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Abstract'

Background: For >100 years cattle production in the southern United States has been threatened by cattle fever.
It is caused by an invasive parasite-vector complex that includes the protozoan hemoparasites Babesia bovis and
B. bigemina, which are transmitted among domestic cattle via Rhipicephalus tick vectors of the subgenus Boophilus.
In 1906 an eradication effort was started and by 1943 Boophilus ticks had been confined to a narrow tick eradication
quarantine area (TEQA) along the Texas-Mexico border. However, a dramatic increase in tick infestations in areas
outside the TEQA over the last decade suggests these tick vectors may be poised to re-invade the southern United
States. We investigated historical and potential future distributions of climatic habitats of cattle fever ticks to assess
the potential for a range expansion.

Methods: We built robust spatial predictions of habitat suitability for the vector species Rhipicephalus (Boophilus)
microplus and R. (B.) annulatus across the southern United States for three time periods: 1906, present day (2012),
and 2050. We used analysis of molecular variance (AMOVA) to identify persistent tick occurrences and analysis of
bias in the climate proximate to these occurrences to identify key environmental parameters associated with
the ecology of both species. We then used ecological niche modeling algorithms GARP and Maxent to construct
models that related known occurrences of ticks in the TEQA during 2001–2011 with geospatial data layers that
summarized important climate parameters at all three time periods.

Results: We identified persistent tick infestations and specific climate parameters that appear to be drivers of
ecological niches of the two tick species. Spatial models projected onto climate data representative of climate in
1906 reproduced historical pre-eradication tick distributions. Present-day predictions, although constrained to areas
near the TEQA, extrapolated well onto climate projections for 2050.

Conclusions: Our models indicate the potential for range expansion of climate suitable for survival of R. microplus
and R. annulatus in the southern United States by mid-century, which increases the risk of reintroduction of these
ticks and cattle tick fever into major cattle producing areas.
Background
Rhipicephalus ticks and the pathogens they transmit
present significant threats to cattle populations world-
wide. The majority of the world’s estimated 1.2 billion
cattle are at risk of exposure to disease-causing patho-
gens, which lead to significant losses from fatalities and
decreased meat and milk production [1,2]. In particular,
bovine babesiosis (cattle fever) has been a persistent
challenge to domestic cattle production in the United
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States for over 100 years. Originally described by Smith
& Kilborne [3], this disease system is driven by an efficient
host-vector-parasite complex that includes the protozoan
hemoparasites Babesia bovis and B. bigemina, which are
transmitted by Rhipicephalus (Boophilus) microplus and
R. annulatus among reservoir hosts (cattle). Babesiosis is
nearly always fatal in naïve adult cattle; young calves may
recover and remain asymptomatically infected throughout
their adult life. Disease is difficult to detect in these chron-
ically infected animals and they can serve as reservoirs for
further transmission via competent tick vectors [4].
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Rhipicephalus microplus (the southern cattle tick) and
R. annulatus (the cattle tick) are successful ectoparasites
of ungulates in North America; however, both are non-
native to the region. The original range of R. microplus
is tropical and sub-tropical forests of India, whereas
R. annulatus is native to the Middle Eastern and Medi-
terranean regions. These species were among the first
major agricultural pests introduced to the Americas by
European colonists [5-7]. By the early 20th century these
tick species were broadly established, with R. annulatus
ubiquitous in North and Central America and R. micro-
plus in Central and South America [5,6]. They were re-
sponsible for widespread infestation and dispersal of
bovine babesiosis, which severely impeded development
of the cattle industry in the southern United States [8].
In 1906, the United States Department of Agriculture

(USDA) organized an eradication effort that effectively
eliminated R. annulatus and R. microplus ticks and the
Babesia parasites they transmit from the southern
United States by 1943, except for a few locations in
Figure 1 Spatial distribution of R. microplus and R. annulatus samples
R. annulatus in the tick eradication quarantine area (TEQA) and the maximu
from 2007–2012. (B) historical distribution of cattle fever ticks before the C
C mark three livestock feed lots where traceback ticks from Starr County w
Florida and Texas. By 1960, cattle fever ticks and the
pathogens they transmit were restricted to an area along
the Texas-Mexico border. The tick eradication quaran-
tine area (TEQA) is ~800 km long (covering an area
>2,200 km2; Figure 1) and is rigorously monitored by the
USDA-Animal and Plant Health Inspection Service,
Veterinary Services (APHIS-VS). USDA-APHIS-VS em-
ploys horse mounted inspectors (sometimes known as
“tick riders”) that patrol all areas within the TEQA for
stray cattle and infestations of cattle fever ticks as part
of the Cattle Fever Tick Eradication Program (CFTEP).
The risk of a re-invasion of cattle fever ticks beyond

