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Abstract

Background: In the Eastern and Upper Midwestern regions of North America, Ixodes scapularis (L.) is the most
abundant tick species encountered by humans and the primary vector of B. burgdorferi, whereas in the
southeastern region Amblyomma americanum (Say) is the most abundant tick species encountered by humans but
cannot transmit B. burgdorferi. Surveys of Borreliae in ticks have been conducted in the southeastern United States
and often these surveys identify B. lonestari as the primary Borrelia species, surveys have not included Arkansas ticks,
canines, or white-tailed deer and B. lonestari is not considered pathogenic. The objective of this study was to
identify Borrelia species within Arkansas by screening ticks (n=2123), canines (n=173), and white-tailed deer
(n=228) to determine the identity and locations of Borreliae endemic to Arkansas using PCR amplification of the
flagellin (flaB) gene.

Methods: Field collected ticks from canines and from hunter-killed white-tailed were identified to species and life
stage. After which, ticks and their hosts were screened for the presence of Borrelia using PCR to amplify the flaB
gene. A subset of the positive samples was confirmed with bidirectional sequencing.

Results: In total 53 (21.2%) white-tailed deer, ten (6%) canines, and 583 (27.5%) Ixodid ticks (252 Ixodes scapularis,
161 A. americanum, 88 Rhipicephalus sanguineus, 50 Amblyomma maculatum, 19 Dermacentor variabilis, and 13
unidentified Amblyomma species) produced a Borrelia flaB amplicon. Of the positive ticks, 324 (22.7%) were
collected from canines (151 A. americanum, 78 R. sanguineus, 43 |. scapularis, 26 A. maculatum, 18 D. variabilis, and 8
Amblyomma species) and 259 (37.2%) were collected from white-tailed deer (209 /. scapularis, 24 A. maculatum, 10
A. americanum, 10 R. sanguineus, 1 D. variabilis, and 5 Amblyomma species). None of the larvae were PCR positive. A
majority of the flaB amplicons were homologous with B. lonestari sequences: 281 of the 296 sequenced ticks, 3
canines, and 27 deer. Only 22 deer, 7 canines, and 15 tick flaB amplicons (12 I. scapularis, 2 A. maculatum, and 1
Amblyomma species) were homologous with B. burgdorferi sequences.

Conclusions: Data from this study identified multiple Borreliae genotypes in Arkansas ticks, canines and deer
including B. burgdorferi and B. lonestari; however, B. lonestari was significantly more prevalent in the tick population
than B. burgdorferi. Results from this study suggest that the majority of tick-borne diseases in Arkansas are not

B. burgdorferi.
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Background

In the Eastern and Upper Midwestern regions of North
America, Ixodes scapularis (L.) is the most abundant tick
species encountered by humans and the primary vector
of Borrelia burgdorferi (causative agent of Lyme disease),
whereas in the southeastern region Amblyomma ameri-
canum (Say) is the most abundant tick species encoun-
tered by humans but it cannot transmit B. burgdorferi
[1,2]. Since its first description in the 1970s, Lyme dis-
ease is the most frequently reported vector-borne disease
in the northern hemisphere [3]. However, in some areas
of the world Lyme borreliosis may be caused by Borrelia
genotypes other than B. burgdorferi and includes a range
of symptoms and pathologies [3,4]. In the southern Uni-
ted States B. lonestari is associated with Southern Tick
Associated Rash Illness (STARI) or Masters disease [5,6].
This bacteria is common throughout the southeast and
has been identified primarily in A. americanum; how-
ever, the etiology of B. lonestari remains undetermined
[7-15] and recent reports indicate B. lonestari may not
be pathogenic [16].

