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Growth and ontogeny of the tapeworm
Schistocephalus solidus in its copepod first host
affects performance in its stickleback second
intermediate host
Daniel P Benesh* and Nina Hafer
Abstract

Background: For parasites with complex life cycles, size at transmission can impact performance in the next host,
thereby coupling parasite phenotypes in the two consecutive hosts. However, a handful of studies with parasites,
and numerous studies with free-living, complex-life-cycle animals, have found that larval size correlates poorly with
fitness under particular conditions, implying that other traits, such as physiological or ontogenetic variation, may
predict fitness more reliably. Using the tapeworm Schistocephalus solidus, we evaluated how parasite size, age, and
ontogeny in the copepod first host interact to determine performance in the stickleback second host.

Methods: We raised infected copepods under two feeding treatments (to manipulate parasite growth), and then
exposed fish to worms of two different ages (to manipulate parasite ontogeny). We assessed how growth and
ontogeny in copepods affected three measures of fitness in fish: infection probability, growth rate, and energy
storage.

Results: Our main, novel finding is that the increase in fitness (infection probability and growth in fish) with larval
size and age observed in previous studies on S. solidus seems to be largely mediated by ontogenetic variation.
Worms that developed rapidly (had a cercomer after 9 days in copepods) were able to infect fish at an earlier age,
and they grew to larger sizes with larger energy reserves in fish. Infection probability in fish increased with larval
size chiefly in young worms, when size and ontogeny are positively correlated, but not in older worms that had
essentially completed their larval development in copepods.

Conclusions: Transmission to sticklebacks as a small, not-yet-fully developed larva has clear costs for S. solidus, but
it remains unclear what prevents the evolution of faster growth and development in this species.
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Background
Animals with complex life cycles live in distinct habitats
as larvae and adults, and switching from one habitat to
the next is a critical life history transition. In many taxa,
large larvae have higher survival and fecundity as adults
(e.g. [1-7]), but, all else equal, it takes longer to grow to
a large larval size, increasing the probability of dying be-
fore switching. This tradeoff between the benefits of
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being big and the costs of becoming big is at the heart
of many life history models examining optimal switching
strategies [8-13]. In these models, fitness is often a func-
tion of size and age at the transition. This may turn out
to be too simplistic, because a number of studies have
found that size and age at metamorphosis can be poor
predictors of fitness under some environmental condi-
tions [14-19]. Other factors that are not necessarily cor-
related with size and age, such as physiological variables,
may couple larval and adult success [20-24]. For ex-
ample, the lifetime mating success of the damselfly
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Lestes viridis is affected not only by size and age at
emergence, but also by nutritional and photoperiod
treatments whose effects seem mediated by energy
stores [25,26].
Many helminth parasites have complex life cycles in

which they are trophically-transmitted between consecu-
tive hosts before reproducing. Trait variation in one host
often has carryover effects in the next host [27-30], and
larval size and age at transmission are prime candidates
for predicting such carryover effects [31-36]. Larvae that
grow to a large size in the intermediate host generally
have higher infection success or fecundity in the next
host [37-40]. However, a few studies suggest that the lar-
val size-fitness correlation may depend on environmen-
tal factors like the intensity of infection in the
intermediate host [41,42] or the size of the intermediate
host [43]. Older larvae can also have higher fitness in
the next host [44,45]. Older larvae are generally bigger,
but potentially also more mature, so it is unclear exactly
how this effect arises. Whereas free-living animals tran-
sition into the next habitat at a comparable developmen-
tal stage, parasites have to wait to be eaten by the next
host and may thus be transmitted at an underdeveloped
stage with negative consequences for fitness. Elucidating
which larval traits reliably affect fitness in the next host is
necessary to understand the evolution of life history strat-
egies in complex life cycle parasites [31-33,35,46,47].
Using the tapeworm Schistocephalus solidus, we

