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Abstract

Background: Recent evidence suggests that Sarcoptes scabiei var. hominis mites collected from scabies endemic
communities in northern Australia show increasing tolerance to 5% permethrin and oral ivermectin. Previous findings
have implicated detoxification pathways in developing resistance to these acaricides. We investigated the contribution
of Glutathione S-transferase (GST) enzymes to permethrin and ivermectin tolerance in scabies mites using biochemical
and molecular approaches.

Results: Increased in vitro survival following permethrin exposure was observed in S. scabiei var. hominis compared to

patient over the course of ivermectin treatment.

historically challenging ectoparasite.

acaricide naive mites (p < 0.0001). The addition of the GST inhibitor diethyl maleate restored in vitro permethrin
susceptibility, confirming GST involvement in permethrin detoxification. Assay of GST enzymatic activity in mites
demonstrated that S. scabiei var. hominis mites showed a two-fold increase in activity compared to naive mites (p <
0.0001). Increased transcription of three different GST molecules was observed in permethrin resistant S. scabiei var.
canis-mu 1 (p < 0.0001), delta 1 (p < 0.001), and delta 3 (p < 0.0001). MRNA levels of GST mu 1, delta 3 and P-
glycoprotein also significantly increased in S. scabiei var. hominis mites collected from a recurrent crusted scabies

Conclusions: These findings provide further support for the hypothesis that increased drug metabolism and efflux
mediate permethrin and ivermectin resistance in scabies mites and highlight the threat of emerging acaricide
resistance to the treatment of scabies worldwide. This is one of the first attempts to define specific genes involved in
GST mediated acaricide resistance at the transcriptional level, and the first application of such studies to S. scabiei, a

Background

Scabies is a debilitating skin disease caused by the itch
mite, Sarcoptes scabiei. It causes significant morbidity,
especially in disadvantaged populations living in over-
crowded conditions. In addition to the pathology directly
attributable to scabies, it is a major initiating factor for
streptococcal pyoderma, which in term is linked to renal
and heart disease [1]. This association has led to con-
certed efforts to reduce prevalence of scabies and subse-
quent skin infections in settings where infestation is
endemic, with studies demonstrating a link between sca-
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bies control and reduced incidence of post-streptococcal
sequelae [2,3].

In northern Australia, the first line treatment for ordi-
nary scabies is topical application of the pyrethroid acari-
cide 5% permethrin. Community control strategies have
utilised permethrin extensively with varied success [4,7].
Limited sustainability of recent interventions [4] and
anecdotal reports of treatment failure in some communi-
ties suggest the emergence of permethrin resistance as a
possible cause for treatment failure. This is supported by
observations that S. scabiei maintained on a laboratory
animal model under permethrin selection developed
resistance to this drug [8]. These sustainability concerns
have now directed the development of alternative pro-
grams utilising the macrocyclic lactone drug ivermectin,
with clinical trials targeting scabies and strongyloides in
northern Australia due to commence in 2010 [2,9].
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Despite widespread usage for sarcoptic mange in ani-
mals, ivermectin is a relatively new treatment for human
scabies. It is the only oral acaricide available for scabies,
and its most useful application has been in the manage-
ment of hyperinfested (crusted) scabies [10] and in insti-
tutional settings. Ivermectin appears to have low residual
activity against S. scabiei, and multiple treatments are
required for severe crusted scabies. Recrudescence and
re-infection occur frequently [reviewed in [11]]. Such
treatment regimens inevitably impose selection pressure
for drug resistance. Our group has documented clinical
and in vitro ivermectin resistance in crusted scabies [12],
as well as longitudinal evidence of increasing ivermectin
tolerance in scabies mites collected from northern Aus-
tralia [13]. Overall, these combined findings suggest the
emergence of resistance to the two primary acaricides
used in northern Australia. Defining molecular mecha-
nisms of permethrin and ivermectin resistance in S. sca-
biei is therefore critical to future efforts to control this
infection.

Possible mechanisms of acaricide resistance in S. sca-
biei may include 1) target site insensitivity and 2)
increased drug efflux and/or metabolic detoxification.
Studies to date suggest that both of these pathways are
contributing to permethrin resistance in scabies. We have
previously described a SNP in a S. scabiei voltage sensi-
tive sodium channel gene (Vssc) associated with per-
methrin resistance [14], and likewise demonstrated
increased esterase, glutathione transferase (GST) and
cytochrome P450 monooxygenase activity in permethrin
resistant mites compared to sensitive mites. Of these
three metabolic pathways, GST appeared to be the most
significant [8].