Health professionals often question cases of Lyme dis-
ease from the southeastern United States because symp-
toms may be confused with other tick-borne illnesses
and not all patients produce the erythema migrans or
bull's eye rash used for diagnosis [15,17]. Additionally,
these cases are rarely fatal, but can cause cardiac, neuro-
logical and joint problems [17]. However, the potential
vectors (L. scapularis), pathogens (B. burgdorferi) and
hosts (Peromyscus species) are all present in the south
[17]. In Georgia, B. burgdorferi was isolated and charac-
terized from field collected I scapularis and cotton mice
(Peromyscus gossypinus); and these field isolates were
transmitted via L scapularis to hamsters (Cricetidae) and
mice (Muridae) [1]. Field collected I scapularis from
Alabama could acquire, maintain, and transmit B. burg-
dorferi [18] and field collected ticks and rodents from
the southern U.S. were positive for B. burgdorferi [1,19-
22]. Previously in Arkansas, ticks and reservoir species
were screened for Borrelia in nine northeast Arkansas
counties using indirect fluorescence antibody (IFA), both
L scapularis and A. americanum were identified as po-
tential vectors, and deer mice (Peromyscus spp.) and
marsh rice rats (Oryzomys palustris Harlan) as potential
reservoir hosts [23]. Although the environment is suit-
able for Borrelia transmission [17], many researchers
and physicians do not believe the southern U.S. is at risk
for Borrelia related diseases [2,4,15]. The exact cause for
the reduced incidence for Lyme disease in the southern
United States is unknown, but hypotheses include the
abundance of other tick species in the area, the habitat,
host dynamics, and tick genetics [2,24].

Previous research indicates that B. burgdorferi IFA posi-
tive canines geographically associated with L scapularis
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infested deer, increase the likelihood of B. burgdorferi
transmission to humans because the nymphs that feed on
the deer may also feed on canines and their owners
[25,26]. Recent Arkansas tick studies identified five tick
species infesting canines and white-tailed deer with A.
americanum infesting canines and I scapularis primarily
infesting white-tailed deer [27]. A population genetic study
of I scapularis based on the 16 S mtDNA identified both
the American and Southern lineages (formerly known as I
scapularis and I dammini) on canines and white-tailed
deer [28], which is a concern because the American I sca-
pularis lineage is more likely than the Southern 1. scapu-
laris lineage to transmit Lyme disease [29]. The objective
of this study was to identify Borrelia species within Arkan-
sas ticks, canines, and white-tailed deer to determine the
identity and locations of Borreliae endemic to Arkansas
using PCR amplification of the flagellin (flaB) gene. The
CDC defines an endemic county as “endemic for Lyme
disease if there are at least two confirmed human cases
that were acquired in that county or there are established
populations of L scapularis infected with B. burgdorferi”
[30].

Methods

Tick, canine, and white-tailed deer collections

This project used the collections reported in Trout and
Steelman [27]. Briefly, ticks were collected from canines
(March 2006 to November 2007) and white-tailed deer
(Oct. 2007 — Jan. 2008) and stored in 80% ethanol until
visual identification of species and life stage [31-33].
Additionally, a small volume of canine or white-tailed
deer blood (0.5-1 cc) was obtained from each host and
stored on a FTA card (FTA © Indicating Micro Card,
Whatman International Ltd, Maidstone, England) in an
envelope labeled with collection information. FTA cards
were stored at room temperature until DNA extraction.
All FTA cards, all ticks from canines, and at least one
specimen of each tick species from each white-tailed
deer were subjected to further analyses.

Tick DNA extraction and detection for Borrelia species

To minimize DNA contamination, DNA extractions and
PCR were conducted in different laboratories and
reagents and equipment were dedicated to each proced-
ure. Tick identification and extractions were conducted
in the Veterinary Entomology Laboratory (VELUA) and
PCR reactions were conducted in the Insect Genetics
Laboratory (IGLUA) at the University of Arkansas. Dur-
ing each PCR, at least one blank reagent to detect con-
tamination (negative control) and an appropriate
positive control ensured PCR reagents and conditions
were used. PCR and reaction product analyses were per-
formed on the ticks according to the protocols of Trout
et al [28]. After tick identification to species, each



Fryxell et al. Parasites & Vectors 2012, 5:139
http://www.parasitesandvectors.com/content/5/1/139

specimen was dried on a paper towel to allow the re-
sidual ethanol to evaporate and was then cut longitudin-
ally and half of the tick was subjected to the Qiagen
Dneasy Insect Protocol (Qiagen Inc., Valencia, CA).
Extracted DNA from half of the tick was stored at —20°C
until further analyses. The remaining tick half was stored
at —-20°C for additional analysis or morphological con-
firmation as required. To evaluate the tick DNA, each
sample was first assessed by PCR with Ixodidae specific
mitochondrial primers (16 S +2/16 S-1) using previously
described cycling parameters [34]. If the mitochondrial
marker amplified, then the tick was subjected to a genus
specific flaB PCR to identify the presence of Borrelia
DNA [6,35].