explored the roles of larval size, age, and ontogeny in de-
termining performance in the next host. This tapeworm
has a three-host life cycle [48,49]. Adult worms occur in
the intestine of fish-eating birds where they mate and re-
lease eggs into the environment. Free-swimming larvae
hatch from the eggs and are consumed by freshwater
copepods, the first host. Tapeworm larvae in copepods,
termed procercoids, undergo a period of growth and de-
velopment before they are infective to three-spined
sticklebacks (Gasterosteus aculeatus), the second inter-
mediate host. Transmission is trophic, and soon after
being consumed by sticklebacks the parasite invades the
body cavity [50]. Worms, now dubbed plerocercoids,
grow for several weeks in fish before becoming infective
to birds [51]. Here, we focused on the transition from
copepods to fish. Fitness in fish (infection probability
and growth rate) increases with age at transmission [45],
and when age is kept constant, big procercoids have
higher fitness [43]. However, the correlation between
procercoid size and fitness only holds when copepod size
is kept rather constant, i.e. being large relative to the
host is beneficial, but not necessarily being large in gen-
eral. Variation in developmental maturity could explain
both the effect of age and the effect of relative size. Mor-
phological changes indicative of infectivity occur as es-
tablishment probability increases with procercoid age.
Moreover, procercoid size and development are posi-
tively correlated within copepod stages (relative size cor-
relates with development), but not between them
(copepod-stage-induced size variation is not correlated
with development) [52,53].
We measured three components of worm fitness in

fish (infection probability, growth rate, energy storage)
and evaluated how they were related to larval traits (size,
age, ontogeny). We exposed fish to worms of two differ-
ent ages (11 or 17 days in copepods). If size affects fit-
ness mainly through its relationship with ontogeny, then
we expected a size-fitness correlation to be steeper in
the young group (11 days), because there is more devel-
opmental variation at this time. We also kept copepods
on either a high or low food diet to 1) induce size vari-
ation and to 2) assess whether there are nutritionally-
determined carryover effects poorly captured by the
other measured larval traits.

Methods
Infection protocol and procercoid size measurements
Both the copepods and the tapeworms used in the ex-
periment were raised in the laboratory, but they were
originally collected from Lake Skogseidvatnet, Norway
(60°13′ N, 5°53′ E). Plerocercoids were dissected from
the body cavity of sticklebacks that had been reared and
infected in the lab. Worms were bred in size-matched
pairs in an in vitro system that was developed by Smyth
[54] and later modified by Wedekind [55]. Size-matching
facilitates outcrossing [56]. Eggs were collected and
stored at 4°C for 1 week, before being incubated at 20°
for 3 weeks in the dark. Eggs were exposed to light one
day before the copepod exposure to induce hatching.
To produce copepods for the experiment, several tanks

(5 L) were set up containing 5–10 egg-bearing female
copepods (Macrocyclops albidus) (details of the copepod
cultures can be found in [57]). After 4 weeks, adult male
copepods were collected from these tanks and individually
isolated in the wells of a 24-well microtitre plate (~1.5 ml
per well). By using only adult male copepods, we elimi-
nated any variation attributable to copepod stage, sex, or
growth (adults do not molt further). One day after isola-
tion, each copepod was exposed to a single coracidium.
Single-worm infections seem to be the norm for cestode-
copepod systems in the field [58-62]. Copepods were main-
tained at 18°C with an 18:6 L:D cycle, and were fed with ei-
ther two (low food treatment) or four (high food
treatment) A. salina nauplii every other day. Copepod sur-
vival and parasite growth are reduced in the low food treat-
ment [52], implying these treatments are sufficient to
produce variation in the energy available to developing
worms.
Copepods are reasonably transparent, permitting

worm larvae to be observed in vivo. Nine days post
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exposure (DPE) infected copepods were placed on a
slide, and procercoids were recorded as having or not
having a cercomer. The cercomer is a round structure
that forms on the posterior end of worms, and although
its function is not known, its appearance is correlated
with the development of infectivity to fish [63]. Thus,
cercomer presence/absence 9 DPE dichotomizes worms
into groups of fast or slow developers.
The area of larval worms was measured one day prior

to exposing fish (either 10 or 16 DPE). Copepods were
placed on a microscope slide and photographed two
times. Procercoid area was measured using the freeware
Image J 1.38x (Rasband, W.S., NIH, Bethesda, Maryland,
USA, http://rsb.info.nih.gov/ij/, 1997–2009) and the two
measurements were averaged to give values for individ-
ual worms. Area was calculated without the cercomer,
because the outline of the cercomer is often difficult to
clearly observe in vivo and because cercomer size is
tightly correlated with procercoid body size [64]. Thus,
calculating worm area with or without the cercomer
likely gives very similar results.