The development of ivermectin resistance in nema-
todes is apparently multifactorial, differing between
organisms and perhaps even selection pressures [15]. The
story is even less clear in arthropods, where there is very
little molecular information regarding putative ivermec-
tin resistance genes. Progress towards characterisation of
ivermectin resistance associated molecules in S. scabiei
has included the identification of several ABC trans-
porter genes, including a P-glycoprotein [16] and a novel,
ivermectin sensitive pH-gated chloride channel [17].

GSTs are a family of enzymes that play a significant role
in detoxification of xenobiotics such as insecticides [18].
Increased activity of delta and epsilon class GSTs is linked
to resistance to organophosphates, DDT and pyrethroids
[reviewed in [19]]. GSTs have also been associated with
macrocyclic lactone resistance in mites, with elevated GST
activity observed in abamectin-resistant Tetranychus urti-
cae [20,22]. Additionally, Caenorhabditis elegans isolates
selected for ivermectin resistance in vitro show increased
transcription of GSTs and glutathione conjugate MRP
transporters, together with reduced intracellular glutathi-
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one, suggesting ivermectin induced acceleration of drug
conjugation and removal [23].

The further characterisation of GSTs in S. scabiei is a
logical step in exploring their possible role in mediating
in resistance to both permethrin and ivermectin. To date,
six GSTs have been identified from a S. scabiei expressed
sequence tag library of 43,776 sequences. Three of these
cluster with mu class GSTs, with the remaining three
more related to the delta/epsilon classes of insects, which
are of particular interest to drug resistance [24]. The
objective of this study was to further investigate at a tran-
scriptional level the role of GSTs and other putative resis-
tance genes as mediators of acaricide resistance in S.
scabiei. Transcriptional levels in different mite popula-
tions with different acaricide exposure histories and in
different developmental stages were measured.

Results

GST inhibitors restore susceptibility of S. scabiei var.
hominis to permethrin

Mean survival time of S. scabiei var. hominis in the pres-
ence of 5% permethrin was 6 hours (95% CI 5.3-6.8). In
contrast, previously published studies have reported a
median survival time of 15 hours for permethrin resistant
S. scabiei, and 4 hours for acaricide naive S. scabiei [8].
Exploratory analysis of these different survival patterns
was undertaken using Kaplan-Meier survival analysis,
and indicated statistically significant differences in
median survival times following permethrin exposure (p
< 0.0001, Figure la). Therefore, these var. hominis mites
were considered to be 'tolerant’ to permethrin.

To investigate the relative contribution of GST meta-
bolic pathways to increased permethrin tolerance, the
synergistic compound and GST inhibitor DEM was also
tested in bioassays. The addition of 30 mM DEM to 5%
permethrin significantly reduced mean survival time of
the var. hominis mites from 6 hours to 1.5 hours (95% CI
1.2-1.7, p < 0.0001, Figure 1b). Mites exposed to mineral
oil 30 mM DEM alone exhibited little mortality (median
survival > 8 hours), whereas mites exposed to the positive
control acaricide benzyl benzoate were killed within one
hour.

Increased Glutathione S-transferase activity is associated
with permethrin tolerance

Given the increased in vitro permethrin tolerance and
synergism by DEM observed in var. hominis mites in bio-
assays, we wanted to determine whether this phenotype
was associated with increased GST enzymatic activity.
Protein extracts obtained from S. scabiei var. hominis
showed a two-fold increase in enzymatic activity com-
pared to previously reported GST levels in acaricide naive
S. scabiei (p < 0.0001). In contrast, GST activity levels in
permethrin resistant mites were two-fold higher than



Mounsey et al. Parasites & Vectors 2010, 3:43
http://www.parasitesandvectors.com/content/3/1/43

