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Abstract

Background: Phlebotomine insects harbor bacterial, viral and parasitic pathogens that can cause diseases of public
health importance. Lutzomyia longipalpis is the main vector of visceral leishmaniasis in the New World. Insects can
mount a powerful innate immune response to pathogens. Defensin peptides take part in this response and are
known to be active against Gram-positive and Gram-negative bacteria, and some parasites. We studied the
expression of a defensin gene from Lutzomyia longipalpis to understand its role in sand fly immune response.

Methods: We identified, sequenced and evaluated the expression of a L. longipalpis defensin gene by
semi-quantitative RT-PCR. The gene sequence was compared to other vectors defensins and expression was
determined along developmental stages and after exposure of adult female L. longipalpis to bacteria and
Leishmania.

Results: Phylogenetic analysis showed that the L. longipalpis defensin is closely related to a defensin from the Old
World sand fly Phlebotomus duboscqi. Expression was high in late L4 larvae and pupae in comparison to early larval
stages and newly emerged flies. Defensin expression was modulated by oral infection with bacteria. The
Gram-positive Micrococcus luteus induced early high defensin expression, whilst the Gram-negative
entomopathogenic Serratia marcescens induced a later response. Bacterial injection also induced defensin
expression in adult insects. Female sand flies infected orally with Leishmania mexicana showed no significant
difference in defensin expression compared to blood fed insects apart from a lower defensin expression 5 days
post Leishmania infection. When Leishmania was introduced into the hemolymph by injection there was no
induction of defensin expression until 72 h later.

Conclusions: Our results suggest that L. longipalpis modulates defensin expression upon bacterial and Leishmania
infection, with patterns of expression that are distinct among bacterial species and routes of infection.
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Background
Sand flies are vectors of bacterial and parasitic diseases
such as bartonellosis and leishmaniasis [1,2]. Lutzomyia
longipalpis is the main vector of Leishmania infantum
chagasi, the causative agent of visceral leishmaniasis in
South America [2]. Although little is known about sand
fly responses to bacterial infection, several studies have
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focused on molecular events that occur during the
establishment of Leishmania infection in the insect [3].
Leishmania molecules such as lipophosphoglycan (LPG)
[4] and chitinase [5] have been shown to contribute to
the success of Leishmania infections in sand flies. Add-
itionally, sand fly molecules such as galectin receptors
[6], digestive proteases [7,8] and a physical barrier such
as the peritrophic matrix [9] have been shown to have
an important role in Leishmania survival within the sand
fly gut.
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Several studies have described the natural gut micro-
biota in Old World [10-12] and New World sand flies
[13-16] although mechanisms by which sand flies con-
trol the microbial balance in the gut are still unknown.
Insects are capable of mounting a complex repertoire

of immune responses to maintain gut homeostasis and
eliminate pathogens. Cellular responses include phago-
cytosis by hemocytes and melanotic encapsulation of
pathogenic microorganisms through the activation of
the phenoloxidase cascade [17]. Humoral responses, on
the other hand, lead to the synthesis of a wide range of
effector molecules, including antimicrobial peptides
(AMPs) [18-20]. AMPs have been described in many
insects as having a central role in innate immune
responses against bacterial and parasitic infections [21-23].
Among these, defensin (a 4 kDa cationic peptide) has been
identified in several insects [23-26] and shown to have a
deleterious effect on bacteria [26], Plasmodium [27] and
Leishmania [28,29]. Defensin was shown to be upregu-
lated in Phlebotomus duboscqi upon Leishmania major
infection [29]. Here we identified, sequenced and inves-
tigated the expression profile of a L. longipalpis defen-
sin throughout the sand fly developmental stages, after
Gram-positive and Gram-negative bacterial challenges
and after sand fly infection with Leishmania mexicana.

Methods
Defensin gene sequence analysis
Partial L. longipalpis defensin gene (LlDef1) sequences
were obtained from our previous database [30,31] and
the full genomic sequence was obtained using primers
designed to target the 5'UTR and 3'UTR regions (LlDef1F
5’-TTGGTCATAGCGTGCAGAAG-3’ and LlDef1R 5’-
AAAAACATTGAAACATGCGACTT-3’). Sequence iden-
tity was determined by similarity using BLAST searches
[32] against the NCBI database. Multiple alignments were
performed using the MAFFT software [33]. Phylogenetic
tree analysis was done using MEGA5 software [34] with
Neighbor-Joining test, using the p-distance method with
complete deletion and 10,000 replicates for bootstrap
value. The molecular model of the L. longipalpis defensin
was built based on the tertiary structure of the Anopheles
gambiae [PDB:2NY8] [35] and Phormia terranovae
[PDB:1ICA] [36] peptides present in the Protein Data
Bank (PDB) [37]. The defensin sequence of L. longipalpis
and A. gambiae were deposited on the molecular model-
ing server of the SWISS-MODEL (Automated Compara-
tive Protein Modeling Server) [38,39] for the creation of a
3D prediction structure. The two structures were visually
analyzed using the Swiss PDB Viewer 3.7 [40].

Insects
All experiments were performed using insects from a
laboratory colony of L. longipalpis established from sand
flies caught in Jacobina (Bahia, Brazil) using standard
methods [41]. Insects were fed on 70% sucrose ad
libitum and fed on rabbit blood once a week. The
insectary was kept under controlled conditions of
temperature (27 ± 1°C), humidity (80–95%), and photo-
period (12 h/12 h). All procedures involving animals
were performed in accordance with the UK Government
(Home Office), HSE and EC regulations.

