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Abstract

Background: Leishmania (V.) braziliensis is a causative agent of cutaneous leishmaniasis in Brazil. During the parasite
life cycle, the promastigotes adhere to the gut of sandflies, to avoid being eliminated with the dejection. The Lulo
cell line, derived from Lutzomyia longipalpis (Diptera: Psychodidae), is a suitable in vitro study model to understand
the features of parasite adhesion. Here, we analyze the role of glycosaminoglycans (GAGs) from Lulo cells and
proteins from the parasites in this event.

Methods: Flagellar (Ff) and membrane (Mf) fractions from promastigotes were obtained by differential
centrifugation and the purity of fractions confirmed by western blot assays, using specific antibodies for cellular
compartments. Heparin-binding proteins (HBP) were isolated from both fractions using a HiTrap-Heparin column. In
addition, binding of promastigotes to Lulo cells or to a heparin-coated surface was assessed by inhibition assays or
surface plasmon resonance (SPR) analysis.

Results: The success of promastigotes subcellular fractionation led to the obtainment of Ff and Mf proteins, both of
which presented two main protein bands (65.0 and 55.0kDa) with affinity to heparin. The contribution of HBPs in
the adherence of promastigotes to Lulo cells was assessed through competition assays, using HS or the purified
HBPs fractions. All tested samples presented a measurable inhibition rate when compared to control adhesion rate
(17 ± 2.0% of culture cells with adhered parasites): 30% (for HS 20μg/ml) and 16% (for HS 10μg/ml); HBP Mf (35.2%
for 10μg/ml and 25.4% for 20μg/ml) and HBP Ff (10.0% for 10μg/ml and 31.4% for 20μg/ml). Additionally, to verify
the presence of sulfated GAGs in Lulo cells surface and intracellular compartment, metabolic labeling with
radioactive sulfate was performed, indicating the presence of an HS and chondroitin sulfate in both cell sections.
The SPR analysis performed further confirmed the presence of GAGs ligands on L. (V.) braziliensis promastigote
surfaces.

Conclusions: The data presented here point to evidences that HBPs present on the surface of L. (V.) braziliensis
promastigotes participate in adhesion of these parasites to Lulo cells through HS participation.
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Background
The leishmaniases are vector-borne anthropozoonotic dis-
eases, which are caused by parasites of the genus Leish-
mania. These parasites are inoculated into their mammal
hosts during the blood meal of the phlebotomine sand-
flies, which are widely spread in tropical and subtropical
regions (http://www.who.int/leishmaniasis/en/). When
Leishmania parasites infect human hosts, they can induce
an array of clinical manifestations, varying from tegumen-
tary (mucocutaneous, cutaneous and diffuse) to visceral
infections. In Brazil, Leishmania (Viannia) braziliensis is
the main species related to the cutaneous and mucocuta-
neous forms of the disease [1], and its primary vectors are
Lutzomyia (Nyssomyia) intermedia and Lutzomyia (Nysso-
myia) whitmani [2]. The difficulty of controlling the dis-
ease in endemic areas is a consequence of the absence of
effective vaccines or drug therapies against the different
species of Leishmania, a consequence of the complexity of
host-pathogen interactions [3].
During their life cycle, these parasites undergo distinct

morphological stages, as promastigotes in the sandfly
host and amastigotes in the mammalian host, each one
adapted to its microenvironment [4]. Such adaptations
are pivotal for a successful completion of the parasite life
cycle. For example, the development of promastigotes,
coming from a contaminated blood meal, to the procy-
clical form in the peritrophic matrix formed in the gut
of the sandfly host after feeding [5], may be related to
parasites escaping from this matrix and adhering to the
microvilli of epithelial cells in the stomach [6]. This is an
example of an essential step in maintainance of the cycle
and may be a factor in the selection of infective and
non-infective strains [5]. The promastigotes living within
the sandfly gut, present a flagellum that is responsible
for their motility and, also, plays a role in the attachment
to sandfly gut [7]. Although several organic components
of Leishmania spp have been the subject of many studies
for understanding the biological cycle of these parasites
in the mammalian, studies about the role of such com-
ponents in the interaction with the insect vector are less
abundant. Parasite surface components that have been
shown to act in parasite-host interaction include glyco-
conjugates from promatigotes, as the glycosylated major
surface protein of 63 kDa (gp63) [8], lipophosphoglycan
(LPG) or proteophosphoglycan (PPG) [9]. It has been
described that the down-regulation of gp63 in a Leish-
mania (Leishmania) amazonensis clone adversely affects
its development in the neotropical sand fly, Lutzomyia
longipalpis. A possible role for LPG in the parasite inter-
action with the intestinal epithelium of sandfly has been
proposed [10-12], where this molecule would prevent
the promastigotes to be excreted with the dejection,
while PPG in filamentous form (fPPG) seems to play a
mechanical role, blocking the foregut and, thus, inducing
regurgitation, which is advantageous for parasite infec-
tion of mammal host [13].
The state of the art on Leishmania spp life cycle stud-