Fish infection and dissection
Lab-bred sticklebacks (7 to 8 months old, mean length =
4.2 cm (± 4.2 SD)) were randomly assigned to be exposed
to procercoids that had been in well- or poorly-fed cope-
pods for either 11 or 17 days. At 17 DPE, nearly all procer-
coids appear morphologically mature, but at 11 DPE there
is substantial developmental variation [52,53]. A few days
before exposure, fish were individually isolated in small
tanks (18 x 13× 11 cm), and a dorsal spine was clipped to
provide DNA for later identification. Each fish was
exposed to one infected copepod. Several days after expos-
ure, fish were weighed, measured, and transferred to larger
tanks (30 × 22× 25 cm) at densities of 15 to 17. Three
times per week fish were fed ad libitum with frozen chiro-
nomids and cladocera. Twenty-five to 28 DPE fish were
killed and dissected, and all collected worms were weighed
to the nearest 0.1 mg. At this time, worm growth is expo-
nential and apparently unconstrained by fish size [65], so
plerocercoid weight reflects variation in growth rates. We
took a tail clip for DNA extraction. By taking fish tissue
samples both before exposure and after dissection, we
were able to identify individual fish, and thus know to
which procercoid it was exposed, without maintaining fish
in individual tanks. DNA was extracted from spine and tail
clips with the Qiagen DNeasy 96 Blood and Tissue Extrac-
tion Kit, following the manufacturer’s protocol. Nine
microsatellite loci were amplified in two multiplex PCR
reactions (conditions given in [66]).

Glycogen assay
Glycogen is the most important macronutrient for energy
storage in tapeworms [63]. We quantified the glycogen
content of the young plerocercoids for two reasons: 1) to
use as an additional fitness component and 2) to check
whether growth rate impacts energy reserves and thus to
critically evaluate plerocercoid size as a fitness component.
Glycogen content was assayed based on the protocol
described by Gómez-Lechón et al. [67]. Plerocercoids were
homogenized in a cell mill (Qiagen TissueLyser II, Retsch
GmbH). Glycogen standards of known concentration were
prepared and run simultaneously (Sigma G0885, concen-
trations: 900, 700, 500, 300, 200, 100, 50, 0 μg). Samples
were diluted to concentrations of ~0.1 to 1.8 μg μl-1, and
40 μl per sample were pipetted into the wells of a 96-well
microtitre plate. 60 μl of a glucoamylase solution (250 mU/
well enzyme [Sigma A1602] in 0.2 M sodium acetate buf-
fer, pH 4.8) were added to each well, and samples were
incubated for 2 hr at 40°C with shaking. Plates were then
spun at 2500 rpm for 5 min and 10 μl of 0.25 M NaOH
were added to stop the enzymatic reaction. To quantify the
freed glucose, a Glucose Oxidase/Peroxidase coloring re-
agent was prepared following the manufacturer’s instruc-
tions (Sigma G3660) with 1 mg/ml ABTS (Merck 194430)
in 100 mM phosphate buffer, pH 7, included. This coloring
reagent was added to each well (200 μl), samples were
incubated in the dark for 30 min, and absorbance was
recorded at 405 nm with a PowerWave Microplate Spec-
trophotometer (Bio-Tek Instruments). Samples were run
in triplicate. Glycogen values were repeatable within indivi-
duals (Intraclass correlation coefficient = 0.995, P< 0.001),
so they were averaged. Glycogen was expressed as a density
(μg per mg plerocercoid fresh weight).

Data analyses
We separately analyzed three fitness components: infec-
tion rate in fish, growth in fish (plerocercoid weight),
and the energy reserves of plerocercoids (μg glycogen
per mg fresh weight). Infection was analyzed with logis-
tic regression, while general linear models (ANOVA)
were used to assess growth and glycogen. We included
four predictors in all statistical models: procercoid age at
transmission (11 or 17 days, AGE), procercoid size at
transmission (PROC), cercomer presence/absence day 9
(fast and slow development, DEVO), and feeding treat-
ment (high and low, FEED). For the analysis of plerocer-
coid weight and glycogen content, we also included as a
factor the number of days worms spent in fish (25, 26,
27, or 28). All main effects were tested as well as the fol-
lowing potentially interesting interactions AGE x DEVO
(is developmental variation measured 9 DPE particularly
important at a young age?), AGE x PROC (does size only
matter when there is developmental variation early on?),
and AGE x FEED (does time spent in the feeding treat-
ments matter?). Preliminary analyses and previous stud-
ies [43] indicated that characteristics of the fish host,
such as its size, sex, and condition (hepatosomatic
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Figure 1 Infection rate of procercoids after 11, 14, or 17 days
in copepods. Procercoids were recorded as having or not having a
cercomer on day 9. Inset photograph shows a procercoid with a
well-developed cercomer in vivo (arrow). Error bars represent the
95% CI and numbers within columns are sample sizes. Data from
day 14 were from ref [43].
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index), did not influence the measured fitness compo-
nents, so they were not considered.
Statistical analyses were conducted with SPSS 18.0