Experimental bacterial feeds
Escherichia coli (K12 RM148), Micrococcus luteus
(A270), Ochrobactrum sp. (OM1,198 Jacobina colony
isolate), Pantoea agglomerans (NCIMB11392), and
Serratia marcescens (NCIMB 1377) were inoculated on
Luria-Bertani (LB) agar plates and incubated overnight
for 24 hours at 37°C. Single colonies were transferred to
polypropylene tubes, grown overnight in LB liquid
medium, centrifuged at 13,200 rpm, re-suspended in
20% sucrose to OD600 = 0.2 and offered daily to female
L. longipalpis through cotton wool. All bacteria were
viable under these conditions over the duration of the
experiment. Bacterial feed experiments were performed
in parallel, one for each bacteria species, collecting 3
pools of 3 females each.

Leishmania infections
Leishmania infections were performed as previously
described [42]. In brief, L. mexicana (strain MNYC/BZ/
62/M379) were cultured at 26°C in M199 medium sup-
plemented with 25 μg/mL gentamicin sulphate (Sigma),
1X BME vitamins (Gibco) and 10% fetal calf serum
(PAA). In preparation for infection, 2 mL of heat-
inactivated (56°C for 1 hour) rabbit blood was used to
re-suspend cultured promastigotes to a final concentra-
tion of 2 × 106 promastigotes/mL. Rabbit blood seeded
with parasites was offered to L. longipalpis through chick
skin feeders and fully engorged flies were transferred to
fresh cages. Sand flies were dissected at 5 days post-
infection to confirm successful infections. Control flies
were fed on rabbit blood only. The infection experiment
was performed once, collecting 3 pools of 3 females each.

Microinjections
Newly emerged L. longipalpis were microinjected in the
thorax with 18 nL of E. coli culture in LB medium at
OD600 = 0.2 or 2 × 106/mL L. mexicana promastigotes
using a Nanoject II microinjector. Control flies were
either pricked in the thorax with a borosilicate needle or
injected with 18 nL of autoclaved LB medium.

RNA extractions and RT-PCR
Total RNA was extracted from triplicate samples derived
from pools of 3 whole larvae or adult L. longipalpis
using TRI Reagent (Ambion). Semi-quantitative RT-PCR
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was performed using SuperScript III One-Step RT-PCR
Platinum TaqHiFi (Invitrogen) according to manufac-
turer’s instructions, with 10 ng of template RNA and
defensin-specific primers [30] (Defensin F 5’-GCCTGTG
TGTTGTGGTTCT-3’; Defensin R 5’- GCATCTCCC
CATCCTGTT-3’). Gene transcription was normalized
based on the 60S ribosomal protein L3 gene from L.
longipalpis [GenBank: AM088777]. RT-PCR products
were resolved on 2% agarose/ethidium bromide gels and
band intensity was determined by densitometric meas-
urement using the Image J software [43]. Differential
transcription of genes was determined by the ratio be-
tween target gene band intensity and the corresponding
60S L3 products obtained from multiplex RT-PCR
reactions.

Statistical analysis
Statistical t-test analysis was performed using the Graph-
Pad Prism software (San Diego, CA, USA). Results were
expressed as mean ± SEM. Significance was considered
when P < 0.05.
Figure 1 Sequence, phylogenetic analysis, and molecular modeling o
genomic sequence of the Lutzomyia longipalpis LlDef1 defensin gene cont
nt and the 3'UTR 153 nt (lower case gray letters). In the 5'UTR region, pote
shown (underlined bold lower case letters). The LlDef1 coding region cont
The amino acid prediction indicates an 87 residues peptide (upper case let
case letters). The first vertical bar limits the signal peptide and the second
pro-peptide with the potential to generate 3 disulfide bonds are underline
based on multi alignment created from defensins predicted amino acid se
[AAC18575.1], P. duboscqi [P83404.3], Rhodnius prolixus [AAO74624.1], Glossi
Ixodes scapularis [XP_002401521.1], showing the phylogenetic relationship
structure of the L. longipalpis defensin showing the characteristic architectu
α-helix (green).
Results
Defensin gene sequence and phylogeny
The LlDef1 sequence was shown to contain 1034
nucleotides (nt) with the coding region between nucleo-
tides 512 and 837 and an intron located between nucleo-
tides 617 and 681 (Figure 1A). The 5'UTR sequence
displayed putative binding sites for dorsal, caudal and
HSF transcription factors and a polyadenylation signal
site was found in the 3'UTR. The amino acid prediction
indicates an 87 residues peptide, from which 40 corres-
pond to the mature peptide (4.23 kDa) (Figure 1A).
Multiple alignment analysis indicated conserved regions