ies includes a recent discussion on the use of insect cell
lines to understand the fine interactions that occur be-
tween these parasites and their invertebrate hosts. For
example, Lulo cells, a cell lineage derived from Lutzo-
myia longipalpis, are a potential in vitro model to under-
stand the features of the infection-related adhesion
phenomena [14]. These models are suitable for analyzing
the effects of interactions between surface molecules
from both parasite (e.g., gp63, LPG, PPG etc.) and host
(e.g., proteoglycans) in the infection evolution.
Proteoglycans are characterized by a core protein that

is covalently linked to glycosaminoglycan (GAG) side
chains and are components of the extracellular matrix of
insect [15,16] and mammalian tissues [17]. The GAGs
structure shows linear polysaccharides constituted by
repeating units of disaccharides containing uronic acid
and a hexosamine; these disaccharides may vary in the
type of hexosamine, hexose or hexuronic acid unit. The
sulfated GAGs are classified as heparin [2-O-sulfo-β-D-
glucuronic acid (GlcUA-2 S) or 2-O-sulfo-α-L-iduronic
acid (IdoUA-2 S) associated to N-acetylglucosamine
(GlcNAc) or N-sulfoglucosamine (GlcNS)], heparan sul-
fate [GlcUA, IdoUA or IdoUA-2 S associated to GlcNAc
or GlcNS], chondroitin sulfate [GlcUA associated to N-
acetylgalactosamine (GalNAc)], dermatan sulfate [GlcUA
or IdoUA associated to GalNAc] and keratan sulfate
[galactose (Gal) associated to GlcNAc], [18]. GAGs, as
heparan sulfate and dermatan sulfate, present in host tis-
sue have been reported to influence the Leishmania spp
life cycle as well as of other parasites [19].
Although heparin is not found on the cell surface of the

host, this GAG has been commonly used as a tool for
studies on pathogen-host cell interactions. It has been pre-
viously shown that amastigotes of L. (L.) amazonensis and
Leishmania (Leishmania) major have a greater ability to
bind to heparin than promastigotes of these same species
[20]. In addition, GAGs, including heparin, can induce the
proliferation of L. (L.) major in the gut of the insect vector,
increasing the parasite load of experimentally infected
insects [21].
There is evidence that heparin-binding proteins (HBPs)

present on the surface of Leishmania spp may play im-
portant roles in the parasites life cycle, defining the success
of parasite attachment to and invasion of tissues of the
mammalian and invertebrate hosts. In the parasite species
in which these proteins have been identified, it was
observed that HBPs present activity as adhesion proteins,
and can promote the internalization and signaling in the
host cells [22]. Experiments performed with promastigotes
of Leishmania (Leishmania) donovani showed that about
860,000 units of these proteins are present on the surface

http://www.who.int/leishmaniasis/en/


de Castro Côrtes et al. Parasites & Vectors 2012, 5:142 Page 3 of 10
http://www.parasitesandvectors.com/content/5/1/142
of the parasite and that they are able to induce inhibition
of protein kinase C activity in the host, through the bind-
ing to heparin [23,24]. Also, the expression of HBPs in L.
(L.) donovani is related to the infective forms of this para-
site: HBPs are predominant in stationary-phase promasti-
gotes and successive culture passages of these parasites
lead to a loss of the ability to bind to the heparin [25].
Previous reports from our group indicate that two

HBPs (65.0 and 54.5 kDa) from L. (V.) braziliensis pro-
mastigotes recognize several molecules in the gut of Lu.
intermedia and Lu. whitmani [26]. Both proteins are
localized in the flagellar and membrane domain of the
promastigotes but only the 65.0 kDa HBP presents
metallo proteinase-like activity. Surface plasmon reson-
ance analysis also demonstrated high-affinity binding be-
tween heparin and HBPs from the flagellar domain,
forming a stable complex [27].
Focusing on fulfilling the lack of information about

the interaction of Leishmania spp promastigotes and in-
sect cell lines, as Lulo cells, we present the first evidence
that HBPs from L. (V.) braziliensis promastigotes can be
involved in parasite adhesion to these cells by a specific
receptor.