(SPSS Inc., Chicago, Ill.) and R 2.14.1 (R Development
Core Team, Vienna, Austria). The dataset is available as
Additional file 1. We also re-visited some of the results
of Benesh et al. [43]. They studied how S. solidus procer-
coid size 14 DPE affects infection probability and growth
in fish. This is between our two age groups (11 and 17
DPE), so we present their results for comparative pur-
poses. Note that due to the different experimental condi-
tions we did not jointly analyze data from Benesh et al.
and the current experiment. Cercomer presence/absence
9 DPE had been recorded in the previous study, but its
importance was not evaluated. Plerocercoid size mea-
surements in the two studies are not easily comparable
(fully-developed worms vs the young, growing plerocer-
coids studied here), so we only show infection rate
results. The results from their experiments using large
copepods are presented, as that is most comparable to
this study.

Results
Determinants of infection
At 11 DPE, only 9.5% (11/116) of procercoids success-
fully infected fish, whereas 82% (82/100) were successful
at 17 DPE. Given the low variation in infection success
within the two age groups, there was relatively low
power to detect interactions between AGE and the other
predictors, so non-significant effects need to be inter-
preted cautiously. There was, however, a significant AGE
x DEVO interaction (Wald χ1

2 = 5.92, P= 0.015). Fast
developers had a higher infection probability 11 DPE,
but not 17 DPE, and the results of Benesh et al. suggest
an intermediate effect 14 DPE (Figure 1). Surprisingly,
neither PROC nor its interaction with AGE was signifi-
cant (Wald χ1

2 = 0.054, P = 0.82 and Wald χ1
2 = 0.026,

P= 0.87, respectively), even though bigger worms seemed
more successful at day 11 (and day 14) (Figure 2). Simi-
larly, FEED seems important when considered in isolation,
with procercoids from the low food treatment having
lower infection rates (Figure 3), but the effect was not sig-
nificant in the full model (Wald χ1

2 = 2.23, P=0.135). The
PROC and FEED main effects remained non-significant
when their interactions with AGE were removed from the
model (P=0.84 and P=0.09, respectively). The absence of
significant PROC or FEED effects could reflect collinear-
ity, i.e. the variation in infection attributable to these vari-
ables is better captured by AGE or DEVO.

Determinants of plerocercoid size
No terms significantly affected plerocercoid weight in
the full model (all P> 0.05), with the exception of
days in fish (P= 0.038). However, this model was
significantly better than an intercept-only model
(R2 = 0.306, F8, 84 = 3.62, P< 0.001), suggesting add-
itional variables had explanatory value. Because 88%
(82/93) of the worms recovered from fish were from
17 DPE, the interactions between AGE and the other
predictors were estimated with large standard errors.
Removal of the interaction terms one-by-one did not
significantly reduce explanatory power and result in a
worse model (all F1, 84< 0.692, all P> 0.41, R2

dropped from 0.306 to 0.294 with all interactions
removed). A model with only the five main effects
indicated that plerocercoid size increased with days in
fish (F3, 85 = 2.89, P = 0.04), that it increased with pro-
cercoid size (F1, 85 = 12.92, P = 0.001), and that worms
with a cercomer 9 DPE grew to be larger plerocer-
coids (F1, 85 = 9.68, P = 0.003) (Figure 4). AGE and
FEED were not significant (F1, 85 = 0.18, P= 0.67 and
F1, 85 = 0.14, P= 0.71, respectively).
Determinants of energy content
None of the two-way interactions had a significant effect
on glycogen content (all F1, 80< 2.84, all P> 0.096), and
their removal did not significantly decrease explanatory
power (R2 dropped from 0.191 to 0.158, F3, 80 = 1.09,
P=0.36). A main-effects-only model indicated that plero-
cercoids had higher glycogen content if they had a cerco-
mer 9 DPE (F1, 83 = 9.61, P=0.003) (Figure 5). There was
also a non-significant trend for worms from the high feed-
ing treatment to have more glycogen (F1, 83 = 3.17,
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Figure 2 (A) The mean size of procercoids (um2) that did (hatched bars) and did not (open bars) successfully infect sticklebacks after
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P=0.079), but all other effects were not significant (all
F< 2.12, all P> 0.15).
It should also be noted that plerocercoid size and