A
100+
—e— Permethrin naive S. scabiei
= 804 ~¥- & scabiei var hominis
E -m- Permethrin resistant S. scabiei
5 e0d
w
e
§ 40
Q
=
]
a 204
0- T T T 1
5 10 15 20
Time (hour)
B
o=l -& 5% Permethrin
. Ao .4~ 5% Permethrin + 30mM DEM
T
E -&- Control
s —&— 30mM DEM
@
€
<
o
3
o
T T 1
4 6 8

Time (hours)

Figure 1 In vitro bioassays of S. scabiei var. hominis permethrin
sensitivity. a) Differences in in-vitro permethrin susceptibility in S. sca-
biei with different acaricide exposure histories: Permethrin naive S. sca-
bieivar. suis (n = 100), exposed S. scabiei var. hominis (n = 40) and
permethrin resistant S. scabiei var. canis (n = 100). Survival curves are
significantly different (p < 0.0001). b) Synergistic activity of DEM. S. sca-
biei var. hominis mites exposed to permethrin combined with DEM (n
=40) show increased susceptibility compared to mites exposed to per-
methrin alone (n = 40) (p < 0.0001). Control mites exposed to mineral
oil (n=20) or DEM alone (n = 20) show little mortality over eight hours.

that of the present var. hominis population, and four-fold
higher than the permethrin naive population [8] (Figure
2).

Comparison of Glutathione S-transferases in different host-
derived populations of S. scabiei

DNA sequence analysis was undertaken for all six GSTs
in var. suis, hominis and canis variants of S. scabiei, and
sequences deposited into GenBank (Accession no.
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Figure 2 Comparison of glutathione S-transferase enzymatic ac-
tivity between mite populations. GST activity was determined by a
fluorometric assay measuring the conjugation of monochlorobimane
to reduced glutathione. Permethrin resistant mites and human mites
both display significantly (***, p < 0.0001) elevated GST activity com-

pared to permethrin naive mites. Bars represent median +/- SEM, n =3
(protein extracts from female mites).
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GQ214687-GQ214698). All were 299% identical at the
nucleotide level. Sequence identity was 100% at PCR
primer binding sites and in regions selected for qPCR
amplification. All SNPs were synonymous substitutions,
with the exception of GST delta 1, where two non-synon-
ymous SNPs were identified in the var. canis sequence
resulting in a proline to serine substitution at residue 46,
and a threonine to serine substitution at residue 157.
However these sites were also polymorphic in the var.
hominis and suis cDNA, with both SNPs represented.
Therefore these appear to reflect different isoforms of
GST delta 1 rather than host-related differences. Overall,
this high level genetic identity indicated that that the
genes were sufficiently similar to enable comparison of
transcriptional levels.

Increased transcription of GSTs in permethrin resistant S.
scabiei

To investigate whether differences in GST activity corre-
sponded with changes in transcriptional activity of GST
genes, QRT-PCR was undertaken on representative S. sca-
biei GST genes. In the first set of analyses, transcription
was compared between groups of female mites from per-
methrin naive, permethrin resistant and permethrin tol-
erant mite populations. GST genes mu 1, mu 2, delta 1
and delta 3 were observed to be transcribed at high levels,
whereas GST mu 3 and delta 2 transcripts were less abun-
dant (Figure 3a).

We observed that GST mu 1, delta 1 and delta 3 were
significantly upregulated in permethrin-resistant mites
compared to permethrin-sensitive mites (Figure 3a). GST
mu 1 transcription was increased by a mean of 4.2-fold
(SE +/- 0.9, p < 0.001), GST delta 1 by 3.4-fold (SE +/- 0.9,
p < 0.01) and GST delta 3 by 4-fold (SE +/- 1.79, p <
0.001). mRNA levels were slightly higher in the per-
methrin tolerant mites, compared to naive mites, but
these differences were not significant. Comparison of p-
actin transcription between mite populations showed lit-
tle variation between groups, indicating its suitability as a
reference housekeeping gene that is constitutively tran-
scribed (Figure 3b).

Those GST isoenzyme genes whose transcription was
up-regulated in permethrin resistant female mites were
then examined in further detail, with transcriptional pro-
files compared across developmental stages in a single
mite population. While transcripts of all three genes were
present in all life stages, transcription was higher in resis-
tant mites compared to sensitive mites all life stages, but
was most marked and statistically significant only in
female mites (Figure 4a-c).