Methods
Chemicals and reagents for culture
Schneider´s medium, Dulbecco's Modified Eagle Media
(DMEM), detergents [Tween 20, and 3-[(3-cholamidopro-
pyl)-dimethylammonium]- 1-propanesulfonate (CHAPS)],
heparin sodium salt, biotinylated heparin, bovine serum
albumin (BSA), 1,3-diaminepropane acetate, penicillin,
streptomycin, Horseradish peroxidase (HRP) - conjugated
goat anti-mouse IgG (anti-rabbit and anti-mouse HRP)
were acquired from Sigma-Aldrich Chemical Co. (St.
Louis, MO, USA). Heparin-Sepharose column (HiTrap-
Heparin; 1.5 × 2.5 cm) was acquired from GE Healthcare.
Fetal calf serum (FCS) was acquired from Cultilab S/A
(Brazil). Electrophoresis reagents were acquired from
BioRad Laboratories Inc. (US). Pre-StainedTM Plus Protein
Ladder was acquired from Fermentas Life Sciences (US).
Amicon Centriprep YM-10 filter devices were acquired
from Millipore (Billerica Inc, MA, USA). Anti-Na+/K+
ATPase rabbit antibody was acquired from Abcam (Cam-
bridge, MA, USA). Anti-glyceraldehyde-3-phosphate de-
hydrogenase (anti-GAPDH) mouse monoclonal antibody
was acquired from Imgenex (San Diego, CA, USA).
Chemiluminescence luminol reagent-ECL kit was
acquired from Santa Cruz Biotechnology, Inc. (Santa
Cruz, CA, USA). 35S-Na2SO4 was purchased from IPEN
(São Paulo, SP, Brazil). Chondroitin 4-sulfate from whale
cartilage was purchased from Seikagaku America, USA.
Heparan sulfate from bovine pancreas was obtained from
Opocrin Research Laboratories, Modena, Italy. Pronase
and cetyltrimethylammonium bromide was from Merck,
Darmstadt, Germany. All other reagents were of analytical
grade or better.

Parasites
Infective promastigotes of L. (V.) braziliensis (MCAN/
BR/1998/619) were maintained at 28°C as a stock cul-
ture in Novy, MacNeal and Nicolle medium and subcul-
tured every 4 days. Promastigote cultures were grown in
Schneider´s medium supplemented with 10% heat-
inactivated FCS until a density of 1 × 108 cells/mL.

Subcellular fractionation
Subcellular fractions enriched for flagella or surface
membranes were obtained by centrifuging fractionation
as previously described [27]. Promastigotes were washed
twice by centrifugation (3,800 × g, 10 min, 4°C) in
phosphate-buffered saline (pH 7.2), PBS, and then again
washed twice in 10 mM Tris–HCl (pH 7.2) buffer con-
taining 1 M NaCl, 0.2 M K2HPO4 and 0.5 M MgCl2.
The cell pellet was then resuspended in 10 mM Tris–
HCl (pH 7.5) containing 0.05 M sucrose (10 mL/g of
cells) and disrupted in 1% CHAPS with 40 to 80 strokes
in a Dounce-type homogenizer, following addition of su-
crose to a final concentration of 0.25 M. Cells lysates
were centrifuged (10 min, 4,300 × g, 4°C) and the super-
natants were collected and centrifuged again (15 min,
12,000 × g, 4°C). The final pellet constituted the flagellar
fraction (Ff ), whereas the supernatant was centrifuged
again (45 min, 35,000 × g, 4°C) to obtain the pellet that
constituted the membrane fraction (Mf ).