Host DNA extraction and detection for Borrelia species
Each canine and white-tailed deer FTA card was
screened in duplicate to determine the presence of Bor-
relia. DNA. The FTA card was cut into halves, where
half of the card remained at VELUA for an initial
screening and the other half was sent to the University
of North Texas Health Science Center in Ft. Worth
(UNTHSC) for verification screening. Each FTA card
half was removed from its envelope and a 1.2 mm disc
was punched from the card using a sterilized Harris
Micro Punch and the paper disc was washed for DNA
extraction according to the Whatman protocol (Harris
MicroPunch®, Whatman International Ltd, Maidstone,
England). After the punch had dried at room temperature,
it was subjected to PCR analyses. To ensure DNA detec-
tion from FTA punches were not inhibited in any manner,
FTA punches were assessed for PCR amplification of host
cytochrome b genes [36]. As with the ticks, canines and
white-tailed deer specimens were screened for Borrelia
species by PCR in a genus specific manner [6,35].

Statistical analyses

Summary statistics and relative abundance of each tick
species were calculated to determine overall trends
within the population using JMP (a =0.05) [37]. Fisher’s
exact tests and two-tailed T-tests were performed in
Excel 2007 to determine if the species of tick or tick host
had any effect on the probability that the tick would be
PCR positive for Borrelia [38]. Since spatial and temporal
sampling of ticks and hosts were different (e.g., ticks from
white-tailed deer were collected only in the fall) and this
sampling structure may affect findings, comparisons
across and among cohorts were not conducted.

Sequence identification of Borrelia species

PCR products, from flaB positive samples, were sent to
UNTHSC for DNA sequence analysis. The PCR reaction
products were hydrolyzed with ExoSAP-IT (USB Cor-
poration, Cleveland, OH) and sequence determination
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was performed using a BigDYE Terminator v.3.1 Cycle
Sequencing kit (Applied Biosystems, Inc., Foster City,
CA) followed by capillary electrophoresis on a ABI
PRISM 310 Genetic Analyzer (Applied Biosystems Inc.,
Foster City, CA) using the method of Williamson et al.
[39]. Sequences were edited, aligned, and analyzed with
Sequencher 4.7 (Gene Codes, Corporation, Ann Arbor
MI) and compared with sequences in GenBank (National
Center for Biotechnology Information, Bethesda, MD).

Spatial identification of Borrelia species

Canine and deer collection data along with their corre-
sponding tick collections and Borrelia DNA presence/
absence data were georeferenced into ArcMap 9.0
(ESRI Redlands, CA USA) and projected to the NAD
1983 UTM Zone 15 N of the GCS North American
1983 Geographic coordinate system. Boolean opera-
tions and symbology were used to identify locations
with PCR positive ticks and hosts. The resulting Bool-
ean map was overlaid on an existing county map of
Arkansas [40].

Results

Identification of Borrelia DNA in the tick population

A total of 2123 ticks were included in this study and
represented five tick species; I scapularis (33%), A.
americanum (31%), R. sanguineus (16 %), D. variabilis
(9%), and A. maculatum (8%). An additional 3% were
Amblyomma ticks that could not be identified to species
because the tick specimens were damaged. The tick
population was comprised of each life stage, but most
were adults (83%) and more were collected from domes-
ticated canines (67%) than from hunter-killed white-
tailed deer (33%). Overall, 583 of the 2123 (27.5%)
ticks tested by PCR produced an amplicon for the
Borrelia flaB gene (Table 1). The prevalence of flaB
amplicons for each tick species were 36.4 % (252/692)
L scapularis, 27.9% (50/179) A. maculatum, 25.8% (88/
341) R. sanguineus, 24.5% (161/657) A. americanum,
and 10.3% (19/184) D. variabilis. Fifty percent of the
583 flaB amplicons from PCR positive ticks were
sequenced, representing approximately one fourth of the
specimens from each tick species (Table 2). DNA
sequences produced from the tick flaB amplicons repre-
sented multiple genotypes of Borrelia. These sequences
align with B. burgdorferi strain B31 (AB035617), OK-
strain HS-2 (FJ871032), Borrelia lonestari Clone Scc26
(DQ100451), isolate MO2002-V1 (AY850063), isolate
TX076 (EF689742), strain NC/MD (AF273670), and
clone AA115 (AY654945) (Figure 1). The majority (136/
296) of flaB sequences matched B. lonestari strain NC/
MD (AF273670) which was amplified from all five tick
species. Locations of all Borrelia isolated from ixodid
ticks collected from Arkansas canines and white-tailed
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Table 1 Almost a third of each Ixodid ticks® species collected from Arkansas canines and white-tailed deer generated
amplicons by PCR for the Borrelia flaB gene indicating Borreliae are endemic to Arkansas