the TEQA remains a valid concern for the cattle indus-
try. Historically, R. microplus and R. annulatus ticks
were thought to be primarily ectoparasites of just cattle.
However, recent research indicates that other wild ungu-
lates, such as white-tailed deer (Odocoileus virginianus;
hereafter, deer), can also serve as hosts of cattle fever
ticks [9]. The use of these free-ranging hosts makes it
more likely for cattle fever ticks to be transported
utilized in this study. (A) Distribution of both R. microplus and
m extent of the temporary preventative quarantine areas (TPQAs)
FTEP, and (C) location of our study area. The blue triangles in panel
ere transported and later eradicated in April 2008.
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beyond the TEQA in southern Texas [10]. Each year, the
United States imports 1–2 million cattle from regions in
Mexico where R. microplus and R. annulatus are en-
demic; some of these imported cattle may carry ticks re-
sistant to standard control methods, such as acaricide
dipping [11-14]. Since these cattle may also be infected
with Babesia, all imported cattle must be transported
beyond the TEQA to avoid the risk of endemic transmis-
sion in areas where Rhipicephalus ticks occur. Despite
the formation of new temporary preventative quarantine
areas (TPQAs, or blanket quarantine zones; Figure 1) in
2007, cattle fever tick infestations continued to increase
both within the TEQA and TPQAs and beyond them in
areas that were previously tick-free. In 2008, cases of
R. microplus infestations in three feedlots were found in
central and eastern Texas, up to 400 km northeast of
the TEQA (Figure 1C). The alarming occurrence of cat-
tle fever ticks far beyond the TEQA indicates that the
threat of bovine babesiosis to cattle in the southern
United States persists. In the event of a broad re-
invasion, naive cattle would be highly susceptible to the
disease; some estimates of mortality are as high as 90%
[5,15]. Indeed, the consequences of re-establishment of
cattle fever ticks would be costly—USDA estimates
losses due to tick-vectored diseases could reach US $1
billion annually [16].
Control measures for tick-borne diseases have always

focused on the tick vectors, and a thorough understand-
ing of how the ticks interact with their environment is
vital to continued efficacy of control measures [17-20].
Previous research efforts investigated population dynam-
ics, parasite-host interactions, seasonal fluctuations, and
physiological response to climate factors [19-27]. These
studies added to a growing body of work that has eluci-
dated many important variables in this complex eco-
logical system. Attempts have been made to develop
models to understand spatial dynamics of habitat suit-
ability for cattle fever ticks, emphasizing ecological pref-
erences and sensitivity to abiotic conditions [22-24,28].
Even with such progress, regional-scale high-resolution
spatial models identifying environmental conditions con-
tributing to the establishment and spread of this costly
disease in cattle are lacking [24].
Global climate changes will certainly alter the spatial

arrangement of suitable habitat for these important vec-
tors [5,29,30]. Climate has emerged as a primary driver
for distributions of both R. microplus and R. annulatus;
a pattern common to many other vector-borne zoonotic
disease systems [20,22,23,27,28,31-33]. The Intergovern-
mental Panel on Climate Change (IPCC) forecasts a
1-3°C increase in ambient surface temperature for the
Gulf of Mexico region by mid-century see Additional
file 1; [34]. As arthropod parasites, cattle fever ticks
could respond to warming climates by expanding back
into the southern United States [5,30]. As Sutherst [35]
pointed out, each species responds differently in a chan-
ging environment, so an accurate understanding of cli-
mate change influences on this vector-disease system
requires individual species-level approaches [36].
The purpose of this study was to identify climate pa-

rameters associated with persistence of R. microplus
and R. annulatus and to develop high resolution spatial
models that predict suitable environments for each spe-
cies across the southern United States in past, present,
and future climate scenarios. We focus on each species
individually to identify areas at high risk of re-introduction
facilitated by climate change. To the best of our knowledge,
this study is the first to integrate tools from the fields of
population genetics, spatial statistics, and ecological niche
modeling to assess spatial and temporal trends in the cattle
fever tick disease system.