Affinity chromatography
Heparin binding proteins were isolated from soluble
proteins of Ff (HBP Ff ) or Mf (HBP Mf ) using a HiTrap-
Heparin column previously equilibrated with 10 mM so-
dium phosphate pH 7.0. The bound proteins were eluted
from the column using the equilibrium buffer containing
of 2.0 M NaCl, as previously described [27]. The eluted
fractions were concentrated using a Centriprep filter de-
vice, and the protein concentration was determined as
previously described [28].

Denaturant electrophoresis
Soluble proteins (40 μg) were resolved using 12% so-
dium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) and silver staining, as previously described
[29,30]. Electrophoresis was performed at 25°C in a Mini
Protean II system (BioRad Laboratories, US).

Western blot assays
For western blot assays, sample proteins (40 μg) were
resolved using SDS-PAGE and, then, transferred onto
0.22 μm nitrocellulose membranes. Non-specific binding
sites were blocked (4°C for 16 h) using a solution of 5%
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skimmed milk (w/v) in PBS with the addition of 0.5%
Tween 20. The blots were washed six times with PBS
containing 0.05% Tween 20 (PBST) and incubated (1 h,
25°C) with primary antibodies [anti-Na+/K +ATPase
(1:500) or anti-GAPDH (1:100)], diluted in PBST. After
six washes with PBST, the blots were incubated (1 h, 25°
C) with anti-rabbit HRP (1:2500) or anti-mouse HRP
(1:2000) diluted in PBST. The blots were once again
washed as described above and the antibody binding was
revealed by a chemiluminescence kit.

Lulo cell line
The insect epithelioid cell line Lulo was cultured in a 1:1
mix of L15 (Leibovitz 1963) and Grace media supple-
mented with 10% FCS, penicillin (100U/mL) and
streptomycin (100 μg/mL) at 28°C. The cells were
seeded on coverlips to a final number of 2 x 105 cells
per well and grown to semiconfluent monolayers prior
to interaction assays with parasites [14].

Lulo cell metabolic labeling with radioactive sulfate
Lulo cells were maintained in culture medium free of
sulfate for 24 h and then subjected to incorporation of
35 S-Na2SO4 (150 mCi/mL) in DMEM supplemented
with 5% FBS and 10% horse serum (which have been
dialyzed to remove the non-labeled sulfate). After 24 h
incubation (28°C) with the labeled sulfate, the culture
medium was removed and the cells were washed twice
in PBS. In order to investigate the presence of GAGs at
the cell surface, the cells were first detached from the
dish with PBS containing 0.025% EDTA for 10 min.
After centrifugation, the cell pellet was treated with 1 ml
solution of 0.2% trypsin / 0.02% EDTA in PBS for 5 min
(Cultilab, Campinas, SP) to remove the cell surface pro-
teoglycans. Immediately, medium containing serum was
added to neutralize trypsin. Following centrifugation, the
supernatant was considered cell surface, and the pellet,
cellular extract. The cell pellet was then lysed by treat-
ment with 3.5 M urea in PBS. Proteoglycans from the
three compartments (medium, cell surface and cell
extracts) were precipitated with 3 vol. of ethanol (18 h, -
20°C) in the presence of 200 μg of chondroitin 4-sulfate
as a carrier. The pellets were dried and incubated (24 h,
37°C) with pronase (12 mg/mL) in 0.05 M Tris–HCl, pH
8.0. This GAG suspension was boiled (10 min, 100°C)
and then dialyzed for 24 h with at least four changes of
distilled water. Labeled GAGs were dried again and
resuspended in 1 mL of water.

GAGs and enzymatic analysis
5 μl of 35 S-GAGs´ samples were incubated with chondroi-
tinases AC and ABC, and heparinase II (Sigma-Aldrich,
St. Louis, MO, USA), according to the manufacturer´s
instructions. The samples were applied to agarose gel slabs
in 0.05 M 1,3-diaminepropane acetate buffer, pH 9.0 [31].
After electrophoresis, the gels were incubated (1 h, 25°C)
with 0.2% cetyltrimethylammonium bromide, to induce
GAGs precipitation. The gels were dried, and standard
GAGs were stained with toluidine blue. To quantify the
radiolabeled GAGs in the gel, a drop of known quantity of
radioactive sulfate was applied and dried again. 35 S-radi-
olabeled GAGs, resistant to the enzymes, were visualized
as bands, after exposure to a screen for five days, and
identified using the image analysis system Cyclone (Stor-
age Phosphor System–Packard Instrument).