among all defensin sequences selected from blood feeding
arthropods (data not shown) and the phylogenetic analysis
showed that the L. longipalpis defensin sequence is closely
related to defensins obtained from P. duboscqi and other
nematocerans (Figure 1B). The putative L. longipalpis
defensin tertiary structure was developed based on other
insect defensins present in PDB. The analysis of the struc-
ture showed the expected architecture with two anti-
parallel β-sheets and one α-helix (Figure 1C).
f Lutzomyia longipalpis defensin 1 (LlDef1). (A) The complete
aining 1034 nucleotides (nt) is shown. The 5'UTR region contains 518
ntial binding sites for transcription factors Dorsal, Dfd and Caudal are
ains 363 nucleotides with a 63 nt intron (gray lower case italic letters).
ters), from which 40 correspond to the mature peptide (bold upper
vertical bar divides the pre and pro-peptide. The 6 cysteines of the
d and the polyadenylation site is indicated. (B) Neighbour-joining tree
quences of L. longipalpis [JQ970473], A. aegypti [P81602.2], A. gambiae
na morsitans [Q8WTD4.1], Culex quinquefasciatus [AEQ27735.1] and
between L. longipalpis and other insect defensins. (C) Putative tertiary
re of arthropod defensins with two anti-parallel β-sheets (red) and an
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Transcription of defensin in L. longipalpis developmental
stages
RT-PCR was performed with RNA samples obtained
from both immature and newly emerged sand flies. Ac-
tively feeding larvae (L3 and L4-f ) expressed low defen-
sin levels compared to non-feeding L4 larvae, although
the difference was not statistically significant (Figure 2).
Defensin expression was significantly lower in L3 and
L4-f when compared to pupae. Similarly, newly emerged
females showed a trend towards lower levels of defensin
expression in comparison to pupae (Figure 2).

Transcription of defensin in L. longipalpis fed on bacteria
or Leishmania
Defensin expression increased in female sand flies fed on
four out of five bacteria tested when compared to sugar
fed controls. This increased defensin expression was statis-
tically significant 48 and 72 h after E. coli, Ochrobactrum
sp. or S. marcescens ingestion (Figure 3A, B and C), and
24, 48 and 72 h after M. luteus ingestion (Figure 3E).
Defensin expression decreased significantly 24 and 48 h
after P. agglomerans ingestion and was unchanged in rela-
tion to controls at 72 h (Figure 3D). At the latest time
point tested (96 h after infection), defensin expression
returned to control levels observed in sugar-fed sand flies
for all bacteria tested.
In adult females fed both on blood or blood containing

L. mexicana, defensin expression increased sharply at
48 h and then slowly decreased from that time point
until 144 h post-feed. In insects fed on blood containing
Figure 2 Defensin expression analysis in L. longipalpis
developmental stages. Relative defensin gene expression
(normalized against the housekeeping internal control gene 60S
rRNA) was determined for feeding larval stages (L3 and L4-f),
non-feeding stages (L4 and pupae) and recently emerged female
L. longipalpis. Bar charts represent mean ± SEM of 3 pools of 3
insects. Asterisk indicates statistical significance at P < 0.05.
Leishmania defensin expression decreased significantly at
144 h in comparison to blood fed controls (Figure 3F).
Expression of defensin was also investigated in insects

exposed to E. coli and L. mexicana through injection
into the hemocoel. Pricking the insects (data not shown)
or injecting female sand flies with autoclaved LB media
generated an increase in defensin expression at 24 and
48 h after injection in comparison to uninjected sugar-
fed control sand flies (Figure 4). Similarly, female sand
flies expressed higher levels of defensin mRNA at 24 and
72 h after E. coli injection when compared to the mock-
injected control group (Figure 4). Insects injected with
L. mexicana initially expressed significantly reduced
levels of defensin mRNA at 24 and 48 h after injections,
showing increased defensin expression at 72 h after
injections when compared to the corresponding control
group (Figure 4).

Discussion
In the present study we investigated and analyzed the
expression profile of a defensin gene in L. longipalpis de-
velopmental stages, adult females infected orally with
Gram-positive or negative bacteria and L. mexicana, or
injected with E. coli or L. mexicana.
The L. longipalpis LlDef1 defensin gene contains two

exons (134 and 172 nt respectively) interspersed with a
63 nt intron. The presence of six cysteines at positions
52, 57, 61, 71, 77 and 79 on the predicted amino acid
sequence, with the potential to create three disulfide
bonds, characterizes a defensin signature sequence
[Pfam 01097]. We also sequenced 511 nt of the LlDef1
5'UTR and the analysis revealed that this gene is poten-
tially under the control of at least two immune-related
transcription factors: caudal and dorsal. Caudal encodes
a DNA-binding nuclear transcription factor that plays a
crucial role during development and innate immune
response in Drosophila [44]. In Drosophila, Dorsal has
its nuclear localization enhanced upon microbial chal-
lenge, interacting with Pelle, Tube, and Cactus during
Toll activation to translocate and bind to NFκB-related
sequences of AMP genes inside the nucleus [45]. The
phylogenetic analysis showed that LlDef1 is similar to
defensin sequences from other nematoceran diptera,
being closely related to a P. duboscqi defensin [29].
High transcription levels were detected in non-feeding

L. longipalpis L4 larvae and pupae. In Anopheles
gambiae, defensin expression was detected in non-
challenged third and fourth instar larvae and pupae,
reaching high expression levels after E. coli injections
[46]. A Drosophila defensin was detected in third instar
larvae only after bacterial challenge, although expression
was detected in non-challenged pupae [47], similarly to
what was observed in L. longipalpis and A. gambiae. No
previous study explored the immune response in



Figure 3 Defensin expression analysis in L. longipalpis fed with bacteria or orally infected with Leishmania. Female L. Longipalpis fed on
suspensions of (A) E. coli; (B) Ochrobactrum sp.; (C) S. marcescens; (D) P. agglomerans; (E) M. luteus, were collected at 24, 48, 72 and 96 h after
feeding (gray bars). Insects fed on sterile sucrose solution were used as control (white bars). (F) Female L. longipalpis fed on blood seeded with
L. mexicana were collected at 24, 48, 72, 96, and 144 h after infection (black bars). Insects fed on blood were used as control (dark gray bars). The
relative defensin gene expression was normalized against the housekeeping internal control gene 60S-rRNA. Bar charts represent mean ± SEM of
3 pools of 3 insects. Asterisks represent statistical significance at P < 0.05.