Increased GST transcription in mites clinically exposed to
ivermectin

To investigate the effect of ivermectin treatment in a clin-
ical setting on GST transcription, S. scabiei mites were
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Figure 3 Up-regulation of GST transcription in permethrin resis-
tant Sarcoptes scabiei. Total RNA was extracted from pools of female
mites (n =4 pools per population) and reverse transcribed; GST tran-
scripts were amplified using GST gene-specific primers in quantitative
PCR, and normalised using levels of 3-actin transcription. Bars repre-
sent mean +/- SE. ***: p < 0.001, **: p < 0.01 when compared to per-
methrin sensitive controls (b): Crude (non-normalised) fold-changes in
expression in resistant compared to sensitive mites, showing little

change in B-actin transcription between groups.

collected from a crusted scabies patient before and after
ivermectin treatment (Figure 5a). Transcription of GST
mu 1 increased after one dose of ivermectin; after two
doses this increase was significant (4.5-fold relative to
untreated mites, SE +/- 3.4, p < 0.01). Significant up regu-
lation of transcription of delta 3 was also observed after
ivermectin exposure, but only after two doses (3.9-fold,
SE +/- 0.82, p < 0.001). Although a trend towards
increased GST delta 1 transcription was observed after
one and two doses of ivermectin, this difference was not
significant. Assay of transcription of a S. scabiei P-glyco-
protein and pH-gated chloride channel indicated that P-
glycoprotein transcription was increased by 2.9-fold after
one dose of ivermectin (SE +/- 0.41, p = <0.01), while
transcription of the pH-gated chloride channel (SsCl) was
not affected by ivermectin treatment (Figure 5b).

Discussion

Accumulating data indicate that metabolic detoxification
plays an important role in the development of acaricide
resistance. We have previously shown an association of
GSTs with pyrethroid resistance in scabies mites, as
determined by increased enzymatic activity and by the
reversal of resistance using the GST specific inhibitor
DEM [8]. We now extend on this by a) characterising the
in vitro permethrin sensitivity and GST enzyme activity
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Figure 4 Comparison of life-stage specific expression between
permethrin sensitive and resistant S. scabiei. Levels of scabies mite
GST transcripts from permethrin resistant and sensitive populations
were compared across all life stages. GST mu 1 (a), delta 1 (b) and delta
3 (c) are expressed constitutively throughout the mite life-cycle. Resis-
tant mites show increased mRNA at all life stages, with this trend reach-
ing significance in female mites. *:<0.05, n = 3 pools per population.

in S. scabiei collected from a patient with a history of
extensive acaricide treatment, including permethrin, over
ten years; b) confirming that the increased GST activity
observed in permethrin resistant mites is correlated with
up regulation of specific GST transcripts; and ¢) demon-
strating that up regulation of GSTs and P-glycoprotein
occurs in scabies mites over the course of ivermectin
treatment.
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Figure 5 Up-regulation of gene transcription in S. scabiei follow-
ing clinical ivermectin exposure. Changes in transcription of GST mu
1,GST delta 3 (a) and P-glycoprotein (b) in adult female mites exposed
to ivermectin. Pools of female mites were collected from a crusted sca-
bies patient prior to treatment (n = 4), after one dose of ivermectin
(IVM, n =4), and after two doses of IVM (n = 2). **:p < 0.01, ***:p < 0.001.

Permethrin (5%) was introduced to northern Australia
as a first line treatment for ordinary scabies in 1994. In
vitro analysis conducted at that time demonstrated mite
mortality within 30 minutes of permethrin exposure [25].
In later years, in vitro survival in permethrin had
increased to 3 hours [26,27]. In the present study, median
survival time had increased further to 7 hours. The addi-
tion of DEM restored permethrin susceptibility, in accor-
dance with our previous data supporting GST mediated
detoxification [8]. These phenotypic observations con-
firm increasing permethrin 'tolerance' in the var. hominis
mites, but not complete resistance, as the resistant mite
control population have a median survival time of 15
hours when exposed to permethrin [8]. This is consistent
with the observation that GST enzymatic activity in the
permethrin tolerant mites was two-fold greater than the
unexposed controls, but two-fold lower than in the per-
methrin resistant mites.