Lulo cells-Leishmania interaction
To evaluate the effect of HS or the HBPs fractions in the
adherence of promastigotes to Lulo cells two different
protocols were used: a) L.(V.) braziliensis promatigotes in
a concentration of 4 x 107 cells/mL, corresponding to 10:1
parasites/cells were pre-incubated (1 h, 4°C) with HS
(20 μg/mL and 10 μg/mL), and then added to a semi con-
fluent monolayer of Lulo cells; or, b) Lulo cells, in semi
confluent monolayer, were incubated for 1 h with parasite
proteins, (20 μg/ml HBP Ff or 10 μg/ml HBP Mf) prior to
the addition of parasites to the culture wells (4 x 107 cells/
mL). Subsequently, the Lulo cells/parasites cultures were
kept in Grace/L-15 media for 2 h at 28°C. The chambers
were extensively washed with PBS to remove non-
adherent parasites, fixed with methanol and stained with
Giemsa. The number of adherent promastigotes was
determined by light microscopy examining 300 cells per
well, and expressed as a relation of adhered parasites per
100 cells. Analysis was performed in triplicate.

Binding assays by surface plasmon resonance (SPR)
SPR assays were performed using sensor chip with a carb-
oxyl surface coated with neutravidin (Biocap; Nomadics,
USA), as previously described [27]. Briefly, the chip sur-
face was covered with biotinylated heparin (0.5 μg) and
used in interaction with HBPs fractions (2 μg), BSA (0.1 -
0.001 μg) or whole promatigotes (1.4 × 105 cells). To per-
form inhibition assays, promastigotes or HBPs fractions
were pre-incubated (2 h, 4°C) with different concentra-
tions of HS (0.1 μg - 0.001 μg). Prior to interaction with
the sensor chips surface, the promastigotes were fixed
(1 h, 4°C) with 1% paraformaldehyde and washed three
times by centrifugation (800× g, 10 min, 4°C) in PBS. SPR
assays were performed at 25°C with 100 μL of material
injected under a flow rate of 10 μL/min. The binding
assays were performed in PBS and registered in real time
using a sensorgram, where changes in the SPR angle
(θspr) were measured as arbitrary resonance units (RU).
Resonance signals of the samples were analyzed after sub-
traction of the RU values from the reference channel, to
avoid methodology artifacts. SPR experiments were con-
ducted in an optical biosensor SensiQ Pioneer (Icx
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Nomadics, USA) and the data were analyzed using Qdat
software (Icx Nomadics, USA).

Statistical analysis
To compare results Student’s test was applied, assuming
equal variance between samples. Data matrices were
considered statistically distinct when p-value was lower
than 0.05.

Results
Two subcellular fractions from L. (V.) brasiliensis were
characterized in this manuscript. The protein profiles of
flagellar (Ff ) and membrane (Mf) fractions, as well as
their corresponding heparin-binding subfractions (HBP
Ff and HBP Mf), were analyzed by SDS-PAGE revealing
complex features, with proteins varying from 17 kDa to
115 kDa. The analysis of isolated proteins from HBP Ff
and HBP Mf, using affinity column, showed two main
protein bands, 65.0 and 55.0 kDa, for both fractions, as
revealed by silver staining (Figure 1A).
The effectiveness of the employed subcellular fraction-

ation technique to separate flagella (Ff) and membrane
(Mf ) fractions was confirmed during our study. Western
blot analyses (Figure 1B) indicated that the obtained Ff
and Mf fractions were enriched with Na+/K+ATPase
(80 kDa protein band), which is a typical protein of mem-
brane and flagella. Additionally, the levels of GAPDH pro-
tein (36 kDa), a known cytosolic contaminant were
Figure 1 Denaturant electrophoresis assays with Leishmania
(V.) braziliensis proteins. Protein samples (10 μg) of flagella (Ff) and
membrane (Mf) fractions collected prior to heparin-sepharose
column fractionation (1 and 3, respectively) or afterwards (HBP Ff - 2
and HBP Mf - 4) were applied into each slot, submitted to SDS-PAGE
and revealed by silver staining (A). In parallel, protein samples
(10 μg) from parasite cell lysates (5 and 6), Ff (7) and Mf (8) were
separated by SDS-PAGE, transferred to a nitrocellulose membrane
and revealed by Western blotting assays (B). In this last case,
subcellular markers as Na+/K+ATPase (80 kDa) and GAPDH (36 kDa)
proteins (arrows) were detected using specific antibodies and an
HRP-conjugated secondary antibody. Bands were visualized by
chemiluminescence. These results are representative of four
independent experiments.
undetectable in the samples, thus indicating their purity.
Both proteins were detected in the extract from whole
parasite, showing that these proteins can be found in the
parasite (Figure 1B).
Characterization of Ff and Mf was performed by detect-