Figure 4 Defensin expression analysis upon bacterial and
Leishmania injection into the hemocoel of female L. longipalpis:
Female L. longipalpis were microinjected with E. coli (dark gray
bars) or L. mexicana suspensions (black bars) and collected at
24, 48 and 72 h after pathogen inoculation. Insects fed on sugar
(white bars) or injected with LB medium (light gray bars) were used
as controls. The relative defensin gene expression was normalized
against the housekeeping internal control gene 60S-rRNA. Bar charts
represent mean ± SEM of 3 pools of 3 insects. Asterisks represent
statistical significance at P < 0.05.
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naturally feeding versus non-feeding larvae in the
Diptera group. Since transstadial passage of bacteria
from larvae to pupae and adult flies has been already
reported for sandflies [12,48,49], L. longipalpis non-
feeding L4 and pupae may trigger defensin expression to
control and select gut microbiota during late L4 through
pupation to emerged adult.
L. longipalpis were orally exposed to five different

Gram-positive and Gram-negative bacteria. Defensin ex-
pression was found to increase with time upon infection
with the Gram-negative E. coli, Ochrobactrum sp. and S.
marcescens. Ochrobactrum sp. is acquired by P. duboscqi
larvae from the environment [12] and it is plausible to
consider that it is recognized by the insect immune system
as a foreign antigen as much as E. coli. S. marcescens is
entomopathogenic and was shown to trigger the L.
longipalpis immune system through ROS increase
[50]. Interestingly, infection with the Gram-negative P.
agglomerans showed an initial decrease of defensin ex-
pression and a very constant level of expression over
time matching control levels. This may be due to the
fact that this bacterium, commonly found in Anopheles
stephensi gut, is not pathogenic [51] and may not be
recognized as a hazard by L. longipalpis. Insect defen-
sins are known to be active mainly against Gram-
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positive bacteria [23,26,52]. Accordingly, flies exposed
to the Gram-positive M. luteus showed a sharp up-
regulation of defensin mRNA during the early stages of
infection (24 h post-feeding). Although defensin gene
expression dropped considerably during the following 3
days, transcription was still significantly increased at 48
and 72 h post-feeding in comparison to controls.
These results suggest that sand flies are capable of

mounting different innate immune responses against
distinct bacterial species. A previous study that used the
synergistic effects of lysozyme with antibacterial peptides
revealed that L. longipalpis can successfully mount a
humoral response against bacterial challenge and this re-
sponse specifically discriminates between M. luteus and
E. coli [53]. Although an increase of expression of a
4 kDa peptide was detected in the hemolymph of both
M. luteus and E. coli-injected L. longipalpis in compari-
son to mock-injected controls, an unknown 33 kDa pep-
tide could be detected in the hemolymph of the sand fly
only when insects were challenged with M. luteus but
not with E. coli [53]. These findings, and our present
results, suggest that specific and discriminating immune
responses are probably produced against the Gram-
positive and Gram-negative bacteria in L. longipalpis.
At 48 h after artificial blood feeding and artificial in-

fection with L. mexicana adult female sand flies showed
a dramatic increase of defensin expression that slowly
decreased over time. This initial increase in defensin ex-
pression may be a response to the proliferation of sand
fly gut microbiota caused by the ingestion of a nutrient-
rich blood meal as it was seen in P. duboscqi [12] and
Aedes aegypti [54,55]. Interestingly, a defensin down
regulation was observed starting at 72 h after Leishmania
infection, reaching statistical significance at 144 h in
comparison to blood-fed controls. Late infections were
previously correlated with high numbers of Leishmania
promastigotes within the sand fly gut [56]. Our present
results indicate that high parasite number is correlated
to low defensin expression. One explanation of this may
be due to low levels of defensin expression at later time
points after bloodfeeding, allowing for parasite survival
and multiplication. On the other hand, if the defensin
expression response is primarily towards bacterial mo-
lecular factors then the significant fall in defensin ex-
pression may be due to suppression of the gut bacterial
population, via a competitive exclusion effect, in the
presence of Leishmania.
A different transcription profile was reported in P.

duboscqi infected with Leishmania major, where low
levels of defensin expression were observed in the first
day of infection whereas expression was strongly
induced at four days after the Leishmania infection [29].
It is plausible that different phlebotomine sand flies
and different Leishmania species may trigger diverse
immune responses. This has been reported in mosquitoes,
where different immune-related genes were modulated
upon infection with various Plasmodium species [57,58].
Expression of defensin in L. longipalpis after L.

