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Abstract

Background: An in vitro artificial feeding technique for hard ticks is quite useful for studying the tick-pathogen
interactions. Here, we report a novel semi-artificial feeding technique for the adult parthenogenetic tick,
Haemaphysalis longicornis, using mouse skin membrane.

Findings: Skin with attached adult ticks was removed from the mouse body at 4 to 5 days post-infestation for the
construction of the feeding system. This system supplied with rabbit blood was kept in >95% relative humidity at
30°C during the feeding, and ticks were fully engorged (artificially engorged, AE) within 12 to 48 h. For comparison,
ticks were fed to engorgement solely on rabbit or mouse for 5 days as controls (naturally engorged on rabbit, NEr,
or mouse, NEm). Blood digestion-related gene expression in the midgut and reproductive fitness were compared.
Body weight, egg mass weight, egg conversion ratio, and hatchability of eggs did not show any significant
differences. We analyzed transcription profiles of selected genes assayed by quantitative RT-PCR and revealed
similar patterns of expression between NEr and AE but some differences between NEm and AE or NEm and NEr.

Conclusions: Our results demonstrate that this semi-artificial feeding technique mimics natural feeding processes
of ticks and can be utilized as a standardized method to inoculate pathogens, especially Babesia protozoa, into H.
longicornis and possibly other tick species as well.
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Findings
As vectors of pathogens, ticks transmit viruses, rickettsia
and protozoan parasites to both animals and humans.
Artificial feeding systems are attractive tools for investi-
gating the mechanisms of pathogen transmission as well
as for studying the tick-pathogen interactions. First, arti-
ficial feeding systems can reduce variation within a given
treatment group because the blood meal is supplied
from the same donor, which reduces the variation that
arises from individual host-tick relationships [1]. Second,
an animal experimental model is assumed to have a po-
tent difficulty to control the infection in attached ticks
with known numbers of pathogens, because pathogen
load in ticks might be affected by the immune system of
the hosts targeting tick molecules, such as protective
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antigen, subolesin [2]. In this model using artificial feed-
ing, the effects of the host’s immune responses against
ticks are removed, and pathogens can be introduced into
vectors in a controlled manner. So far, artificial feeding
techniques have been used to feed a number of tick spe-
cies of the family Ixodidae, including Rhipicephalus spp.,
Dermacentor spp., Amblyomma spp., Hyalomma spp.,
and Ixodes spp. using capillary tubes or membranes
(briefly reviewed in [3]). Recently, Kröber and Guerin
[1,4,5] established a method using a silicone membrane
to engorge Ixodes ricinus. Tajeri and Razmi [3] also
attempted to use this membrane for Hy. anatolicum
anatolicum and Hy. dromedarii. These tick species have
a long hypostome and fine palps with a wide range of
motion and can reasonably be expected to completely
penetrate the artificial membrane.
On the other hand, Haemaphysalis longicornis, another