glycogen content were positively correlated (R2 = 0.259,
F1, 90 = 31.2, P< 0.001) (Figure 6).
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Discussion
How long [45] and how fast [43] S. solidus grow in cope-
pods is known to influence infection and growth in
sticklebacks. Our results complement those studies and
suggest that larval ontogeny is very important for the
Cercomer

ids from fish that had developed fast (cercomer after 9 days in
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coupling of performance in the two hosts. Procercoids
that develop faster (have a cercomer 9 DPE) are able to
infect fish sooner, and they tend to grow to larger sizes
with larger energy reserves in fish. Moreover, the previ-
ously documented association between procercoid size
and fitness seems partially attributable to ontogeny.
Fast-growing procercoids tended to have higher infec-
tion rates at 14 DPE, and perhaps 11 DPE. Ontogeny is
positively correlated with procercoid size at this time, at
least when environmental conditions (copepods stage)
are constant [52,53], suggesting that developmental vari-
ation may underlie the increase in infection probability
with procercoid size. At 17 DPE worms are essentially
fully developed, and at this time point there was no in-
fluence of procercoid size or ontogeny on infection
probability. On the other hand, worms that were bigger
when entering fish were also bigger when recovered,
suggesting that procercoid size may influence fitness in-
dependently of ontogeny.
Growth and development are interwoven processes, so

their individual contributions to fitness are difficult to
completely disentangle. It is nonetheless clear that
worms that grow and develop rapidly have the highest
fitness under experimental settings. For example, let us
compare a fast-growing, fast-developing worm (cerco-
mer 9 DPE and one SD larger than the sample mean)
with a slow-growing, slow-developing worm (no cerco-
mer 9 DPE and one SD smaller than the mean). The
fast-growing worm is predicted to have up to 20% higher
infection probability (at 11 DPE), and to be ~85% bigger
with ~25% higher glycogen content after 3.5 weeks in
sticklebacks. Hammerschmidt et al. [45] suggested that
the optimal switching time for S. solidus balances in-
creasing establishment probability in fish and decreasing
survival probability in copepods. This is similar to the
size-age tradeoffs thought to shape switching times in
free-living animals with complex life cycles. Just as the
tradeoff between size and age depends on growth rate
[68], the tradeoff between establishment probability and
mortality is mediated by developmental rate; worms that
rapidly develop may switch earlier to fish, avoiding age-
related mortality in copepods. Thus, the advantages to
rapid growth and development appear pronounced: earl-
ier infectivity and the resulting avoidance of mortality in
copepods as well as faster and more efficient growth in
fish.
Although there seems to be selection for rapid growth

and development in copepods, long-term phenotypic
change is unlikely. Parasite species from divergent taxa
with similar life cycles (e.g. transmission from a copepod
to a fish) tend to exhibit characteristic rates of larval
growth and development, strongly suggesting life history
strategies converge to universal adaptive peaks for a
given type of life cycle [69]. Thus, there are presumably
important tradeoffs that make extremely rapid growth or
development suboptimal. Several hypotheses exist: 1)
rapid growth and ontogeny requires over-consumption
of host nutrients reducing host survival (i.e. the viru-
lence tradeoff [31,70]), 2) acquiring the resources for
rapid growth and ontogeny requires host specialization
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and reduced generality [71], 3) rapid growth or ontogeny
is less efficient, resulting in higher susceptibility to envir-
onmental stressors, such as starvation [26,72,73], 4) mat-
uration, and the cell differentiation it entails, reduces
growth potential [74]. Benesh [75] argued that there is
relatively little evidence for hypothesis one for the larval
stages of trophically-transmitted helminths, including S.
solidus in copepods [55,57,76]. Hypothesis two cannot
be discounted, because host specificity seems important
for the larval life history of some tapeworms [77], al-
though S. solidus is a generalist in copepods [78]. Hy-
potheses three and four are allocation tradeoffs (somatic
growth vs energy storage, maturation vs growth poten-
tial). Such tradeoffs can be masked by variation in re-
source acquisition [79,80]. For instance, in opposition to
hypothesis four, fast-growing S. solidus procercoids also
develop quicker [53], perhaps because they have more
resources available to them. Certainly there is more
work to do to identify the tradeoffs shaping larval life
history strategies in parasites.
The feeding treatment had only moderate, non-signifi-

