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Abstract

Background: Sleeping sickness, transmitted by G. p. palpalis, is known to be present in the Ivory Coast. G. p. palpalis
has recently been reported to occur in several places within the town of Abidjan, including: (i) the Banco forest, (ii) the
Abobo Adjamé University campus and (iii) the zoological park. Could these three places be treated sequentially, as
separate tsetse populations, or should they be taken as one area comprising a single, panmictic population?

Methods: The amount of gene flow between these places provides strategic information for vector control. It was
estimated by the use of both microsatellite DNA and morphometric markers. The idea was to assess the interest of the
faster and much less expensive morphometric approach in providing relevant information about population
structure. Thus, to detect possible lack of insect exchange between these neighbouring areas of Abidjan, we used
both genetic (microsatellite DNA) and phenetic (geometric morphometrics) markers on the same specimens.
Using these same markers, we also compared these samples with specimens from a more distant area of south Ivory
Coast, the region of Aniassué (186 km north from Abidjan).

Results: Neither genetic nor phenetic markers detected significant differentiation between the three Abidjan G. p.
palpalis samples. Thus, the null hypothesis of a single panmictic population within the city of Abidjan could not be
rejected, suggesting the control strategy should not consider them separately. The markers were also in agreement
when comparing G. p. palpalis from Abidjan with those of Aniassué, showing significant divergence between the two
sites.

Conclusions: Both markers suggested that a successful control of tsetse in Abidjan would require the three Abidjan
sites to be considered together, either by deploying control measures simultaneously in all three sites, or by a
continuous progression of interventions following for instance the “rolling carpet” principle. To compare the
geometry of wing venation of tsetse flies is a cheap and fast technique. Agreement with the microsatellite approach
highlights its potential for rapid assessment of population structure.

Background
Tsetse flies (Diptera: Glossinidae) are the main vec-
tors of trypanosomes (Kinetoplastida: Trypanosomati-
dae), which cause human and animal trypanosomiases
in subsaharan Africa. These diseases have a consider-
able impact on public health and economic development
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[1], although there are recent signs of a decline in inci-
dence of the human disease following WHO-supported
interventions based on case detection and treatment [2-
4]. Vector control is an important complement to case
detection and treatment, because reducing vector den-
sity can rapidly halt human trypanosomiasis transmission
[5,6]. Vector control also remains the only strategy able to
protect humans from acquiring a new infection [7].
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Tsetse populations may be reduced using a variety of
techniques, including insecticide impregnated traps and
targets, live-baits, sequential aerial spraying, and sterile
male release [8-13]. However, in many cases when the
control efforts have been stopped, the tsetse populations
tend to recover due to flies surviving the initial interven-
tions, or migrant flies coming from untreated regions, or
both.
This has fueled debate as to whether in some instances

“eradication” (defined by FAO as the creation of a tsetse
free zone) may be more cost-effective than “suppres-
sion” where tsetse densities are reduced to a level min-
imizing the risk of disease transmission. Decisions on
eradication or suppression strategies will be facilitated
when the population structure within the target region,
in particular the degree of genetic isolation of the target
population from adjacent populations is clearly under-
stood [14]. For isolated populations, eradication may be
the most cost-effective strategy, as reported for Glossina
austeni Newstead on Unguja Island, Zanzibar [9]. But
for most mainland populations of tsetse, the geograph-
ical limits of target tsetse populations are less easily
defined. Application of techniques that can detect pop-
ulation isolation such as molecular or morphometric
markers can guide decisions on the choice of control
strategies [15-17]. Human and animal trypanosomiasis
transmitted by G. p. palpalis are known to be present in
Ivory Coast [4,18] and G. p. palpalis has been reported
to occur within the city of Abidjan [19,20]. Due to its
potential danger as a vector of human and animal try-
panosomiasis, the Ivorian authorities now seek to con-
trol these tsetse flies in the affected area of Abidjan,
which includes the Banco forest, the University of Abobo
Adjamé and the zoological park. Tsetse have been found
to be present in low to high densities in these 3 sites,
and were found infected by various trypanosome species
[19].
To detect possible evidence of isolation between G. p.

palpalis populations in the three affected areas within
Abidjan, we used both genetic (microsatellite DNA) and
phenetic (geometric morphometrics) markers on the
same specimens, and compared these populations to G. p.
palpalis populations from another area of southern Ivory
Coast in the region of Aniassué. The idea was to assess
the interest of the faster andmuch less expensive morpho-
metric approach in providing relevant information about
population structure.
The expected outcome of this study was to help the

national control program to decide which is the best
strategy of vector control in the town of Abidjan: can
these three localities be treated sequentially (i.e. are the
tsetse populations isolated between the three sites), or
should they be taken as one area comprising a single,
panmictic population?