Levels of transcription of GST in permethrin resistant
S. scabiei were significantly increased relative to per-
methrin naive controls. Up regulation was observed in
transcript levels for three specific GST genes- mu 1, delta
1 and delta 3. Although the pattern of increased GST
transcription in resistant mites was present across all life
stages, it was most pronounced in adult females. GST lev-
els in other mite species have been found to fluctuate dra-
matically as a function of adult female age, with this
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variation more pronounced in resistant mites [20,22].
Since the in vitro bioassays and enzymatic analysis in this
study were conducted using only female mites, and in
light of the transcriptional profiles, it would be interest-
ing to also examine the drug sensitivity phenotypes of
other developmental stages. If acaricide resistance is
indeed only manifested in female mites, the inability to
eradicate this stage would likely result in clinical treat-
ment failure, since females are responsible for ongoing
transmission of infection, and acaricides are not ovicidal.

The GSTs investigated in this study are likely to only
represent a subset of the family of GSTs in the scabies
mite. It is currently unknown how many members of this
gene family are present in Acari, although this should
become clearer as genome sequences become more read-
ily available. Recombinant enzymes of these six GSTs
have been expressed and kinetic properties determined.
Docking analysis indicated that all but the GST mu 3
recombinant enzyme could bind and potentially metabo-
lise permethrin [28]. Inhibition assays showed a 50%
reduction of GST mu 1 activity in the presence of pyre-
throid compounds [29]. To a lesser degree, permethrin
also inhibited the activity of three recombinant GST delta
enzymes [28].

Although the permethrin tolerant scabies mites showed
significantly elevated GST activity relative to unexposed
controls, increases in GST transcription were not statisti-
cally significant. This may be due to post-translational
modifications or other factors exerting an influence on
enzyme activity, or it may simply be that the level of toler-
ance is not yet high enough to be reflected at a transcrip-
tional level. It is also important to acknowledge that in
addition to possessing higher GST activity, the resistant
mites carry a mutation in the permethrin target Vssc gene
[14], a SNP not detected in the permethrin tolerant mites
(data not shown). Hence, along with evidence implicating
GSTs, it also appears plausible that Vssc SNPs, esterases,
and to a lesser extent, cytochrome P450s may play a role
in permethrin detoxification [8], as has been shown in
other arthropods [30,32]. At this stage we cannot con-
clude whether our current observations represent a tran-
sient, isolated increase, or are part a trend of developing
permethrin resistance in this region. However, the results
suggest that permethrin treatment is having a distinct,
albeit subtle effect on scabies mite populations in north-
ern Australia.

Ivermectin has become a useful addition to the limited
number of acaricides available for the treatment of sca-
bies. However, there are legitimate concerns regarding
the long-term efficacy of ivermectin as an acaricide due
to observations of resistance in crusted scabies [12]. In
this study, we assessed transcriptional levels of GSTs and
other candidate ivermectin resistance genes in clinically
obtained mites before and after ivermectin exposure. Sig-
nificant up regulation of levels of transcription of GST
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mu 1, GST delta 3, and P-glycoprotein was observed in
mites following treatment with one or two doses of iver-
mectin. This provides further support to an association
with P-glycoprotein over expression and developing mac-
rocyclic lactone resistance, as reported in ivermectin
resistant Haemonchus contortus [33], emmamectin ben-
zoate exposed Lepeophtherius salmonis [34] and in C. ele-
gans selected for ivermectin resistance in vitro [23].

Developing hypotheses for mechanisms of GST medi-
ated ivermectin resistance is difficult. The ivermectin
molecule is considered too large to directly bind the GST
active site, and there are no known glutathione conju-
gates of ivermectin. Nevertheless, evidence of a possible
association between ivermectin and GSTs continues to
accumulate. Studies of the recombinant S. scabiei GSTs
showed that recombinant GST mu 1 activity was mod-
estly inhibited by ivermectin (16%), and curiously, recom-
binant GST delta 3 activity was significantly enhanced by
ivermectin (33%). While docking studies confirmed that
ivermectin could not fill the active site of GST delta 3, it
could bind the enzyme at several regions external to the
active site. Thus it has been proposed that the enzyme
may perform ligandin functions, sequestering ivermectin
without metabolising it [28]. Increased transcription and
sequestration could therefore reduce drug availability.
Further crystallization and binding experiments are
needed to investigate this hypothesis in more detail. An
alternative hypothesis is that GSTs are indirectly involved
in ivermectin detoxification, playing a secondary role to
other known metabolic pathways such as cytochrome
P450s.