ing typical organelles of these cellular components, as fla-
gellum fragments or spherical membrane-bound vesicles,
respectively, using transmission electron microscopy, as
previously described (data not shown) [27]
To analyze whether GAGs were expressed by Lulo

cells in vitro and, thus, would be able to influence para-
site adhesion, experiments for the detection of radio-
active labeled GAGs were carried out. We investigated
GAGs from cell-secreted material in the growth
medium, cell extracts and most importantly, cell surface.
The GAGs were metabolically labeled by adding radio-
active sulfate ([35 S]-Na2SO4) to cell growth medium
and, afterwards purified samples from these compart-
ments were analyzed by agarose gel electrophoresis for
the presence of radioactivity. After 24 h in culture, Lulo
cells expressed both heparan sulfate and chondroitin sul-
fate (Figure 2 A and B). The presence of these molecules
on cell surfaces was further confirmed by treating GAGs
from each compartment with heparinase II and chon-
droitinase AC and ABC (Figure 2 A).
Further, we addressed the question whether heparan

sulfate (HS) interaction with the parasites may be involved
in their adhesion to host cell (Figure 3). To assess the role
of HS in the adhesion of promastigotes to Lulo cells, a
competition assay was performed, where promastigotes
were treated with HS prior to interaction with Lulo cells.
In the control assays performed with Lulo cell monolayers
pre-incubated or not with BSA (20 μg), the percentage of
adhered parasites was 17± (2.0). The quantitative data
revealed a significant decrease in the number of adhered
promastigotes/100 cells: a reduction of 30% (for HS
20 μg/ml; p= 0.0025) and 16% (for HS10μg/ml; p = 0.0025),
when compared to the control (Figure 3 A). Also, pre-
incubation of Lulo cell monolayers with HBPf or HBPM
was able to induce a reduction in the adhesion rates, when
compared to the control: 35.2% (for HBP Mf 10 μg;
p=0.0018), 25.4% (for HBP Mf 20 μg; p= 0.0028), 10.0%
(for HBP Ff 10 μg; p= 0.066) and 31.4% (for HBP Ff 20 μg;
p=0.0071), (Figure 3 B).
Complementary to the data obtained from the radio-

active labeling assays, it was also possible to assess the
presence of GAGs ligands on the surface of L. (V.) brazi-
liensis promastigotes through the SPR assays. The bind-
ing sensorgram graphs, after the injection of parasites
onto a chip surface functionalized with heparin indicated
resonance units (RU) values of 80 and 12, respectively
(Figure 4). The specificity of this binding was confirmed
by additional SPR assays, in which promastigotes were
incubated with increasing concentrations of HS prior to



Figure 2 Quantification and identification of sulfated glycosaminoglycans in Lulo cells. After metabolic labeling of Lulo cells with
35 S-Na2SO4, cell extract, cell surface and cell culture medium were subjected to enzymatic degradation and afterwards to gel electrophoresis in
0.6% agarose. The bands were identified using an image analysis system, the CycloneW Storage Phosphor System-Packard Instrument (A).
Quantification was performed by densitometry with Opti-Quanti Software and expressed as cpm/mg protein (B). Defined quantities of non-
labeled GAGs (chondroitin sulfate - CS; heparan sulfate - HS) were used as standard control; CTRL – incubation control with buffer; AC –
chondroitinase AC; ABC – chondroitinase ABC; HEP II – heparinase II.
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injection on the chip. In these assays, it was possible to
observe a significant inhibition (p = 0.001) of promasti-
gotes binding to immobilized heparin, with RU values
decreasing by 38% when parasites were incubated with
0.1, 0.01 and 0.001 μg/ml of HS (Figure 4).
The binding potential of HBP Ff and HBP Mf to immo-