mexicana or E. coli intra-thoracic injection was also
investigated. Pricked and LB medium-injected sand flies
showed an increase in defensin expression in compari-
son to uninjected sugar-fed controls at 24 and 48 h
post-injection. These results indicate that trauma by in-
jection was sufficient to activate the innate immunity
and induce defensin transcription in L. longipalpis.
Cuticle pricking and mock-injection of dsRNA into the
sand flies’ hemocoel was shown to reduce the number of
L. mexicana promastigotes within the midgut of L.
longipalpis, possibly by nonspecific activation of the
IMD pathway [59]. In A. aegypti, the injection of sterile
saline induced the mosquito immune response and pro-
duced low but detectable levels of defensin mRNA [60].
Previous work in L. longipalpis showed that antimicro-
bial activity increased in sham-injected insects when
compared to non-injected controls [53]. Similarly, our
results demonstrated that control L. longipalpis microin-
jected with medium showed a significant increase in
defensin expression at 24 h in comparison to controls,
which was maintained until 48 h post-injection. In
Drosophila Toll and IMD pathways can regulate differ-
ent AMPs [61] and both can act synergistically [62]. This
much is not yet explored in L. longipalpis.
Nimmo et al. [53] observed a significant increase in L.

longipalpis humoral response against E. coli or M. luteus
estimated by inhibition zone assays using hemolymph
from bacteria-challenged insects. In addition, P. duboscqi
inoculated with Erwinia carotovora showed higher
defensin expression in comparison to naive insects and
bacteria-fed sand flies [29]. Although in line with results
obtained for P. duboscqi, our results show a much sub-
tler defensin expression in L. longipalpis upon bacterial
injection. Similar results were obtained in A. aegypti
inoculated with E. coli andM. luteus which showed 3 times
higher levels of defensin peptides in their hemolymph
when compared to sterile saline-injected insects [63].
These results confirm that mosquitoes and sand flies can
mount an immune response through defensin expression
upon bacterial challenge in their hemolymph.
L. longipalpis injected with L. mexicana showed a sig-

nificant increase of defensin expression at 72 h post in-
fection. Although the presence of Leishmania in the
hemolymph does not occur in nature, it is possible that
the ectopic presence of parasites within the hemolymph
induced an immune response. It has been shown that
Drosophila is capable of producing an immune response
against injected Plasmodium gallinaceum oocytes [64].
Defensin reduction at 24 and 48 h after Leishmania
injection may be a counterbalance caused by activation
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of the IMD pathway triggering other AMP, but not
DefLl1. Later, at 72 h, L. longipalpis is able to express
high levels of defensin. To our knowledge, this is the
first report of an immune response in sandflies after
parasite injection. Investigation of other Toll or IMD
related AMPs could address and clarify this hypothesis
related to the sandflies immune response to Leishmania
injection in hemolymph, but none has been described
up to date.
Conclusion
Here, we have described a L. longipalpis defensin gene
similar to a P. duboscqi defensin, modulated by bacterial
feed and injection and Leishmania infections. These
genes are the only defensins so far described for both
sand fly species but the presence of multiple defensin
genes and other AMPs co-existing in sand flies is
possible. Defensin isoforms with distinct transcriptional
patterns and putative distinct roles were previously
described in A. gambiae [65]. The difference in defensin
expression levels upon bacterial challenge observed for
the New and Old World species may therefore be due to
expression of different defensin isoforms acting concert-
edly to control bacterial proliferation within the sand fly
midgut and hemolymph. Our results suggest that L.
longipalpis is able to mount a differential response of
defensin expression upon bacterial feeding and bacterial
injection into the hemocoel and Leishmania gut infection.

Competing interests
The authors declare no competing interests.

Authors’ contributions
RJD and YMT designed the experiments. ELT and MOA carried out the
biological and molecular experiments. ANP performed sequence and
phylogenetic analysis. ELT, MRVS, ANP, RJD and YMT wrote the manuscript.
All authors read and approved the final version of the manuscript.

Acknowledgements
This work was funded by The Leverhulme Trust (www.leverhulme.co.uk) ref
F/00 808/C; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior –
CAPES-PDEE; Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado
do Rio de Janeiro – FAPERJ; Instituto Oswaldo Cruz and PAPES VI-FIOCRUZ.

Author details
1Laboratório de Biologia Molecular de Parasitos e Vetores, Instituto Oswaldo
Cruz-Fiocruz, Rio de Janeiro, RJ, Brazil. 2School of Health and Medicine,
Lancaster University, Lancaster, England, UK. 3Vector Group, Liverpool School
of Tropical Medicine, Liverpool, England, UK. 4Present address: Yale School of
Public Health - LEPH, New Haven, CT, USA.

Received: 13 December 2012 Accepted: 14 December 2012
Published: 11 January 2013

References
1. Cohnstaedt LW, Beati L, Caceres AG, Ferro C, Munstermann LE:

Phylogenetics of the phlebotomine sand fly group Verrucarum (Diptera:
Psychodidae: Lutzomyia). AmJTrop Med Hyg 2011, 84:913–922.

2. Ready PD: Should sand fly taxonomy predict vectorial and ecological
traits? J Vector Ecol 2011, 36(Suppl 1):S17–S22.
3. Ramalho-Ortigao M, Saraiva EM, Traub-Cseko YM: Sand Fly-Leishmania
Interactions: Long Relationships are Not Necessarily Easy. The Open
Parasitology Journal 2010, 4:195–204.