ixodid tick, has a short hypostome and trigonal palps pro-
jecting laterally with very limited motion (Figure 1). Addi-
tionally, its hypostome and chelicerae are not thrust
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Figure 1 Capitulum of H. longicornis. Scanning electron
micrographs showing the mouthparts of H. longicornis from the
dorsal aspect. Bar = 100 μm. h, hypostome; ch, chelicera; p, palps; bc,
basis capituli; sc, scutum; l, leg.
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deeply into the host’s dermis (Figure 2A) [6], therefore, it
is quite difficult for H. longicornis to feed using capillary
tube or silicone membrane-based in vitro feeding systems.
To overcome these limitations, here, ticks were first fed
on a mouse for 4 to 5 days, and then, the skin with the
attached ticks was removed from the mouse for construc-
tion of a feeding system. This technique is a semi-artificial
feeding technique and ticks were fed with supplied rabbit
blood, and here, designated as artificially engorged (AE)
Figure 2 Mouse-skin membrane-based semi-artificial feeding device.
feeding technique. h, hypostome; ch, chelicera; ce, cement; en, endodermi
(B) Lateral view of the semi-artificial feeding system with a feeding tick. (C) Sc
changes (0, 3, 5 h) of ticks feeding on the semi-artificial feeding system.
post-engorgement phenotype, including blood feeding
(engorgement body weight), reproductive fitness (egg
mass weight and egg conversion ratio), and hatchability of
eggs to larvae, as well as transcription profiles of selected
genes expressed in midgut were compared to those of na-
turally engorged ticks fed on tick-naïve SPF rabbit (NEr)
or mouse (NEm).
Naturally engorged ticks
The parthenogenetic Okayama strain of the tick H. long-
icornis has been maintained by feeding on rabbits in our
laboratory since 1976 [7]. In this study, NEr ticks were
prepared according to the usual method described pre-
viously [8]. Briefly, 20 adult ticks were placed on the ears
of a rabbit to feed. At the beginning of the engorgement
period, 9 ticks, which spontaneously detached from the
rabbit after 5 days were collected. Of those, 6 randomly
selected ticks were subjected to phenotypic analysis, and
the remaining 3 ticks were used for transcription ana-
lysis. NEm ticks were also prepared according to the
method described previously [9]. Briefly, 5 mice (BALB/
c, 3 weeks old) were infested with 10 adult ticks (2 ticks
per mouse). Six randomly selected NEm ticks were sub-
jected to phenotypic analysis, and the remaining 4 ticks
were used for transcription analysis. Ethical approvals of
conducting all animal experiments were provided by the
Animal Care and Use Committee, National Institute of
Animal Health (NIAH, Approval nos. 441 and 578).
(A) Tick bite lesion of mouse skin used as a membrane in semi-artificial
s; ep, epidermis; hy, hypodermis; fl, feeding lesion. (HE, Bar: 200 μm)
hematic diagram of the system used in this study. (D-F) Chronological
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Artificially engorged ticks
To prepare the mouse skin membrane, 5 to 7 adult ticks
were allowed to feed on the shaven back of each of four
tick-naïve SPF mice (BALB/c, 3 weeks old) following the
described method [9]. After 4 to 5 days (at the beginning
of the expansion period [10]), a rectangular section
(~9 cm2) of the mouse skin with the ticks attached was
carefully removed from the mouse’s body. Figure 2A
shows the Hematoxylin and Eosin (HE)-stained lesion of
mouse skin membrane used for the feeding system.
Hypodermal layers around the feeding lesion were care-
fully removed from the skin with sterile tweezers as
much as possible. The body of the feeding system
(Figure 2B) was constructed using the upper part of a
Falcon tube (#352059, Becton, Dickinson and Com-
pany, Franklin Lakes, NJ) by cutting the tube at ~3 cm
from the top. Then, the roof of the cap of the Falcon tube
was removed and the skin membrane with ticks was
placed on the mouth of the tube keeping the ticks out-
side and held tightly in place by applying the cap. Only
two ticks were selected and allowed to feed within the
area of the skin membrane in this system, and the
ticks in excess of two were removed by tweezers and
weighed. The mean body weight of the removed ticks
Figure 3 Phenotypic comparison of ticks fed on different feeding sys
(n = 6) ticks. The bars represent mean values and the error bars indicate the
(C) Egg conversion ratio (total egg weight/engorged body weight). (D) Co
and non-hatching eggs) derived from engorged ticks of different feeding s
representative of three independent experiments.
(24.9 ± 5.2 mg) was subtracted from the weight of ticks
after semi-artificial feeding to estimate weight gain. After
construction, the inside of the membrane was washed
with sterilized phosphate-buffered saline (PBS) supple-
mented with 100 units/ml penicillin and 100 μg/ml
streptomycin (Life Technologies Corporation, Carlsbad,
CA). Then, pre-warmed (30°C) rabbit blood containing
300 μl washed red blood cells (RBC) and 700 μl sterile
serum (filtered with a syringe filter; #4652, 0.2 μm, Acro-
disc Syringe Filters, Pall Co., Cornwall, UK.) was poured
into the device (Figure 2C). To secure a sufficient volume
of blood for the duration of tick feeding, we collected
blood from a tick-naïve female SPF Japanese white rabbit
(3- to 5-months-old). The open end of the tube was
covered with a piece of parafilm. All procedures in-
cluding system construction and blood exchange were
performed inside a biosafety cabinet. The system was
kept in a humidified chamber with >95% relative hu-
midity at 30°C, and the rabbit blood was changed at
every 12 h. When partially fed ticks of the expansion
period (4–5 days post-infestation, DPI) were used, fully
engorged ticks dropped off within 12 to 48 h of the
onset of artificial feeding (Figure 2D-F). In contrast,
ticks in the late-growth phase (3 DPI) required feeding
tems. (A) Engorged body weight of NEr (n = 6), AE (n = 4), and NEm
standard deviation. (B) Total egg mass weight measured at 10 DPO.