Elucidating mechanisms of acaricide resistance in sca-
bies mites is difficult due to the inability to maintain
mites away from the animal host, and the sporadic access
to patients with sufficient numbers of mites. Thus it is
virtually impossible to conduct parallel phenotypic, bio-
chemical and molecular studies due to the limited
amount of material available. Although there were insuf-
ficient mites collected from this scabies patient to per-
form in vitro assays and biochemical profiling after
treatment, an earlier study demonstrated selection for
ivermectin tolerant sub-populations of mites over the
course of treatment [13]. Here we have demonstrated that
in vitro phenotypic changes in ivermectin response may
be conferred at the transcriptional level. Given these cur-
rent findings, caution should be exercised when using
ivermectin alone, or in combination with permethrin due
to the potential for cross resistance, mediated by GSTs as
demonstrated in this study, or possibly by other meta-
bolic mechanisms such as P450s.

Conclusions

Despite the variant sources from which these results were
obtained, the results advance the understanding of mech-
anisms of acaricide resistance in scabies. To date, most
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research on GST mediated acaricide resistance have been
based on phenotypic response, use of synergists or bio-
chemical assays, and the specific GST class or classes
responsible have not been well defined. In this study the
role for GST mediated acaricide resistance at the tran-
scriptional level has been explored, and also the first
report of P-glycoprotein up regulation in ivermectin
exposed mites is presented. Altogether, our findings fur-
ther validate multiple mechanisms of permethrin and
ivermectin resistance in scabies mites. This trend of
increasing tolerance to 5% permethrin, coupled with
observations of emerging ivermectin resistance [12,13]
raises serious concerns about the long term sustainability
of current scabies treatments and highlights the need for
development of alternative therapies.

Methods

Source of scabies mites

Sarcoptes scabiei var. hominis mites were collected from a
patient with recurrent crusted scabies, admitted in
November 2008 to Royal Darwin Hospital, Darwin, Aus-
tralia. The patient resided in a remote community in
northern Australia and had previous episodes of ivermec-
tin treatment failure and resistance [12]. Mites were col-
lected prior to treatment (Day 0), after one dose of
ivermectin (Days 1 and 3) and after two doses of ivermec-
tin (Day 7). Informed consent was obtained before mites
were collected. This study was approved by the Human
Research Ethics Committee of the Northern Territory
Department of Health and Families and the Menzies
School of Health Research.

Sarcoptes scabiei var. canis mites were originally col-
lected from mange infested dogs and maintained on labo-
ratory rabbit hosts, under permethrin treatment for many
years [35]. These mites have a median survival time of 15
hours in permethrin [8], and thus were deemed to be
"resistant” to permethrin. Rabbits were maintained in
accordance with the institutional guidelines of the Wright
State University Laboratory Animal Care and Use Com-
mittee.

Sarcoptes scabiei var. suis mites were harvested from a
colony maintained on pigs in Brisbane, Australia. The
mites obtained from this colony had no previous expo-
sure to acaricides. In vitro survival time in permethrin
was 4 hours [8]. Approval was obtained from the Animal
Ethics committee of the Department of Primary Industry
and Fisheries, Queensland.

Bioassays of permethrin sensitivity in S. scabiei var. hominis
Mites were collected on Day 0, before any treatment was
received. To circumvent reduced viability away from the
host bioassays were initiated within 3 hours of mite col-
lection. Bioassays were performed as described previ-
ously [8,27]. Mites were exposed to the following test
compounds: a) 5% permethrin (n = 40); b) 5% permethrin
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+ 30 mM diethyl maleate (DEM, Sigma, Milwaukee, W1,
USA) (n = 40); and control compounds: ¢) 30 mM DEM
(n = 20); d) mineral oil (negative control, n = 20); and e)
25% Benzyl Benzoate (positive control, n = 20). Mites
were observed, and mortality recorded on an hourly basis
for eight hours. Kaplan-Meier survival curves were con-
structed using Prism v5.0 (GraphPad Software, La Jolla
CA). Comparison of survival curves was undertaken
between the S. scabiei var. hominis, and previously con-
ducted permethrin resistant (var. canis) and permethrin
naive (var. suis) [8] using logrank tests (GraphPad Prism).