4. Svarovska A, Ant TH, Seblova V, Jecna L, Beverley SM, Volf P: Leishmania
major glycosylation mutants require phosphoglycans (lpg2-) but not
lipophosphoglycan (lpg1-) for survival in permissive sand fly vectors.
PLoS Negl Trop Dis 2010, 4:e580.

5. Rogers ME, Hajmova M, Joshi MB, Sadlova J, Dwyer DM, Volf P, Bates PA:
Leishmania chitinase facilitates colonization of sand fly vectors and
enhances transmission to mice. Cell Microbiol 2008, 10:1363–1372.

6. Kamhawi S, Ramalho-Ortigao M, Pham VM, Kumar S, Lawyer PG, Turco SJ,
Barillas-Mury C, Sacks DL, Valenzuela JG: A role for insect galectins in
parasite survival. Cell 2004, 119:329–341.

7. Sant'anna MR, Diaz-Albiter H, Mubaraki M, Dillon RJ, Bates PA: Inhibition of
trypsin expression in Lutzomyia longipalpis using RNAi enhances the
survival of Leishmania. Parasit Vectors 2009, 2:62.

8. Telleria EL, de Araujo AP, Secundino NF, d'Avila-Levy CM, Traub-Cseko YM:
Trypsin-like serine proteases in Lutzomyia longipalpis–expression,
activity and possible modulation by Leishmania infantum chagasi. PLoS
One 2010, 5:e10697.

9. Pimenta PF, Modi GB, Pereira ST, Shahabuddin M, Sacks DL: A novel role for
the peritrophic matrix in protecting Leishmania from the hydrolytic
activities of the sand fly midgut. Parasitology 1997, 115(Pt 4):359–369.

10. Guernaoui S, Garcia D, Gazanion E, Ouhdouch Y, Boumezzough A, Pesson B,
Fontenille D, Sereno D: Bacterial flora as indicated by PCR-temperature
gradient gel electrophoresis (TGGE) of 16S rDNA gene fragments from
isolated guts of phlebotomine sand flies (Diptera: Psychodidae). J Vector
Ecol 2011, 36(Suppl 1):S144–S147.

11. Hillesland H, Read A, Subhadra B, Hurwitz I, McKelvey R, Ghosh K, Das P,
Durvasula R: Identification of aerobic gut bacteria from the kala azar
vector, Phlebotomus argentipes: a platform for potential paratransgenic
manipulation of sand flies. AmJTrop Med Hyg 2008, 79:881–886.

12. Volf P, Kiewegova A, Nemec A: Bacterial colonisation in the gut of
Phlebotomus duboseqi (Diptera: Psychodidae): transtadial passage and
the role of female diet. Folia Parasitol 2002, 49:73–77.

13. Azpurua J, De La Cruz D, Valderama A, Windsor D: Lutzomyia sand fly
diversity and rates of infection by Wolbachia and an exotic Leishmania
species on Barro Colorado Island, Panama. PLoS Negl Trop Dis 2010, 4:e627.

14. Gouveia C, Asensi MD, Zahner V, Rangel EF, Oliveira SM: Study on the
bacterial midgut microbiota associated to different Brazilian populations
of Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae). Neotrop
Entomol 2008, 37:597–601.

15. Oliveira SM, Moraes BA, Goncalves CA, Giordano-Dias CM, D'Almeida JM,
Asensi MD, Mello RP, Brazil RP: Prevalence of microbiota in the digestive
tract of wild females of Lutzomyia longipalpis Lutz & Neiva, 1912)
(Diptera: Psychodidae). Rev Soc Bras Med Trop 2000, 33:319–322.

16. McCarthy CB, Diambra LA, Rivera Pomar RV: Metagenomic analysis of taxa
associated with Lutzomyia longipalpis, vector of visceral leishmaniasis, using
an unbiased high-throughput approach. PLoS Negl Trop Dis 2011, 5:e1304.

17. Azambuja P, Garcia ES, Ratcliffe NA: Gut microbiota and parasite
transmission by insect vectors. Trends Parasitol 2005, 21:568–572.

18. Cirimotich CM, Dong Y, Garver LS, Sim S, Dimopoulos G: Mosquito immune
defenses against Plasmodium infection. Dev Comp Immunol 2010,
34:387–395.

19. Feldhaar H, Gross R: Immune reactions of insects on bacterial pathogens
and mutualists. Microbes Infect 2008, 10:1082–1088.

20. Welchman DP, Aksoy S, Jiggins F, Lemaitre B: Insect immunity: from
pattern recognition to symbiont-mediated host defense. Cell Host
Microbe 2009, 6:107–114.

21. Boulanger N, Bulet P, Lowenberger C: Antimicrobial peptides in the
interactions between insects and flagellate parasites. Trends Parasitol
2006, 22:262–268.

22. Ferrandon D, Imler JL, Hetru C, Hoffmann JA: The Drosophila systemic
immune response: sensing and signalling during bacterial and fungal
infections. Nat Rev Immunol 2007, 7:862–874.

23. Bulet P, Hetru C, Dimarcq JL, Hoffmann D: Antimicrobial peptides in
insects; structure and function. Dev Comp Immunol 1999, 23:329–344.