bilized heparin was also assessed. The results show that
the binding of these fractions to immobilized heparin (ap-
proximately 70 RU) is inhibited by incubation with HS
(0.1, 0.01 and 0.001 μg/ml) leading to a decrease in RU
values to 32± 7.2 (for HBP Ff ) and 48± 17 (HBP Mf ) for
all assayed concentration (data not shown).
The specificity of the binding in the SPR assays was

confirmed by negative controls using immobilized BSA
on the chip surface. In these control experiments, no
significant association and dissociation rates were
detected for tests with promastigotes or either protein
fractions, as previously described [27].

Discussion
The Leishmania spp parasites are an important example
of protozoans related to human infectious diseases with
transmission by arthropods [32,33]. Some current stud-
ies on the life cycle of these parasites have emphasized
the interaction of promastigotes with gut cells or tissues
of sandflies [34,35]. In this context, it has been shown
recently that the Lulo cell line can be useful as a model
for studies of insect-parasite interactions for Leishmania
spp [14], partially simulating the adhesion events that
occur in the sandflies gut. In the present study, we show
evidence that 65.0 kDa and 55.0 kDa HBPs from the
promastigote surface can participate in the adhesion to
Lulo cells through HS binding.
The Lulo cell line is composed of epitheloid cells, origi-

nated from embryonic tissue of Lu. longipalpis adult
insects, a species which is commonly used in studies of
interaction between parasite and insect [36]. Although
Lulo cells have already been described as interacting more
avidly with L. (L.) chagasi promastigotes of [14,37], we
provide, in the present study, additional evidence that L.
(V.) braziliensis has the ability to interact with Lulo cells.
This is an interesting finding, as Lu. longipalpis has been
reported as an efficient vector for species of the subgenera
Leishmania and Lulo cells are derived from this sand fly
species. Possibly, these data are indicative of the existence
of common molecules between the subgenera Viannia
and Leishmania, which would be related to promastigote
adhesion to the surface of Lulo cells.
Since it is known that glycosaminoglycan-binding mi-

crobial proteins interfere in the processes of adhesion
and invasion of host tissues [38] and that these proteins
have already been described on the surface of L. (V.) bra-
ziliensis, we considered it would be interesting to evalu-
ate the participation of these proteins in the attachment
of promastigotes to Lulo cells. The data gathered in the
present study, corroborates the influence of HBPs in the



Figure 3 Quantification of promastigote adhesion to Lulo cells. Adhesion inhibition assays were performed using promastigotes without or
with pre-incubation with increasing concentrations of heparan sulfate (A) were co-incubated (28°C) with Lulo cells monolayers. Likewise, Lulo
cells monolayers without or with pre-incubation with different concentrations (10 μg and 20 μg) of HBP Ff and HBP Mf, and 20 μg of BSA
(control) were co-incubated with promastigotes (B). The coverslip containing cells and/or parasites samples were stained with Giemsa and the
number of adhered promastigotes/100 cells was determined by light microscopy examining 300 cells per coverslip, in triplicate. Data are
expressed as percentile values (%) and represent average and standard deviation of five independent experiments - (*), p< 0.05.
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promastigote adhesion to Lulo cells, supporting the in-
volvement of parasite surface compounds in the adhe-
sion to host cells [4,7]. Although we have previously
described that HBPs from flagella have more affinity to
bind to heparin [27], the data presented here prove that
HBPs from both flagella and membrane fractions are
able to participate in the adhesion of promatigotes to
the Lulo cell monolayers, interacting with heparan sul-
fate molecules of these cells. These findings are sup-
ported by previous studies that indicate the participation
of sulfated glycosaminoglycans in host-parasite recogni-
tion processes, as: invasion of hepatocytes by Plasmo-
dium sporozoites through the major surface proteins
CSP and TRAP [39,40]; adhesion of Plasmodium sp.-
infected erythrocytes to the placenta [41]; invasion of
mosquito midgut by Plasmodium falciparum [42]; and,
adhesion of Trypanosoma epimastigotes to the gut epi-
thelial cells of Rhodnius prolixus [43,44].
Additionally, this study presents the first report of the

presence of sulfated glycosaminoglycans, HS and CS, in
Lulo cells. Although the present results do not directly
specify the localization of these components on the cell
surface, the competition assays are indicative of a surface
localization of glycosaminoglycans on the Lulo cells. In-
deed, the current literature in biochemistry shows that
sulfated glycosaminoglycans are ubiquitous among ani-
mal cell membranes and are present on the surface of
virtually every adherent cell [45] and can modulate the
actions of a large number of extracellular ligands [46].
Generally, invertebrates produce the same types of