Results and discussion
Microsatellite DNAmarkers
Within sample analyses
For the total sample (n = 141) of genotyped tsetse,
the seven microsatellite loci displayed 17 (Pgp1), 17
(PgP13), 14 (PgP24), 25 (B104), 19 (B110), 7 (C102), and 9
(GPCAG) alleles, respectively. The mean number of alle-
les was 9.71 (Banco), 11 (University) and 10.85 (Zoo) in
Abidjan, and 10.00 in Aniassué. Mean observed heterozy-
gosities were 0.68, 0.76 and 0.77 for Banco, University
and Zoo, respectively, and 0.70 in Aniassué (no significant
difference).
Overall F is values were 0.12, 0.09 and 0.05 for Banco,

University, and Zoo, significant at p<0.0001, p<0.001, and
p<0.05 respectively. In Aniassué, F is was 0.15, p<0.0001.
The heterozygote deficit was mainly due to two loci (PgP1
and B110) for the three populations of Abidjan (Figure 1).
This suggested locus had specific technical problems

(e.g. null alleles or short allele dominance), because when
these loci were removed from the analysis, F is values
dropped to non-significant values (0.04, 0.00 and 0.03,
respectively). Hence the null hypothesis of panmixia in
Abidjan could not be rejected. In Aniassué, F is on these
5 loci was 0.18 (p<0.0001), indicating consistant het-
erozygote deficiency. The heterozygote deficiency found
in Aniassué confirmed earlier observations on G. p. pal-
palis in the forested areas of Ivory Coast, which attributed
such deficiency to a combination of null alleles and genetic
structuring at local scale due to Wahlund effects [21].

Genetic differentiation between samples
The mean Fst value for the 5 loci among the four pop-
ulations was estimated at θ = 0.017 (CI95: 0.011 < θ <

0.023), p<0.0001. For the Abidjan samples it was θ = 0.007
(CI95: 0.00150 < θ < 0.01184) and was not significant,
meaning that most of the differentiation was due to differ-
ences between Aniassué and Abidjan. Looking at paired
Fst values between sites (Table 1) confirmed this, since the
highest (and significant) values always included Aniassué.
Within Abidjan, there was a slight but non-significant
trend for the population of Banco to diverge (Fst=0.01,
p<0.05) from those of University and Zoo, whereas the
latter two were genetically similar.

Geometric morphometrics
Size: centroid size
The specimens from Aniassué were significantly smaller
compared to those from Abidjan, whereas within Abidjan
there was no significant size difference between flies from
the three sites (Figure 2).

Shape variation
The first two discriminant factors derived from the
shape variables showed that the polygon representing the
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Figure 1 Fis statistics for Glossina palpalis palpalis collected from sites of Abidjan. Fis statistics for Glossina palpalis palpalis collected from sites
of Abidjan. For each locus, the Fismean value (circle) is presented with its standard deviation (vertical bar).

Aniassué population tended to separate from the Abidjan
sites (Figure 3). The reclassification tree, based on all three
of the discriminant factors, clearly separated the Aniassué
sample from those from Abidjan (Figure 4).
The Mahalanobis distances between the Abidjan sam-

ples (Table 1) were not significantly different, indicating
an absence of shape differentiation, while the Maha-
lanobis distances from Aniassué were significantly larger
(p<0.007) (Table 1).
The validated reclassification scores confirmed this pat-

tern, since Aniassué had the highest score (86%). However,
in spite of the lack of significant differentiation within
Abidjan, the reclassification score obtained for Banco
(77%) was much higher than for the University (37%) and
Zoo (33%), suggesting a relatively higher level of shape
divergence in the Banco forest.
Correlation between metric and genetic distances was

high. Regression of the Mahalanobis distances on the
genetic distances indicated that 79% of the morphomet-
ric variation could be explained by the genetic variation
(Figure 5).

Table 1 Metric and genetic distances between sites

Population 1 Population 2 Mahalanobis Fst

Aniassué Banco 2.38 0.0221

Aniassué University 1.93 0.0328

Aniassué Zoo 1.98 0.0292

Banco University 1.3 0.0121

Banco Zoo 1.1 0.0113

University Zoo 0.31 -0.0034

Pairwise metric (Mahalanobis) and genetic (Fst) distances between Banco,
University, Zoo (Abidjan) and Aniassué.