24. Lamberty M, Ades S, Uttenweiler-Joseph S, Brookhart G, Bushey D,
Hoffmann JA, Bulet P: Insect immunity. Isolation from the lepidopteran
Heliothis virescens of a novel insect defensin with potent antifungal
activity. J Biol Chem 1999, 274:9320–9326.



Telleria et al. Parasites & Vectors 2013, 6:12 Page 8 of 8
http://www.parasitesandvectors.com/content/6/1/12
25. Mandrioli M, Bugli S, Saltini S, Genedani S, Ottaviani E: Molecular
characterization of a defensin in the IZD-MB-0503 cell line derived from
immunocytes of the insect Mamestra brassicae (Lepidoptera). Biol Cell
2003, 95:53–57.

26. Vizioli J, Richman AM, Uttenweiler-Joseph S, Blass C, Bulet P: The defensin
peptide of the malaria vector mosquito Anopheles gambiae:
antimicrobial activities and expression in adult mosquitoes. Insect
Biochem Mol Biol 2001, 31:241–248.

27. Kokoza V, Ahmed A, Woon Shin S, Okafor N, Zou Z, Raikhel AS: Blocking of
Plasmodium transmission by cooperative action of Cecropin A and
Defensin A in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci U
S A 2010, 107:8111–8116.

28. Kulkarni MM, McMaster WR, Kamysz W, McGwire BS: Antimicrobial peptide-
induced apoptotic death of leishmania results from calcium-de pend
ent, caspase-independent mitochondrial toxicity. J Biol Chem 2009,
284:15496–15504.

29. Boulanger N, Lowenberger C, Volf P, Ursic R, Sigutova L, Sabatier L,
Svobodova M, Beverley SM, Spath G, Brun R, et al: Characterization of a
defensin from the sand fly Phlebotomus duboscqi induced by challenge
with bacteria or the protozoan parasite Leishmania major. Infect Immun
2004, 72:7140–7146.

30. Pitaluga AN, Mason PW, Traub-Cseko YM: Non-specific antiviral response
detected in RNA-treated cultured cells of the sandfly, Lutzomyia
longipalpis. Dev Comp Immunol 2008, 32:191–197.

31. Pitaluga AN, Beteille V, Lobo AR, Ortigao-Farias JR, Davila AM, Souza AA,
Ramalho-Ortigao JM, Traub-Cseko YM: EST sequencing of blood-fed and
Leishmania-infected midgut of Lutzomyia longipalpis, the principal
visceral leishmaniasis vector in the Americas. Mol Genet Genomics 2009,
282:307–317.

32. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment
search tool. J Mol Biol 1990, 215:403–410.

33. Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid
multiple sequence alignment based on fast Fourier transform. Nucleic
Acids Res 2002, 30:3059–3066.

34. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5:
molecular evolutionary genetics analysis using maximum likelihood,
evolutionary distance, and maximum parsimony methods. Mol Biol Evol
2011, 28:2731–2739.

35. Landon C, Barbault F, Legrain M, Guenneugues M, Vovelle F: Rational
design of peptides active against the gram positive bacteria
Staphylococcus aureus. Proteins 2008, 72:229–239.

36. Cornet B, Bonmatin JM, Hetru C, Hoffmann JA, Ptak M, Vovelle F: Refined
three-dimensional solution structure of insect defensin A. Structure 1995,
3:435–448.

37. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,
Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res 2000,
28:235–242.

38. Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL workspace: a
web-based environment for protein structure homology modelling.
Bioinformatics 2006, 22:195–201.

39. Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T: The SWISS-MODEL
Repository and associated resources. Nucleic Acids Res 2009,
37:D387–D392.

40. Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an
environment for comparative protein modeling. Electrophoresis 1997,
18:2714–2723.

41. Modi GB: Care and maintenance of phlebotomine sandfly colonies. In The
molecular biology of insect disease vectors: a methods manual. Edited by
Crampton JM, Beard CB, Louis C. London (United Kingdom): Chapman and
Hall Ltd; 1997:21–30.

42. Sant'Anna MR, Alexander B, Bates PA, Dillon RJ: Gene silencing in
phlebotomine sand flies: Xanthine dehydrogenase knock down by
dsRNA microinjections. Insect Biochem Mol Biol 2008, 38:652–660.

43. Abramoff MD, Magalhaes PJ, Ram SJ: Image Processing with ImageJ.
Biophotonics Int 2004, 11:36–42.

44. Han SH, Ryu JH, Oh CT, Nam KB, Nam HJ, Jang IH, Brey PT, Lee WJ: The
moleskin gene product is essential for Caudal-mediated constitutive
antifungal Drosomycin gene expression in Drosophila epithelia. Insect
Mol Biol 2004, 13:323–327.

45. Valanne S, Wang JH, Ramet M: The Drosophila Toll signaling pathway.
J Immunol 2011, 186:649–656.
46. Dimopoulos G, Richman A, Muller HM, Kafatos FC: Molecular immune
responses of the mosquito Anopheles gambiae to bacteria and malaria
parasites. Proc Natl Acad Sci U S A 1997, 94:11508–11513.

47. Dimarcq JL, Hoffmann D, Meister M, Bulet P, Lanot R, Reichhart JM,
Hoffmann JA: Characterization and transcriptional profiles of a
Drosophila gene encoding an insect defensin. A study in insect
immunity. Eur J Biochem 1994, 221:201–209.