Figure 4 Analysis of Leishmania. (V.) braziliensis promastigotes adhesion to glycosaminoglycans by surface plasmon resonance. Sensor
chips were covered with biotinylated heparin, and promastigotes were passed over the chip surface. The parasites were assayed without pre-
incubation with heparan sulfate (black line) or after pre-incubation with 0.001 μg (green line), 0.01 μg (red line) or 0.1 μg (blue line) of heparan
sulfate. Significant decrease in adhesion rates was observed in the pre-incubated samples was achieved - (*), p< 0.05. Data are presented as
arbitrary resonance units (RU) and are representative of two independent experiments. The dissociation RU values are representative of the
average response between 720 and 1020 seconds (A) in all assays.
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GAGs as vertebrates, except that hyaluronic acid is not
present and chondroitin chains tend to be non-sulfated
[18]. Thus, our results add new information to the de-
scription of the diversity of GAGs distributed in cells
and tissues of invertebrates.
Due to the stability of the HBP-GAG complexes

observed in the biosensor analysis, we postulate that
HBPs play specific roles in parasite-host interactions. It
is the second time we are able to demonstrate the poten-
tial of SPR biosensor to prove the surface localization of
HBPs on promastigotes. The reduction of the RU values
observed in the competition assays with promastigotes
or HS reinforced the conclusion that the HBPs can
recognize the actual GAGs in the Lulo cells surface,
which is in agreement with the Lulo cell-promastigotes
interaction data. Moreover, the slow decrease in the sen-
sorgram baseline after interaction of HBP fractions with
the heparin-coated chip surface is evidence of the stabil-
ity of the complex formed between promastigote HBPs
and GAGs, as HS.
Biosensing surface procedures have already been used

to detect specific proteins on the surface of Trypano-
soma cruzi epimastigotes [44] and L. (V.) braziliensis
promastigotes [27] and correlate to stable interactions
that occur at the interface of these protozoan parasites
to their host cells surface. Similar analysis has also been
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conducted to study the interaction of measles virus and
heparin in the infection of SLAM-negative cell lines [47]
and of Plasmodium circumsporozoite with heparin in
liver invasion [48].
The strong binding of L. (V.) braziliensis to GAGs

observed in the performed physicochemical assays rein-
forces the putative function of the 65.0 kDa and
55.0 kDa proteins of promastigotes as important adher-
ent compounds in the life cycle of this parasite. In prior
studies, proteins with similar molecular masses were iso-
lated by heparin-affinity chromatography methodology
and described as hydrophobic proteins of L. (V.) brazi-
liensis promastigotes [26]. As we have previously
described a 65.0 kDa HBP of L. (V.) braziliensis with
metallo proteinase-like properties [27], we hypothesize
that this HBP may act as a protagonist of proteolytic ac-
tivities triggered by the HBPs-GAGs recognition event
and thus play a role for the adhesion of the parasite to
insect cells. Additionally, it has also been suggested that
Leishmania spp parasites could modulate key enzymes
or proteins in the gut of the sandfly, therefore obtaining
advantages for their establishment and survival in these
hosts [49]. Collectively, our data suggest that metallo
proteinase from promastigote surfaces are involved in
the attachment to Lulo cells via binding of GAGs, as HS.
Additional studies will be necessary to further prove this
hypothesis and also investigate the biological role of the
55 kDa HBP.

Conclusions
We have presented evidence that HBPs (with 65.0 kDa
and 55.0 kDa) from the membrane and flagella of L. (V.)
braziliensis promastigotes have the ability to recognize
HS, with stable receptor-ligand interaction. The set of
results presented here emphasizes the role of HBPs on
promastigote adhesion to the Lulo cells by their GAGs.
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