Genetic andmorphometric differentiation
From an epidemiological point of view, our study aimed
at knowing whether tsetse populations from three sites
in Abidjan could be considered to be isolated from each
other. Such information is relevant for designing an ade-
quate tsetse control strategy. For example, an insecticide
application could be sequential in case of separation
between sites, working on each site separately without risk
of reinvasion to the next, or it should simultaneously cover
all three sites if no evidence for separation is found.
We used a population genetics approach [7] to analyse

possible separation between the three Abidjan popula-
tions, comparing genetic and phenetic markers. Thus, the
study also tested the potential of geometric morphomet-
rics as a possible surrogate for molecular markers.

Figure 2 Size variation of the wings. Variation of the centroid size
of the wing of male Glossina palpalis palpalis according to localities.
Anias, Aniassué. Each box shows the group median separating the
25th and 75th quartiles. Vertical bars under the boxes represent the
wings. Units are pixels. P, percentile.
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Figure 3Morphospace derived from the shape of the wings.
Morphospace of the wings of male Glossina palpalis palpalis, the
horizontal axis is the first discriminant factor, the vertical axis is the
second one. Together, they contributed to of 99% of the total
variation.

Figure 4 Classification tree based on the shape of the wings.
Unrooted neighbor joining tree based on the Procrustes distances
between G. p. palpalis wings from four localities.

Figure 5 Correlation between Fst and Mahalanobis distances.
Correlation between Fst and Mahalanobis distances. Coefficient of
determination is 79%. A, Aniassué; B, Banco; U, University; Z, Zoo.

Both the phenetic (geometric morphometrics) and
genetic (microsatellite loci) markers showed no evidence
for differentiation betweenG. p. palpalis from sites within
Abidjan, but both markers agreed in showing strong
differentiation between individuals from Aniassué and
those from Abidjan.

Within Abidjan
At the scale of Abidjan, our data showed that males from
the three sites showed no genetic differentiation, and
accordingly had similar metric properties (size and shape).
The microsatellite markers did not show any signifi-

cant departure from the null hypothesis of panmixia, i.e.
we did not observe any genetic differentiation between
the 3 populations within Abidjan. There was however a
slight, non significant trend for the population of Banco
to diverge from the two others. A possible explanation is
then a slow, on-going process for this population of Banco
to have less genetic exchanges with the two others, due
to urbanization which restricts tsetse movements. It may
be possible, as observed in other studies in Burkina Faso,
that the molecular markers used are not sensitive enough
to detect it, since this is a recent, on-going phenomenon
whereas what the molecular markers show is the result of
a genetic history over several generations. This lack of sen-
sitivity of molecular markers for recent genetic changes
has already been observed in tsetse studies [22], and may
be compensated by the use of morphometrics.
This idea is reflected by the much higher shape-based

reclassification score obtained for Banco (77%), com-
pared to the two other sites (37% and 33%). This indirect
evidence for some morphometric specificity in the forest
might be due to an environmental effect (“forest” versus
“city”), although in tsetse most of the pre-imago devel-
opment is relatively protected from external influences as
tsetse larvae grow in the uterus of their mother during
the three first stages, buffering morphometric variations
against external influences [23].
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Temperature and humidity do become influential fac-
tors at the time when pupae are in the soil. The effect has
been studied for size (not shape), indicating that higher
temperatures tend to result in smaller individuals [23],
whereas increasing humidity tends to result in larger indi-
viduals [24]. It has been shown that the size of G. p.
palpalis in forested areas of Ivory Coast is governed by
seasonal climatic effects [25]. In Abidjan, no size differ-
ence was detected between sites, and given their proximity
it seems likely that environmental factors acted uniformly
on size.