48. Hurwitz I, Hillesland H, Fieck A, Das P, Durvasula R: The paratransgenic
sand fly: a platform for control of Leishmania transmission. Parasit Vectors
2011, 4:82.

49. Peterkova-Koci K, Robles-Murguia M, Ramalho-Ortigao M, Zurek L:
Significance of bacteria in oviposition and larval development of the
sand fly Lutzomyia longipalpis. Parasit Vectors 2012, 5:145.

50. Diaz-Albiter H, Sant' Anna MR, Genta FA, Dillon RJ: Reactive oxygen
species-mediated immunity against Leishmania mexicana and Serratia
marcescens in the phlebotomine sand fly Lutzomyia longipalpis. J Biol
Chem 2012, 287:23995–24003.

51. Riehle MA, Moreira CK, Lampe D, Lauzon C, Jacobs-Lorena M: Using
bacteria to express and display anti-Plasmodium molecules in the
mosquito midgut. Int J Parasitol 2007, 37:595–603.

52. Zhou J, Liao M, Ueda M, Gong H, Xuan X, Fujisaki K: Sequence
characterization and expression patterns of two defensin-like
antimicrobial peptides from the tick Haemaphysalis longicornis. Peptides
2007, 28:1304–1310.

53. Nimmo DD, Ham PJ, Ward RD, Maingon R: The sandfly Lutzomyia
longipalpis shows specific humoral responses to bacterial challenge. Med
Vet Entomol 1997, 11:324–328.

54. Antonova Y, Alvarez KS, Kim YJ, Kokoza V, Raikhel AS: The role of NF-
kappaB factor REL2 in the Aedes aegypti immune response. Insect
Biochem Mol Biol 2009, 39:303–314.

55. Oliveira JH, Goncalves RL, Lara FA, Dias FA, Gandara AC, Menna-Barreto RF,
Edwards MC, Laurindo FR, Silva-Neto MA, Sorgine MH, Oliveira PL: Blood
meal-derived heme decreases ROS levels in the midgut of Aedes
aegypti and allows proliferation of intestinal microbiota. PLoS Pathog
2011, 7:e1001320.

56. Bates PA: Transmission of Leishmania metacyclic promastigotes by
phlebotomine sand flies. Int J Parasitol 2007, 37:1097–1106.

57. Dong Y, Aguilar R, Xi Z, Warr E, Mongin E, Dimopoulos G: Anopheles
gambiae immune responses to human and rodent Plasmodium parasite
species. PLoS Pathog 2006, 2:e52.

58. Bahia AC, Kubota MS, Tempone AJ, Pinheiro WD, Tadei WP, Secundino NF,
Traub-Cseko YM, Pimenta PF: Anopheles aquasalis Infected by Plasmodium
vivax displays unique gene expression profiles when compared to other
malaria vectors and plasmodia. PLoS One 2010, 5:e9795.

59. Telleria EL, Sant'anna MR, Ortigao-Farias JR, Pitaluga AN, Dillon VM, Bates PA,
Traub-Cseko YM, Dillon RJ: Caspar-like Gene Depletion Reduces
Leishmania Infection in Sand Fly Host Lutzomyia longipalpis. J Biol Chem
2012, 287:12985–12993.

60. Lowenberger CA, Kamal S, Chiles J, Paskewitz S, Bulet P, Hoffmann JA,
Christensen BM: Mosquito-Plasmodium interactions in response to
immune activation of the vector. Exp Parasitol 1999, 91:59–69.

61. De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B: The Toll and
Imd pathways are the major regulators of the immune response in
Drosophila. EMBO J 2002, 21:2568–2579.

62. Tanji T, Hu X, Weber AN, Ip YT: Toll and IMD pathways synergistically
activate an innate immune response in Drosophila melanogaster. Mol
Cell Biol 2007, 27:4578–4588.

63. Lowenberger C, Bulet P, Charlet M, Hetru C, Hodgeman B, Christensen BM,
Hoffmann JA: Insect immunity: isolation of three novel inducible
antibacterial defensins from the vector mosquito, Aedes aegypti. Insect
Biochem Mol Biol 1995, 25:867–873.

64. Schneider D, Shahabuddin M: Malaria parasite development in a
Drosophila model. Science 2000, 288:2376–2379.

65. Meredith JM, Hurd H, Lehane MJ, Eggleston P: The malaria vector
mosquito Anopheles gambiae expresses a suite of larval-specific
defensin genes. Insect Mol Biol 2008, 17:103–112.

doi:10.1186/1756-3305-6-12
Cite this article as: Telleria et al.: Bacterial feeding, Leishmania infection
and distinct infection routes induce differential defensin expression in
Lutzomyia longipalpis. Parasites & Vectors 2013 6:12.


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Defensin gene sequence analysis
	Insects
	Experimental bacterial feeds
	Leishmania infections
	Microinjections
	RNA extractions and RT-PCR
	Statistical analysis

	Results
	Defensin gene sequence and phylogeny
	Transcription of defensin in L. longipalpis developmental stages
	Transcription of defensin in L. longipalpis fed on bacteria or Leishmania

	Discussion
	Conclusion
	Competing interests
	Authors&rsquor; contributions
	Acknowledgements
	Author details
	References

