosomal distribution of the species; the second and third circles 
are the distribution of differentially expressed genes on the chromosome, red lines indicate upregulation, green lines indicate downregulation. The 
higher the bar, the higher the number of differential genes in the region; the fourth and fifth circles are the distribution of differentially expressed 
lncRNA on the chromosome, expressed in the same form as gene. The internal connecting lines indicate the correspondence between the Top500 
coexpressed lncRNA and gene. lncRNA–miRNA network diagram (B): lncRNA are circles, miRNAs are triangles, larger graphs indicate more 
nodes connected to them. PPI network diagram (C): red indicates upregulated differentially expressed genes and blue indicates downregulated 
differentially expressed genes; the more associated genes, the larger the gene spots
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immune dysregulation and exacerbates autoimmun-
ity [49]. Interleukin-2 cytokine is an important modu-
lator of immune responses [50]. H19 is overexpressed 
in gastric cancer (GC) cells and contributes to immune 
escape from GC cells by decreasing immune cell activ-
ity and IL-2 expression through the miR-519d-3p/
LDHA/lactate axis [51]. In addition, lncRNA H19 can 
regulate immune cell infiltration through miR-378a-5p/
SERPINH1 signaling [52]. The effect of lncRNA H19 
on immune regulation is diverse, a recurring theme 
in literature is the relationship between lncRNA H19 
and inflammatory responses [50]. In retinal ischae-
mia and reperfusion, high H19 expression mediates 
ceRNET to trigger the mutual activation of NLRP3/
NLRP6 inflammatory vesicles, which subsequently ini-
tiates GSDMD lysis and microglia scorching [53, 54], 
leading to a strong proinflammatory response trig-
gered by a substantial release of cellular contents [55]. 
H19 can regulate inflammatory expression through 
the NF-κB signalling pathway [56]. H19 can also regu-
late cell death. H19/miR-21/PDCD4 ceRNET also acti-
vates apoptotic cysteine and directly regulates RGC 
cell apoptosis in retinal I/R injury, exacerbating reti-
nal damage [54]. Moreover, lncRNA H19 upregula-
tion inhibits DUSP5 and activates ERK1/2 to induce 
autophagic activation, which impairs cell viability, lead-
ing to cerebral ischaemia‒reperfusion injury [57]. In 
the present study, lncRNA H19 was highly expressed in 
the middle and late stages of infection, which suggests 

that it may play a role in regulating cell proliferation, 
apoptosis, and immunity induced by A.  cantonensis 
infection, which needs to be further investigated.

Plasmodium infection of LLC tumor-bearing mice 
inhibited tumor growth and metastasis, and the lncRNA 
F630028O10Rik was significantly upregulated [58]. Inhi-
bition of lncRNA F630028O10Rik expression promoted 
the expression of miR-223-3p, resulting in a significant 
increase in VEGFR2 expression, which promoted tumor 
angiogenesis and led to tumor expansion [59]. This find-
ing indirectly demonstrated that high F630028O10Rik 
expression inhibits angiogenesis, which in turn inhibits 
tumor growth and metastasis. High expression of the 
lncRNA F630028O10Rik was found in mice with spi-
nal cord injuries, leading to increased expression levels 
of inflammatory factors and focal death-related genes, 
among others. Further studies revealed that lncRNA-
F630028O10Rik acts as a ceRNA in the miR-1231-5p/
Col1a1 axis and enhances microglial scorch death after 
SCI through activation of the PI3K/AKT pathway [60]. 
LncRNA F630028O10Rik expression also increased after 
infection with A.  cantonensis. Therefore, this molecule 
may be involved in the regulation of inflammation and 
apoptosis induced by A. cantonensis infection.

Lockd has been experimentally demonstrated to pro-
mote myoblast proliferation and acute injury-induced 
muscle regeneration via the Lockd/DHX36/Anp32e 
axis [61]. DHX36 as an RNA helicase can regulate the 
IFN-β signaling pathway by suppressing the formation 

Fig. 7  Validation of differential expression of lncRNA and target gene network analysis. The network diagram between lncRNA and target genes 
(A): triangles represent lncRNA and loops represent target genes. The size of the node is determined by the degree of the node, green–yellow–
red indicates that log2FC is getting bigger, the darker the color the bigger the difference. qPCR validation graph (B): control and test groups 
were compared by the qPCR method for H19, F630028O10Rik, Lockd, AI662270, AU020206, and Mexis. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, and **** 
P ≤ 0.0001
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of the DDX1-DDX21-DHX36 complex and regulating 
immune homeostasis [62]. DHX36 RNA helicases have 
been reported to be involved in RLR-mediated type 
I IFN production after viral infection, and induce an 
innate immune response [63]. This suggests that Lockd 
can modulate the immune response induced by the 
Guangzhou tubular nematode though regulating DHX36 
production. In addition, Lockd can positively regulate 
adjacent Cdkn1b through a cis-acting mechanism and 
regulate the cell cycle [61, 64]. Lockd was upregulated 
in this study, suggesting that it may be related to muscle 
injury and apoptosis caused by the migration of A. can-
tonensis in brain tissue.