Between Abidjan and Aniassué
By contrast, both molecular (microsatellite loci) and mor-
phometric (centroid size and shape variables) data showed
significant differences between tsetse from Abidjan and
Aniassué. This was expected due to the geographic dis-
tance between the two sites (186 km), to the differences of
biotopes, and to the fact that the tsetse belt in South Ivory
Coast is discontinuous as a consequence of anthropic
pressure on habitats.
The tsetse from Aniassué were smaller than those from

Abidjan. This was in agreement with both the slightly
higher temperature [23] and dryer conditions [24,26] in
Aniassué.
The differences betweenG. p. palpalis fromAbidjan and

Aniassué also involved shape, which may reflect genetic
variations [23,27], especially when shape is allometry-free
[28-30]. This was confirmed by differences found using
microsatellite DNA markers. The parallel between phe-
netic and geneticmarkers applied to natural populations is
not uncommon [30]; forG. p. gambiensis, a similar parallel
was observed in natural populations of different biotopes
fromWest Africa [31], Guinea [15], Burkina Faso [32] and
Senegal [17]. Here, 79% of the variance in Mahalanobis
distance could be “explained” by genetic variation (com-
pared to 50% in study by [17]) study). This correlation does
not imply a causal relationship, and could be attributed
to both phenetic and genetic distances being related to
geographical distances [33].
The heterozygote deficits found in Aniassué confirmed

earlier observations on G. p. palpalis in the forested areas
of Ivory Coast, which attributed such deficits to a combi-
nation of null alleles and genetic structuring at local scale
due to Wahlund effects [21].

Conclusions
How can the knowledge of population structure help
to choose a control strategy? Since microsatellite and
morphometric markers did not show significant differ-
entiation between tsetse from the three sites in Abidjan,
there would appear to be no significant barrier to gene
flow at this scale. From a control perspective, this means
that intervention against tsetse in any one site is likely

to face reinvasion from the other two. This is different
from a similar study conducted on the Loos archipelago,
Guinea, which showed that tsetse populations (G. pal-
palis gambiensis) were isolated from the mainland and
structured according to the island [15,34], which then
allowed a sequential control strategy to be implemented
[16,35]. Successful control of tsetse in Abidjan however,
would require all three sites to be considered together
(Figure 6), either by deploying control measures simulta-
neously in all three sites, or by a continuous progression of
interventions - for example using barriers of impregnated
traps and/or targets between sites (Figure 7) following the
“rolling carpet” principle [36].

Methods
Study area
In Abidjan, the three study sites were the Banco for-
est (Banco), the University of Abobo Adjamé (University)
and the zoological park (Zoo). The Banco forest is in the
north-western part of the city of Abidjan, at 5°N latitude
and 4°W longitude. East of Banco are two small relicts
of the forest which have now been substantially degraded
by urbanisation: the Abobo Adjamé University and the
zoo of Abidjan. These three sites, although geographically
close (less than 500 meters between sites), are separated
by roads and urbanisation (Figure 8). For comparison,
another study site was chosen near the town of Aniassué,
about 186 km from Abidjan, in the Department of Aben-
gourou, whereG. p. palpalis occurs along the Comoé river.
This region is characterized by forest degraded by wood
cutting, and also by food crops (banana, cassava) and old
cocoa plantations.

Figure 6 Eradication strategy. Eradication strategy by controlling
simultaneously the three sites. Blue dotted line: limits of the area to
be treated simultaneously. Yellow curves: limits of target sites A: Relic
forest of Anguededou not infested by tsetse flies.
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Figure 7 The “rolling carpet” principle. Eradication strategy in
stages, site after site, but by creating barriers with traps or
impregnated screens between Zoo and University (barrier C),
University and Banco (barrier B), using the “rolling carpet” principle
(Vreysen et al., 2007). The yellow arrow indicates the diection of the
steps.

There is little temperature difference between Abidjan
(from 24.2°C to 27.7°C) and Aniassué (from 24.3°C to
27.9°C), but relatively more variation in relative humidity
(RH), which decreases from south (RH on average 90%) to
north (RH between 60% and 70%). In both areas, there are
two rainy and two dry seasons during a year [37].

Tsetse samples andmicrosatellite DNAmarkers
Tsetse flies were caught using Vavoua traps [38] in April
2007 in Aniassué and in October 2007 in Abidjan. In total
from Abidjan 111 individual tsetse were analysed using
microsatellite DNA markers: Banco (25 females (F), 11
males (M)); University (21 F, 17 M) and Zoo (21 F, 16 M).
From Aniassué, 30 individuals were analysed (15 F and 15
M). Seven microsatellite markers were used (preceded by
“X” for X-linked loci): Pgp1, XPgp13, Pgp24 [39], XB104,
XB110, C102 (A. Robinson, FAO/IAEA, pers. com.) and
GPCAG [40]. The samples were processed for Polymerase
Chain Reaction (PCR) and genotyping on a 4300 DNA
Analysis System from LI-COR (Lincoln, NE) as described
in [34].