mparison of hatchability of eggs (larval counts/total number of larvae
ystems. The results shown are from a single experiment and are



Table 1 Primers for quantitative RT-PCR

Gene name and primer ID Primer sequences (50 to 30)
β-actin

HlActin8F1 CCCATCTACGAGGGTTACGCTC

HlActin9R1 CATCTCCTGCTCGAAGTCCAGG

HlSP (serine protease)

HlSPEf2 TCCTTCCTCCTGAAGCAG

HlSPEr2 CGTTCGCTATCCATGGTC

Longepsin (aspartic protease)

longepsin_f2 CATGAACGGCGTGAAAGTAG

longepsin_r2 TCCTTGCCTTCCAAAACG

Longipain (cysteine protease)

longipain_f1 ACCCTGCGACAAGAGCATAC

longipain_r1 TCCACTTGAATCTGCGTCAC

HlSCP1 (serine carboxypeptidase)

HlSCP1_f1 TGCTTCAGACTGCATTGACC

HlSCP1_r1 TTGACCGCAGGTGTCATATC

HlLgm (legumain)

HLleg1RTf1 CGACGAGCAAATCGTAGTCA

HLleg1RTr1 ACTTTTCCGCTTCCTCCATT

HlLgm2 (legumain)

B32G12f1 CCTTCGCAACAAGCTAAAGG

B32G12r1 TCAGAAGTCCTTCGGTGCTT

HlLAP (aminopeptidase)

HlLAPf1 CGCTAAGAAGCAGGCTGTCCTA

HlLAPr1 TCAGACCGTAGAAAACTCTGGAC

HlLAP2 (aminopeptidase)

HlLAP2f2 AAGGCTCTTCACGAAGTGGA

HlLAP2r1 TGGTCGACACCTCGAACATA

Hlgut-defensin (anti-microbial peptide)

EF132731 F GGGACTTTTACTGGCTTTCCTG

EF132731 R ACACGCCCTTTCATCGAAC
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on blood for more than 48 h to become engorged (data
not shown). These feeding patterns were quite similar to
the on-host feeding patterns of ticks described previously
[10], suggesting that our in vitro feeding device effectively
supports the expansion process of ticks and provides a
sufficient amount of blood.

Phenotypic analysis
Blood feeding, reproductive parameters, and hatching
rate of eggs were quantified to investigate the influences
of artificial feeding on tick physiological phenotype.
After repletion, the body weight gain of AE ticks was ap-
proximately 10 times that of their initial body weight.
There were no significant differences in engorged body
weight between AE and NEr or NEm ticks measured
after spontaneous detachment of ticks following full
engorgement (Figure 3A). After collection, the engorged
ticks were placed separately in small sterile vials and incu-
bated in a humidified chamber with >95% relative humidity
at 25°C for egg production. Almost all of the ticks started
laying eggs at 4 to 5 days post-engorgement, however, ticks
were monitored until 10 days post-oviposition (DPO) at
which time point each egg mass obtained from individual
ticks was collected separately and weighed. To determine
hatching rates, the collected egg mass was placed separately
in a paper envelope and incubated under the same condi-
tions described above for 40 days until the eggs hatched.
After hatching, larvae were counted manually and hatch-
ability was estimated as described previously [11]. There
were no significant differences between AE and NEr or
NEm in terms of egg mass weight (Figure 3B), egg con-
version ratio (total egg weight/engorged body weight,
Figure 3C), or hatching rate (Figure 3D). In addition, lar-
vae derived from the AE, NEr, and NEm lineages of ticks
were able to feed normally on rabbit (data not shown).