Methods
Spatial modeling of any biological phenomenon requires
careful planning before analyses are performed. Often,
data used in ecological niche models are not collected
specifically for spatial predictions, and commonly used
algorithms can be rendered null if fundamental assump-
tions are not met [36-42]. This study is no exception
in terms of dedicated data collection; however, our
methods aim to limit error introduced by distributional
disequilibrium, sampling bias, and spatial autocorrel-
ation. For the sake of brevity, many peripheral analyses
and preparatory methods are relegated to appendices.

Input data: occurrence data
We used a database of confirmed tick occurrences main-
tained by the joint CFTEP effort of the USDA-APHIS
and the USDA-Agricultural Research Service (ARS),
Cattle Fever Tick Research Laboratory in Edinburg,
Texas. Thorough survey efforts by CFTEP mounted pa-
trol inspectors from 1999–2011 provided a sample size
of 314 and 63 infestations for R. microplus and R. annu-
latus, respectively (Figure 1; see Additional file 2 for a
detailed list of occurrences). We sorted the occurrence
data into two datasets: one “ALL”, which contains all oc-
currences in the original dataset, and the other “PERS”
(persistent), which is intended to include tick collections
from populations that may be persisting in the environ-
ment and is composed of occurrences ≤3 km from any
infestation that had occurred ≥6 months before [see
Additional file 3]. We chose 3 km as a distance thresh-
old for defining persistence because our analysis of mo-
lecular variance (AMOVA) revealed little to no genetic
differentiation from one year to the next among collec-
tions separated by ≤3 km. These genetic data suggest
that at least some tick infestations are established eco-
logically, persisting long enough to be detected over
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multiple generations. An additional file offers more de-
tails on our use of genetic information see Additional
file 4; [43].
Spatial distributions of both species are highly clus-

tered within the TEQA, with many points occurring
within the same 1 km2 raster cell of climate data used
for spatial modeling. To avoid spurious results caused by
spatial autocorrelation and pseudo-replication, we exam-
ined climate parameters relevant to R. microplus and
R. annulatus individually (described below and in
Additional file 5) via variogram analysis of spatial princi-
pal component layers that characterize multi-dimen-
sional variation in the set of predictors selected for each
species within areas near the TEQA [36]. Variography
displays differences in raster layer values between pairs
of sampled locations as a function of the distances separ-
ating them. An exponential linear model is then fitted to
the variogram and important metrics, such as the nug-
get, range, and sill are calculated, which are then used to
identify at what distance a variable is no longer corre-
lated in space (spatial lag). We calculated spatial lag as
the range value observed when the variogram model
reaches 80% of the sill value. This method estimates the
spatial lag as 7 km and 4.5 km for R. microplus and
R. annulatus, respectively. Thus, we generated 10 repli-
cate randomized subsets of both occurrence data sets such
that each point is separated by ≥7 km for R. microplus
and ≥4.5 km for R. annulatus. A more detailed account
of this method can be found in additional material [see
Additional file 6]. Persistent R. annulatus occurrences
could not be included in our modeling exercises owing to
small sample size [see Additional file 6: Table S1].

Input data: environmental data
A variety of viewpoints have been expressed concerning
relevance of climate in prediction of disease distributions
[44-46]. However, when biological mechanisms that
vlink vector distributions to climate variables are known,
climate-based modeling becomes the best method for
predicting disease distributions in the present and future
[47,48]. As with many vector-borne disease systems, spe-
cific climate factors (e.g. ambient temperature, relative
humidity, etc.) have a strong influence on the ecological
success of ixodid ticks by altering vector generation time
and survival rate [19,22,23,25-27,31,32,49,50]. Hence,
our study focuses on identifying surrogate variables for
defining suitable habitats statistically for both R. micro-
plus and R. annulatus [51].
We developed geospatial data layers that summarize