Population genetics analyses onmolecular markers
Wright’s F-statistics [41], the parametersmost widely used
to describe population genetic structure, were initially
defined for a three-level hierarchical population struc-
ture (individuals, sub-populations, and total). In such a
structure, three fixation indices or F-statistics can be
defined.
F is is ameasure of the inbreeding of individuals (hence I)

resulting from non-random union of gametes within each
sub-population (hence S).
Fst quantifies the differentiation between subpopula-

tions in the total population (hence S and T) as a
measure of the relatedness between individuals resulting

Figure 8 Geographic area of the study. Sampling sites of Glossina palpalis palpalis in Abidjan and Aniassué, Ivory Coast.
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Figure 9 Anatomical landmarks of the wing. Ten landmarks at the junction of different veins in the wing of Glossina palpalis palpalis. Scale
indicates millimeters.

from non-random distribution of individuals between
sub-populations, relative to the total population.
F it is ameasure of the inbreeding of individuals resulting

both from non-random union of gametes within sub-
populations, and from population structuring (deviation
from panmixia of all individuals of the total population,
hence I and T).
These F-statistics were estimated by Weir and Cocker-

ham ’s unbiased estimators f (for F is), θ (for Fst) and F (for
F it) [42]. The significance of the F-statistics was tested by
1000 random permutations in each case. The significance
of F is was tested by randomizing alleles between individu-
als within sub-samples. The significance of Fst was tested
by randomizing individuals among sub-samples.

Geometric morphometrics analyses
The tsetse specimens used for geometric morphometrics
constituted a subsample of those on which the molec-
ular analyses were done. Out of the 141 flies used for
microsatellites, 55 had non-damaged wings allowing mor-
phometric analyses. The analyses were conducted only on
males, and focused on the right wing, which was generally
the wing in best conditions. A total of 55 right wings of

Table 2 Reclassification of tsetse individuals based on the
shape of the wings

Populations Correctly assigned individuals

Aniassué 13 / 15 86%

Banco 7 / 9 77%

University 6 / 16 37%

Zoo 5 / 15 37%

Validated reclassification of tsetse individuals based on the shape of their wings.

G. p. palpalis males (M) were used, i.e. 9 from Banco, 16
from University, 15 from Zoo and 15 from Aniassué.
Wings were dry-mounted between two microscope

slides and scanned at 1800 ppp at dimensions of 0.90
x 0.50 cm, using a multifunction scanner HP Deskjet F
2180. From this picture, the coordinates of 10 landmarks
(LM) defined by vein intersections were recorded for each
wing, by the same person in the same order (Figure 9).
Repeatability was estimated at better than 80% (discussed
elsewhere:[43]).
Raw coordinates were superimposed using the Gener-

alized Procrustes Analysis (GPA) [44,45], producing one
variable for size and 16 variables for shape.
The size variable was the isometric estimator known

as centroid size (CS) derived from coordinate data and
defined as the square root of the sum of the squared
distances between the center of the configuration of land-
marks, and each individual landmark [46]. Statistical sig-
nificance for size comparisons was estimated by 1,000
permutation tests [47] with Bonferroni correction.
The 16 shape variables were the “partial warps” (PW).

To circumvent the problem of small sample sizes rela-
tive to the large number of shape variables (16 PW), we
used the first 6 principal components of the PW (relative
warps, RW) as input for discriminant analyses, as these
represented 84% of the total variation and had the highest
discriminatory power [48].
Mahalanobis distances [49] computed from these 6 RW

were used to quantify shape divergence between groups
(Figure 4) and the statistical significance was estimated by
1000 permutation tests [50] with Bonferroni correction.
Mahalanobis distances based re-classification scores

were computed according to a validation procedure
whereby each individual was assigned to its closest group
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without using that individual to help determine a group
centre [33], although the computed shape variables did
include that individual [43] (Table 2).

Software
Collections of anatomical landmarks of the wings, general
Procrustes analysis (GPA), multivariate and discriminant
analyses, were performed using the CLIC package [43],
freely available at http://www.mpl.ird.fr/morphometrics/
clic/index.html. PHYLIP software with “neighbor” mod-
ule [51] and NJPLOT [52] were used to build the clas-
sification tree. The F-statistics from molecular data were
estimated with Genetix [53] and Fstat 2.9.3.2 (updated
from [54]). The overall G-test was used to estimate the
significance of Fst with Fstat [55].
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