Assay of Glutathione S-transferase enzymatic activity
Approximately 100 female S. scabiei var. hominis mites
were collected on Day 0 and homogenised on ice in 100
uL 0.05M Tris-HCI pH 7.5. The homogenate was centri-
fuged at 13,000 x g for 5 min at 4°C. Protein concentra-
tion of the supernatant was determined using the
Nanodrop ND-1000 spectrophotometer (Nanodrop
Technologies, Wilmington, DE, USA). GST activity was
measured in a fluorometric assay using monochlorobi-
mane (MCB) as described previously [8]. Each assay was
performed in duplicate. Enzymatic activity of the S. sca-
biei var. hominis mites was compared to those previously
determined for the permethrin naive and resistant popu-
lations [8]. Statistical comparisons of mean activity
between populations were made using Students i-test
(GraphPad Prism).

Analysis of levels of Glutathione S-transferase transcription
Transcription of GSTs was assessed in the context of dif-
ferent permethrin and ivermectin exposure histories. For
permethrin, we compared permethrin "tolerant" S. sca-
biei var. hominis collected before treatment, permethrin
naive mites and mites known to be permethrin resistant.
For ivermectin, mites were compared prior to treatment,
and after one and two doses of ivermectin. As described
above, mites were processed within 3 hours of collection
to circumvent artefactual changes in trascription. Live S.
scabiei mites were separated according to life stage (eggs,
larvae, nymph, adult male and adult female) and stored in
microfuge tubes in pools of 10-50 mites. S. scabiei var.
suis and var. hominis mites were immediately homoge-
nised in 50-100 pL cold TRIzol reagent (Invitrogen,
Mount Waverly, VIC, Australia) and stored at -80°C until
further processed. S. scabiei var. canis mites were stored
in 100 uL RNA/ater (Applied Biosystems, Scoresby, VIC,
Australia) for transport, then prior to processing the
RNAlater was decanted and mites homogenised in TRI-
zol.

Samples of pooled mites were thawed on ice and re-
homogenised. After adding 400 pl TRIzol and 100 uL
chloroform, the mixture was agitated and incubated at
room temperature for 3 min. Samples were centrifuged at
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10,000 x g for 15 min at 4°C, and the aqueous phase
transferred to a chilled tube. Total RNA was purified and
concentrated using MinElute RNA purification columns
(Qiagen, Doncaster, VIC, Australia). RNA quantity and
quality was measured using the Nanodrop ND-1000
spectrophotometer (Nanodrop Technologies, Wilming-
ton, DE, USA) and Agilent BioAnalyzer (Agilent Technol-
ogies, Forest Hill, VIC, Australia) respectively.

One hundred nanograms of total RNA was reverse
transcribed to cDNA using the Quantiscript RT kit (Qia-
gen). This kit uses a combination of random and oligo dT
primers, and includes a pre-treatment genomic DNA
removal step. Reverse Transcription reactions were incu-
bated at 42°C for 30 min, followed by 95°C for 3 min.
c¢DNA was diluted 1:1 in dH,O before using in PCR.

Levels of transcription of 6 GST genes as well as a P-
glycoprotein and pH-gated chloride channel were analy-
sed. The GSTs had been previously identified from sca-
bies mite expressed sequence tag libraries and belong to
the mu and delta classes [24] (Table 1). To exclude genetic
divergence as a possible confounding factor in a compar-
ative study of transcription, sequence analysis of GST
genomic DNA and cDNA was undertaken from S. scabiei
var. suis, var. canis and var. hominis isolates. Two mites
from each variant host were compared. Each ¢cDNA/
gDNA was amplified using primers listed in Table 1 in a
conventional PCR reaction; purified PCR products were
sequenced using the Big Dye Terminator v3.1 sequencing
kit (Applied Biosystems). The program ClustalW2 [36]
was used to compare nucleotide and derived amino acid
sequences between the different host-derived mite popu-
lations.