Tick species No. PCR positive ticks / No. Screened for flaB (%)

Larvae Nymphs Males Females Adults ? Total
Ticks Collected from Canines
Amblyomma spp. 0/18(0 %) 4/15(26.7 %) 2/ 11 (182 %) 0/7(0 %) 2/11 (182 %) 8/ 62 (129 %)
Amblyomma americanum 0/0(0 %) 37 /162 (22.8 %) 58 /237 (24.5 %) 56 / 233 (24 %) 0/ 2(0 %) 151/ 634 (23.8 %)
Amblyomma maculatum 0/2(0%) 279222 %) 22 /95 (232 %) 2/9(222%) 0/0(0 %) 26 /115 (22.6 %)
Dermacentor variabilis 0/1(0%) 0/41 (0 %) 7752 (135 %) 11/ 84 (13.1 %) 0/0(0 %) 18 /178 (10.1 %)
Ixodes scapularis 0/0(0 %) 3/7 (429 %) 21 /42 (50 %) 18 /69 (26.1 %) 1/3(333%) 43 /121 (355 %)
Rhipicephalus sanguineus 0/0(0 %) 28 /97 (289 %) 19/ 94 (20.2 %) 22 /105 (21 %) 9/ 21 (429 %) 78 /317 (24.6 %)
Total 0/21(0 %) 74 /331 (224 %) 129/ 531 (243 %) 109 / 507 (21.5 %) 12/ 37 (324 %) 324 /1427 (22.7 %)
Ticks Collected from White-tailed Deer
Amblyomma spp. 070 (0 %) 4/7(57.1 %) 0/0(0 %) 1(100 %) 0/0(0 %) 5/8(62.5 %)
Amblyomma americanum 0/0(0 %) 0/2(0%) 2/7 (286 %) 4 (57.1 %) 0/0(0 %) 10/ 23 (43.5 %)
Amblyomma maculatum 0/0(0 %) 0/1(0 %) 9/ 35 (25.7 %) 15/ 28 (53.6 %) 0/0(0 %) 24 /64 (37.5 %)
Dermacentor variabilis 0/0(0 %) 0/2(0%) 0/2(0 %) 172 (50 %) 0/0(0 %) 1/6(16.7 %)
Ixodes scapularis 0/1(0 %) 4/ 6 (66.7 %) 86/231(372%) 119/333 (357 %) 0/0(0 %) 209 / 571 (36.6 %)
Rhipicephalus sanguineus 0/0(0 %) 0/0 (0 %) 5/ 10 (50 %) 4 (35.7 %) 0/0 (0 %) 10/ 24 (41.7 %)
Total 0/1(0 %) 8/18 (444 %) 102/ 285 (358 %) 149/ 392 (38 %) 0/0(0 %) 259 /696 (37.2 %)
Total Ticks Collected from Canines and White-tailed Deer
Amblyomma spp. 0/18 (0 %) 8/ 22 (364 %) 2/11(182 %) 178125 %) 2/ 11 (182 %) 13 /70 (186 %)
Amblyomma americanum 0/0(0%)  37/164 (226 %) 60 / 244 (24.6 %) 64 / 247 (25.9 %) 0/2(0 %) 161/ 657 (24.5 %)
Amblyomma maculatum 0/2(0 %) 2/10 (20 %) 317130 (23.8 %) 17/ 37 (459 %) 0/0(0 %) 507179 (279 %)
Dermacentor variabilis 0/1(0 %) 0/ 43 (0 %) 7 /54 (13 %) 12 /86 (14 %) 0/0 (0 %) 19 /184 (10.3 %)
Ixodes scapularis 0/1(0 %) 7 /13 (538 %) 107 / 273 (39.2 %) 137 /402 (34.1 %) 1/3(333%) 252 /692 (364 %)
Rhipicephalus sanguineus 0/0(0 %) 28/ 97 (289 %) 24 /104 (23.1 %) 27 /119 (22.7 %) 9/ 21 (429 %) 88/ 341 (25.8 %)
Total 0/22(0%) 82 /349 (23.5 %) 231/ 816 (28.3 %) 258 /899 (28.7 %) 12/ 37 (324 %) 583 /2123 (27.5 %)

@ Damaged adult specimens could not be properly sexed.

deer during 2007 were mapped because B. burgdorferi
ticks were few (Figure 2).