In our study, the expression of the lncRNA AI662270 
was upregulated. In a previous study, the lncRNA 
AI662270 was found to affect the molecular proper-
ties of M1 kidney cell lines and lead to a reduction in 

their proliferative capacity [65]. An experiment further 
revealed that the lncRNA AI662270 can affect the G1 
phase of the cell cycle by inducing H3K9me2 in the G1 
phase of the cell cycle through the regulation of the lysine 
methyltransferase G9a [66]. This finding suggested that 
AI662270 might also inhibit the proliferation of brain tis-
sue cells after infection with A. cantonensis.

In addition, both AI662270 and the lncRNA Mexis 
are highly expressed during the progression of athero-
sclerosis [67]. AI662270 accelerates the progression of 
atherosclerosis by directly binding to Abca1 to attenu-
ate Abca1 expression and activity and inhibiting SR-BI 
expression to promote foam cell formation [68]. Mexis 
promotes the coactivator action of DDX17, which 
enhances LXR-mediated Abca1 expression, resulting in 
increased cholesterol efflux from macrophages, which 
in turn affects atherosclerotic plaque development [69]. 

Fig. 8  Dynamic relative expression of H19, F630028O10Rik, Lockd, AI662270, AU020206, and Mexis of the cerebrum tissue in the mice model 
infected with A. cantonensis. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, and **** P ≤ 0.0001
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Abca1 is the most abundant protein in inflammatory 
cells, and the overexpression of Abca1 has antiinflam-
matory effects [70]. In addition, high Abca1 expression 
increases the permeability of the blood‒brain barrier 
[71]. Mice infected with A. cantonensis develop blood‒
brain barrier impairment and inflammatory responses 
[72]. This evidence suggests that AI662270 and Mexis 
may represent breakthroughs in the treatment of angi-
ostrongyliasis. However, persistent high expression of 
Mexis leads to an inflammatory response [69]. Persis-
tent activation of DDX17 by Mexis-mediated activation 
of NLRC4 inflammatory vesicles triggers an inflamma-
tory response [73]. Similarly, the lncRNA Mexis was 
highly expressed in the brain tissue of mice infected 
with A.  cantonensis, suggesting that it may play a role 
in the inflammation caused by A. cantonensis infection.

In an atherosclerosis model, lncRNA AU020206 
expression was downregulated, while Bax and phos-
phatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit beta (PIK3CB) gene expression was upregu-
lated, histone deacetylase 9 (HDAC9) expression was 
upregulated, and the expression of the CDK4, CcNA2, 
CCNE1, and CCND3 genes was downregulated [74]. 
The Bax gene is an important apoptotic gene and its 
high expression triggers apoptosis [74]. PIK3CB is 
involved in apoptosis-related signalling cascades, and 
its high expression promotes apoptotic cell plaque for-
mation, causing atherosclerosis [75]. HDAC9, which 
is an important gene involved in the regulation of the 
cell cycle and inflammatory response, is upregulated, 
HDAC9 deficiency may promote inflammatory regres-
sion, and cyclins and CDKs can form a complex to con-
trol cell proliferation [76]. Cyclin-dependent kinases 
(CDKs) are a family of protein kinases that play a regu-
latory role in the cell cycle, and cell cycle proteins and 
CDKs can form complexes to control cell prolifera-
tion. Downregulation of CDK4, CcNA2, CCNE1, and 
CCND3 promoted cell proliferation. Therefore, the 
lncRNA AU020206 may be involved in cell prolifera-
tion, apoptosis and inflammatory responses [74]. The 
expression of the lncRNA AU020206 was upregulated 
in mice infected with A.  cantonensis, suggesting that 
this molecule is also involved in the regulation of apop-
tosis and inflammatory responses following A. canton-
ensis infection.

In this study, we only preliminarily explored the 
changes in the expression of lncRNAs in mice, and the 
changes in their protein levels were not further inves-
tigated. In the future, on the basis of the results of this 
study, we will use a human cell line model to further 
study in detail the expression changes and mechanism of 
action of the relevant genes and proteins after infection 
with A. cantonensis.

Conclusions
We used RNA-seq to analyze the entire transcrip-
tome profile of mouse brain tissue after A.  cantonen-
sis infection. Functional predictions via GO and KEGG 
pathway analyses suggested that these differentially 
expressed genes play important roles in the infection 
process of A.  cantonensis. Our study provides labora-
tory data to support subsequent studies on the control of 
angiostrongyliasis.
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