Quantitative PCR (qPCR) primers were selected on the
basis of similar T, values and product length (Table 1).
Primer sequences were queried with BLASTn to check
that non-specific binding of human c¢cDNA or that co-
amplification of multiple genes did not occur. This was
particularly important, as certain S. scabiei GST genes
show relative sequence conservation [24]. To determine
PCR efficiency, qPCR was performed on linearised plas-
mid cDNA clones for each of the genes investigated. Plas-
mid templates were quantified and serially diluted, with
at least 5 dilutions used to construct standard curves. To
confirm primer specificity and identity of amplified
cDNAs, representative products from qPCR were sub-
jected to DNA sequence analysis. Data was normalised to
the reference housekeeping gene B-actin. This gene was
selected due to its constitutive expression, lack of impli-
cation in drug resistance and its wide application in simi-
lar studies. To confirm its suitability for normalisation,
levels of B-actin transcription were compared, and no sig-
nificant variation was observed between life stages or
population/drug exposure groups (Figure 2b).
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Table 1: Primers used in Sarcoptes scabiei qPCR and sequencing.
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Gene Accession Forward Primer (5'-3') Reverse Primer (5'-3') qPCR primer Sequencingprimer
number combination combination
(product length) (product length)
GSTmu 1 AF462190 F1: GCTATTGGGATCTTCGTGGA R1:TGCCCAAATACCGGAGAATA  F1/R1 (228 bp) F1/R2 (628 bp)
R2: TGTATTCCATTTCGCCATTG
GSTmu 2 AY825933 F1: GCCCATCAGAATGATGCTTT R1: TTCTCAAGATAATCTGGCTTTA  F1/R1 (344 bp) F1/R2 (519 bp)
R2: GAATCGATTAACATAGTTGCC
GSTmu 3 AY825934 F1: ATCTGGCGTGCAGATAAAC R1: CTCGAGCCTTCTCGAAATTG F1/R1 (241 bp) F2/R2 (929 bp)
F2: ACGCAGTTTTGTTTCGTTGG R2: GTCTGGATTTGTTCCGTGGT
GST delta 1 AY825935 F1: TGGACCAACATTAGCCGATA  R1: TTGCATTTGTTGAGCGAATC F1/R1 (193 bp) F2/R1 (631 bp)
F2: CAGAAAGTGCACCATGTCGT
GST delta 2 AY825936 F1: AGCTCAAACCGATGAGCCTA R1:GCGAATGCAATGATGTTAGC F1/R1 (192 bp) F2/R1 (652 bp)
F2:TGGGTTCTATTCGACCGATAA
GST delta 3 AY825937 F1: ATGGAGGTGGTTTGAACGAG R1: TCGTGATCGACAGCATTCAT F1/R1 (244 bp) F2/R1 (580 bp)

F2: AGAGAGCCCACCATGTCGTA

P-glycoprotein DQ146410 AGGCAACTTCAGCACTCGAT ACATTCTGACCGCCATCAAT 155 bp
SsCl EF611372 TGATTTCTATATGTCGGGCCATTTG CAGGGAACCAAAGATCAACA 329 bp
B-actin EU624346 CAACCATCCTTCTTGGGTATG CCAGCTTCGTCGTATTCTTGT 311 bp

Quantitative PCR was done using the QuantiTect SYBR
green PCR kit (Qiagen). Reactions contained 1 X SYBR
green master mix, 0.4 uM primers, 1 pL cDNA template
and dH,O to a final volume of 10 pL. Reactions were
cycled in the Corbett Rotor Gene 6000 real-time cycler
(Corbett Research, Mortlake, NSW, Australia). Cycling
conditions were: initial denaturation 95°C, 15 min, fol-
lowed by 35 cycles of 94°C, 15 s; 56°C, 30 s; 72°C, 30 s;
with data acquisition at 76°C, 20 s. Each reaction entailed
amplification of the gene target in parallel with B-actin,
allowing for normalisation. Each qPCR included an ali-
quot of a S. scabiei library cDNA [35,37] as a positive con-
trol and dH,O as a no template control. Each sample was
also checked for genomic DNA contamination by testing
a no-RT control using RNA as template. Ratios for rela-
tive transcription normalised to B-actin were calculated
and groups compared using two way analysis of variance
(ANOVA) with multiple comparisons using Bonferroni
post-tests (GraphPad Prism). To estimate fold-change
differences in transcription between populations, the effi-
ciency corrected formula published by Pfaffl [38] was
used.
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