Identification of Borrelia DNA in canines and their ticks

Of the 173 canines and their 1427 ticks subjected to
the flaB PCR, 5.8% (n=10) and 22.7% (n=324) were
positive respectively. All ten positive canine flaB ampli-
cons were sequenced and six samples were homolo-
gous to B. burgdorferi IP2 (AY345236), two were
homolgous to B. lonestari NC/MD (AF273670), one
was homologous to B. lonestari fragments M0O2002-V1
(AY850063), and one was homologous to strain B.
burgdorferi OK HS-2 (FJ871032) (Table 2). Contin-
gency tests revealed that the number of flaB positive
and negative ticks were significantly different based on
tick species (x?=31.9; df=5; P<0.0001) such that I
scapularis (35.5%) had the highest flaB positive rate.
The most frequently encountered tick on canines was

A. americanum and 23.8% (151/634) were flaB PCR
positive. Of the 173 canines, 87 canines did not have a
positive tick, 27 canines had one positive tick, and 59
canines had more than one positive tick. Of the 59
canines with more than one positive tick, 18 canines
had multiple specimens of the same species that were
positive, 13 canines had specimens of two separate tick
species positive, and two canines had specimens of
three separate tick species PCR positive.

In canine collected ticks, the B. lonestari strain NC/
MD (AF273670) was also the most common amplicon
and amplified in nymphs, males, and females. Positive
ticks were identified primarily in northwest Arkansas
where many of the canines were collected (Figure 2A).
Ticks from B. burgdorferi positive canines did not gener-
ate B. burgdorferi sequences. Instead these ticks were ei-
ther negative for flaB or produced flaB positive amplicons
that were homologous with B. lonestari.
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Table 2 Multiple Borreliae genotypes® were identified in Arkansas ticks®, canines and white-tailed deer including B.
burgdorferi and B. lonestari; however, B. lonestari was significantly more prevalent than B. burgdorferi in the tick

population

Host pecies Seq. / No. hosts No. Hosts
PCR Pos. / flaB positive flaB positive
screened with amplicons with amplicons

homologous to
B. burgdorferi

homologous to
B. lonestari

sequences sequences
B31 OKHS-2 IP2 Scc26 MO02002-V1 TX076 NC/MD AA115
Tick Collections from Canines
Amblyomma species 6/8/62 0 0 0 0 0 TN, 1M TN, 1M, 2A 0
Amblyomma americanum ~ 105/151/634 0 0 0 2N, 4 M, 3N,3M, 3N,2M,5F 15N,31 M, 1N
10F 9F 13F
Amblyomma maculatum 24/26/115 0 0 0 TN, 1M 0 8M, 1F 12M1F 0
Dermacentor variabilis 17/18/178 0 0 0 2M 2F TM,3F 3M1F 3F 0
Ixodes scapularis 28/43/121 0 0 0 1F TM, TF 1M, 4F 2N, 11T M, 6F 0
1A
Rhipicephalus sanguineus 54/78/317 0 0 0 6N,8M, 3N, 2F M 8N,5M, 3F, 2N, 1TF
6 F 2A 5A
Total Ticks 234/324/1427 0 0 0 9N, 15M, 6N,5M, 4N, 16 M, 26 N, 60 M, 3N, 1F
From Canines 19 F, 2A 15F 11F 26 F,
8A
Tick Collections from White-tailed Deer
Amblyomma species 1/5/8 TN 0 0 0 0 0 0 0
Amblyomma americanum ~ 2/10/23 0 0 0 0 1F 0 1F 0
Amblyomma maculatum 15/24/64 M 1F 0 0 2M,5F 1F 3M,2F 0
Dermacentor variabilis 1/1/6 0 0 0 0 1F 0 0 0
Ixodes scapularis 39/209/571 ™M 4M,7F 0 0 6M, 10 F 2M 1 F 4M,4F 0
Rhipicephalus 4/10/24 0 0 0 0 1F 1F TM1TF 0
sanguineus
Total Ticks 62/259/696 TN,2M  4M,8F 0 0 8M, 18 F 2M,3F 8M,8F 0
From Deer
Ticks, Canines,
and White-tailed
Deer
Canine 10/10/173 0 1 6 0 1 0 2 0
Deer 49/49/250 0 21 1 0 3 0 24 0
Total Ticks 296/583/2123  1N,2M 4 M,8F 0 9N, 15M, 6N,13 M, 4N, 20 M, 26 N, 68 M, 3N, 1F
19F, 2A 33 F 14 F 34 F,
8A
Total 355/642/2546 3 33 7 45 56 38 162 4