Transcription analysis
We evaluated the effects of artificial feeding on the tran-
scription of eight selected genes related to proteolysis of
tick blood digestion in the midgut [12] such as H. longi-
cornis serine proteinase (HlSP) [GenBank:AB127388]
[13], Longepsin [GenBank:AB218595] [14], Longipain
[GenBank:AB255051] [15], H. longicornis serine car-
boxypeptidase 1 (HlSCP1) [GenBank:AB287330] [16],
H. longicornis legumain (HlLgm) [GenBank:AB279705]
[17], HlLgm2 [GenBank:AB353127] [18], H. longicornis
leucine aminopeptidase (HlLAP) [GenBank:AB251945]
[19], and HlLAP2 (Hatta and Tsuji, unpublished data).
Additionally, we checked one defensin gene related
to tick innate immunity in the midgut [20], namely,
H. longicornis midgut defensin (Hlgut-defensin) [Gen-
Bank: EF432731] to judge the microbial contamination
or infection in AE ticks since the transcription of
this gene is drastically induced by lipopolysaccharide
(LPS) [21]. To do this, the midguts of NEr, AE, and NEm
ticks were collected in sterile PBS at 3 days after repletion.
Immediately after collection, the midguts were submersed
into 3 ml of Buffer RLT (RNeasy Mini Kit, Qiagen,
Valencia, CA, USA) supplemented with 30 μl of 2-mer-
captoethanol, and thoroughly homogenized by passing
the tissue mass through a 20-gauge needle (NN-2038R,
Terumo, Tokyo, Japan) fitted to a 5 ml syringe (SS-05LZ,
Terumo) five times. Total RNA was isolated from the
homogenates according to the manufacturer’s instructions
and used to synthesize cDNA (RNA PCR Kit Ver 3.0,
Takara Bio INC., Shiga, Japan). Quantitative reverse tran-
scription polymerase chain reaction (qRT-PCR) using
SYBR Green I dye (LightCycler FastStart DNA Master
SYBR Green I, Roche Diagnostics, Mannheim, Germany)
and the primer sets listed in Table 1 was conducted to



Figure 4 Comparison of transcriptional patterns of midgut-associated genes. Quantitative RT-PCR analysis of gene expression is presented
relative to the internal standard β-actin and error bars represent the standard deviation. The results shown are from a single experiment and are
representative of three independent experiments.
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measure mRNA expression levels, as described previously
[22]. Expression of each of the genes was normalized
to that of β-actin [GenBank:AY254898] based on copy
number (Figure 4). As expected, blood digestion-related
gene expression patterns were quite similar between AE
and NEr ticks, suggesting that the semi-artificial feeding
technique does not affect midgut function parameters,
such as blood uptake, expansion of midgut size, and
blood-digestion. However, a slight difference in expression
of two genes (HlSP and HlLgm2) was observed in ticks of
the feeding groups AE and NEm or of NEr and NEm,
which may be due to the feeding of blood from different
hosts, corroborating the findings of others [23].
Even though a biosafety cabinet was used throughout

the study during construction and manipulation of the
feeding device, the possibility of microbial contamination
in the blood cannot be completely neglected since we did
not use antibiotics in the supplied blood. Nevertheless,
similar expression patterns of the Hlgut-defensin gene
among AE, NEr, and NEm ticks indicate that the feeding
system was quite free from bacterial contamination.
However, to increase the certainty of avoiding bac-
terial contamination, it would be better to apply antibio-
tics to this feeding system for other applications.

Conclusions
In conclusion, our findings suggest that the semi-artificial
feeding technique for H. longicornis is very effective and
may be used for all tick species, especially those with short
hypostomes that do not penetrate deeply in the dermal
layer of the host, such as Rhipicephalus ticks [24].
Additionally, the technique is quite simple and cost effect-
ive since it does not require thinner artificial membrane
[3], odorant (cow hair extracts), and/or feeding stimuli
(adenosine triphosphate, ATP) [1,4,5] to enhance tick at-
tachment. Although it is necessary to sacrifice mice in
order to construct the device, the technique bears great
promise for conducting in vitro assays, including the in-
oculation of pathogens, especially Babesia protozoa, based
on results reported by Callow [25] that Rhipicephalus
(Boophilus) microplus tick infection with one of the tick-
borne bovine pathogens, Babesia bigemina, takes place
during the rapid phase of feeding corresponding to the
final stage (last 24 h) of the blood feeding. We expect that
this technique will be useful in studies of tick physiology,
tick-pathogen interactions, and tick-host interactions
regarding novel tick genes that respond to the host
defense mechanisms such as coagulation, inflammation,
and immune responses.
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