cant effects on infection rate and glycogen content, and
no effect on plerocercoid size. A possible explanation for
this is that, given their stronger effects, procercoid size
and cercomer presence/absence explain the variation in
fitness induced by the feeding treatment. In any case,
carryover effects attributable to unmeasured condition
variables do not appear to be pronounced. Some of the
covariance between larval traits (growth and ontogeny)
and the fitness components was surely induced by the
feeding treatment and thus environmentally-determined.
Because genetic variation is a prerequisite for trait evolu-
tion, it will be interesting to see if there is genetic covari-
ance between larval traits and fitness, i.e. do parasite
genotypes that rapidly grow and develop also have
higher infection probability?
Glycogen makes up approximately 16% of the weight of

fully-developed plerocercoids taken from fish (>100 mg)
[81]. In the young plerocercoids studied here (~7 mg on
average), glycogen constituted 2.9% of worm wet weight,
and in medium-sized plerocercoids (~75 mg) it is about
10% (Benesh and Kalbe, unpublished data). Thus, worms
appear to steadily increase their glycogen reserves as they
grow in fish. We observed that the fastest-growing worms
in fish had the highest glycogen content, suggesting rapid
growth is not inefficient and contradicting hypothesis three
above. This may be another case in which variation in re-
source acquisition masks an allocation tradeoff, i.e. worms
in good condition can invest in both somatic growth and
energy storage.

Conclusions
Transmission up the food web into bigger, ‘better’ hosts
does not imply a new start for parasites. Analogous to
free-living organisms with complex life cycles, pheno-
typic variation in the intermediate host can have carry-
over effects in the next host, though additional studies
are needed to generalize this. For S. solidus procercoids,
transmission to sticklebacks as a small, not-yet-fully
developed larva has clear costs in terms of lower infec-
tion probability and stunted, inefficient growth. Given
the seemingly strong selection for rapid growth and de-
velopment in copepods, more work is needed to identify
what prevents change in the ontogenetic schedule of S.
solidus (ecological tradeoffs? genetic constraints? devel-
opmental thresholds?).

Additional file

Additional file 1: Description of the data file for the paper "Growth
and ontogeny of the tapeworm Schistocephalus solidus in its
copepod first host affects performance in its stickleback second
intermediate host". The columns in the data file "Benesh_Hafer_datafile.
csv" are listed below with descriptions of their contents.

AGE - Age of worms when given to fish (either 11 or 17 days after
infecting copepods).
FEED - Infected copepods were fed either a high (H) or low (L) food diet.
CERC - Whether worms did (1) or did not (0) have a cercomer after 9
days in copepods.
PROC - The size of procercoids (um2) measured in vivo one day before
exposure to fish.
I.FTL - Total length (mm) of fish at exposure.
I.FSL - Standard length (mm) of fish at exposure.
I.FW - Weight (g) of fish at exposure.
DAYS - Days between exposure and dissection of fish.
F.FTL - Total length (mm) of fish at dissection.
F.FSL - Standard length (mm) of fish at dissection.
F.FW - Weight (g) of fish at dissection.
Corr.F.FW - Fish weight when the weight of the plerocercoid is removed.
LW - Weight (mg) of the liver.
HSI - Hepatosomatic index (LW/Corr.F.FW).
INF - Whether the worm successfully infected a fish (1) or not (0).
PLER - Weight (mg) of plerocercoids recovered from fish.
SEX - Sex of fish (0 = male, 1 = female).
GLYC - Glycogen content of recovered plerocercoids (ug glycogen per
mg fresh weight).
REMARK - Two samples were lost during glycogen extraction, as noted in
this column.
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