@ Genbank identities for Borrelia strains include strain B31 (AB035617), strain OK HS-2 (FJ871032), strain IP2 (AY345236), clone Scc26 (DW100451), isolate MO2001-
V1 (AY850063), isolate TX076 (EF689742), strain NC/MD (AF273670), and clone AA115 (AY654945).
 Number of larva (L), nymph (N), adult male (M), adult female (F), and damage adult specimens could not be properly sexed (A).

Identification of Borrelia DNA in white-tailed deer and
their ticks

Of the 250 white-tailed deer and the 696 ticks subjected to
the flaB PCR, 19.6% (n=49) and 37.2% (n=259) were
positive for flaB. Of the 49 white-tailed deer flaB ampli-
cons, 24 amplicons were homologous to B. lonestari NC/
MD (AF273670), 21 amplicons were homologous to B.
burgdorferi OK HS-2 (FJ871032), 3 amplicons were
homolgous to B. lonestari MO2002-V1 (AY850063), and

one amplicon was homolgous to B. burgdorferi 1P2
(AY345236) (Table 2). Contingency tests revealed that the
number of flaB positive and negative ticks were not sig-
nificantly different based on tick species (X* = 3.96; df = 5;
P =0.556). flaB prevalence rates in ticks from white-tailed
deer was 62.5% (5/8) in unknown Amblyomma, 41.7%
(10/24) in R. sanguineus, 43.5% (10/23) in A. americanum,
37.5% (24/64) in A. maculatum, 36.6 % (209/571) in L sca-
pularis, and 16.7% (1/6) in D. variabilis. A majority of
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Figure 1 Polar tree layout of the phylogenetic relationship of the Borrelia flagellin B (flaB) gene fragment (330 bp) amplified from ticks
collected from Arkansas canines and white-tailed deer, and host blood samples®. Those specimens aligning with B. burgdorferi are
highlighted in grayb, ? The different tick species are abbreviated A. americanum (Aa), A. maculatum (Am), D. variabilis (Dv), I. scapularis (Is), and R.
sangineus (Rs). Ticks from canines (c), ticks from deer (d), and blood samples (Canine or Deer) are also represented. The different Borrelia species

0.00

white-tailed deer did not have a positive tick (n =91), but
70 white-tailed deer had more than one PCR positive tick
of which 24 deer had more than one flaB positive tick spe-
cies and one deer had three different tick species flaB posi-
tive. Fragments amplified from all five deer-collected tick
species were most similar to the B. lonestari sequence

AY850063. Positive ticks were identified throughout Ar-
kansas (Figure 2B).

Discussion

Borreliae were identified in field collected ticks, canines,
and white-tailed deer throughout the state suggesting
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the bacteria (as a family) are endemic in Arkansas. Of
interest was the diversity of Borrelia genotypes identified
from the variety of different field collections (Figure 1,
Table 2). Five different B. lonestari genotypes and three
different B. burgdorferi genotypes were identified in Ar-
kansas. None of the genotypes appeared to be more
common in one tick species or host; however, B. burg-
dorferi genotypes were only identified in ticks collected
from deer - the significance of this finding remains to be
determined. Specifically, B. burgdorferi genotypes were
amplified only from twelve I scapularis, two A. macula-
tum, and an Amblyomma tick that was too damaged for
the species to be determined. Only one I scapularis
nymph was homologous with B. burgdorferi, conse-
quently there is insufficient data to consider the area en-
demic for Lyme disease. This damaged Amblyomma
nymph was collected in Washington County of north-
west Arkansas. B. burgdorferi transmission by A. macu-
latum needs additional attention and previous studies
with A. americanum have indicated that A. americanum
cannot transmit B. burgdorferi [1,2]. Due to the low
prevalence of B. burgdorferi in nymphal ticks, Arkansas
should not be considered a Lyme disease endemic area
[30]. B. lonestari NC/MD was the most common se-
quence amplified (45.6%) and it is homologous to the se-
quence previously isolated from a patient’s skin with
Lyme-like symptoms [41] suggesting this genotype is the
most common Borrelia in Arkansas. In 2007, four Ar-
kansas counties reported human cases of Lyme disease

(Benton, Carroll, Washington, Crawford, and Saline Co.).
Ticks collected from these counties in this study primarily
produced amplicons homologous to B. lonestari, and a
few ticks produced amplicons homologous to B. burgdor-
feri. If these human cases of Lyme disease are ‘real’ then
they are most likely either rare, acquired from a different
location, or are false positives. Collections of field col-
lected ticks near the site of transmission (e.g., where the
tick attached to the human) would answer these questions.
Data presented here corroborate with Texas collected ticks
identified with B. lonestari DNA in A. americanum, A.
cajennense, A. maculatum, D. variabilis, I. scapularis, and
R. sanguineus and relatively few samples of B. burgdorferi
DNA (AE000783) [39] and with B. lonestari in Arkansas
white-tailed deer serum [26].

We documented Borrelia in five tick species infesting
domesticated canines and white-tailed deer; conse-
quently, Borreliae are likely endemic in Arkansas and in
the southeastern U.S. by a more diverse tick repertoire
than previously thought. Identifying Borrelia in ticks
indicates that field collected ticks have fed on infected
animals at some point in their life cycle and identifying
Borrelia in canines and white-tailed deer indicates that
infected ticks have transmitted Borrelia to these hosts.
We observed a trend for ticks collected from canines to
be positive with B. lonestari whereas ticks from deer
could be positive with either B. lonestari or B. burgdor-
feri. This may be related to the species of tick collected
on each host and the sampling periods, as canines were
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primarily infested with A. americanum and collected
year round whereas white-tailed deer were primarily
infested with I scapularis and collected in the fall. Also,
ticks feeding on white-tailed deer may actually be feed-
ing on hosts that are incompetent reservoirs of Lyme
disease [42]. Additional evidence is required to assert
the potential for each role in transmission. Past research
has indicated that several tick species are not active vec-
tors of B. burgdorferi (e.g., transmission through salivary
glands) [18,20], but additional research should isolate
Borrelias from the study area and confirm these tick
species are not passive vectors (e.g., transmission stud-
ies in a suitable animal model). Additionally, often ticks
are misidentified and physicians do not think “beyond
Lyme disease” to diagnose the patient properly [2].
Other tick-borne diseases transmitted in Arkansas in-
clude rickettsia spotted fevers [32,43] and Ehrlichiosis
[13,39], perhaps the cases of Lyme disease reported in
2007 were actually misdiagnosed.

Monitoring tick populations on canines could provide
reliable early detection of tick-borne disease outbreaks
[44]. Monitoring field populations of ticks for B. burgdorferi
and other tick-borne diseases is essential to minimize trans-
mission and maximize management. Recent landscape
changes in Arkansas are expanding urban environments
into deer habitats [45,46]. Previously, this pattern of urban
developmentinto previous deer habitats in Lyme Connecti-
cut led to the increased diagnoses of Lyme disease in the
northeastern United States [47]; similar reports have indi-
cated B. burgdorferi emerged independently in the Midwest
and eastern United States [48-50].

Additional research into the involvement of Borrelia
spp. in the southeastern zoonotic cycle (e.g., abundance
of tick/host infection, reservoir maintenance, vector
competency) should be conducted in order to determine
the life cycle and etiology of the various Borreliae
detected in this survey and what roles, if any, they may
play relative to subsequent borreliosis observed in
humans. Future work should also evaluate the inter-
action of A. americanum carrying B. lonestari, A. macu-
latum carrying B. burgdorferi, and I scapularis carrying
B. burgdorferi and what effect, if any, this might have on
the pathogenicity of the Borreliae, as both tick species
have been identified simultaneously infesting the same
host [27,51]. It is possible that there are multiple interac-
tions occurring between tick species (e.g., species com-
petition for host), the variety of hosts (e.g., Ixodid ticks
feed on three different hosts), and the different Borreliae
(infesting both the tick and the host), which warrants
additional research.

Conclusions
Data from this study indicate multiple Borrelia geno-
types are endemic to Arkansas because flaB was
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amplified from ticks, canines, and white-tailed deer, but
the exact role each genotype plays in transmission and
epidemiology remains undetermined. There were signifi-
cantly more amplicons of B. lonestari than B. burgdorferi
present suggesting that the majority of tick-borne dis-
eases in Arkansas are not B. burgdorferi.
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