biologically relevant climate parameters across our study
area for present, past, and future time scenarios. Data
for present-day climate consisted of the 19 bioclimatic
variables from the WorldClim database (spatial reso-
lution: ~1 km; http://www.worldclim.org/) [52,53]. For
climate parameters in the past, we obtained basic
monthly temperature and precipitation products from
the PRISM climate database (PRISM Climate Group,
Oregon State University, http://prism.oregonstate.edu,
created 4 Feb 2004) for the year 1906; the 19 bioclimatic
variables were calculated via the ‘dismo’ package in
R 2.15 [54]. Data layers representing future climate sur-
faces were obtained through the International Centre
for Tropical Agriculture (CIAT) downscaled Global
Climate Model (GCM) portal (http://www.ccafs-climate.
org/): bioclimatic variables were derived from spatially
disaggregated GCMs (four were chosen for this study:
BCCR-BCM 2.0, CSIRO-Mk 3.5, MIROC 3.2-HIRES,
NCAR-CCSM 3.0) under three future-carbon emissions
scenarios (A1B, A2, B1) [34,55-59]. In all, we compiled
12 separate datasets that represent predicted climate pa-
rameters in 2050 at a spatial resolution of 1 km2.
Selection of predictor variables is a crucial decision

that has significant impacts on spatial prediction [42,60].
Commonly, investigators choose specific biologically or
ecologically relevant variables when building models for
spatial prediction [36]. Although this method of variable
selection is straightforward and intuitive, it can poten-
tially introduce unwanted bias in model predictions
[36,39,61,62]. As MacNally [63] aptly states, selection of
independent predictor variables ought to be done using
prior knowledge as well as theory.
We sought to identify a subset of the 19 bioclimatic

variables that would serve as optimal predictors of the
preferred habitats of both R. microplus and R. annulatus
individually. Therefore, we performed an analysis of cli-
mate bias of the distributions of each tick species by
comparing locations of known presence to locations of
known absence within areas surrounding the TEQA; for
detailed methods see Additional file 5. This quantitative
approach to variable selection allowed us to extract
six climate variables for each tick species that exhibit
significant differences between presence and absence
locations. We then explored possible interrelationships
between climate parameters in each set of six variables
via principal components analysis [36,64-67], because
creation of uncorrelated orthogonal axes reduces poten-
tial effects of colinearity among predictor variables in
modeling algorithms [67,68]. Hence, we included princi-
pal components 1 and 2 in our analysis, which describe
>90% of the overall variation among the chosen climate
variables.

Model development
In the last decade diverse approaches have been ex-
plored in the ever-growing field of ecological niche mod-
eling [69]. We explored two commonly used algorithms
for spatial prediction, the Genetic Algorithm for Rule-
Set Production (GARP) and a maximum entropy-based

http://www.worldclim.org/
http://prism.oregonstate.edu
http://www.ccafs-climate.org/
http://www.ccafs-climate.org/
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method (Maxent) [70-72]. GARP is a random-walk
process that evolves a predictive rule (e.g. logistic regres-
sion, bioclimatic and range rules, etc.) with subsequent
iterations until minimal improvement in the prediction of
independent test data is achieved. Maxent forms model
predictions by maximizing the entropy between the prob-
ability distribution of environmental variables at locations
of presence to that of the user-selected study area.
Both algorithms use presence-only data coupled with

automated, random sampling of pseudo-absences from a
user-defined background area [37]. The use of presence-
only data has evoked extensive discussion on the assump-
tions that are made when using modeling algorithms that
create their own pseudo-absence data [41,69,70,73,74]. So,
definition of the background landscape in presence-only
modeling pursuits is of paramount importance, as shown
by Barve et al. [37].
Elith et al. [70] point out that the background area

(i.e. landscape of interest (L), as the referred document
states) sampled for pseudo-absences is “suggested by the
problem and defined by the ecologist”. The sampling
scheme set in place by the USDA and APHIS made
the definition of the background area a conveniently
straightforward one. CFTEP mounted inspectors system-
atically patrol the TEQA in search of stray livestock
infested with cattle fever ticks. So, locations within this
thoroughly surveyed region where R. microplus or
R. annulatus have not been observed would naturally
serve as an appropriate pseudo-absence, were GARP or
Maxent to sample one there. Therefore, we defined our
background as the area of the eradication quarantine
zone that is within 10 km of the US-Mexico border
(roughly equal to the TEQA surveyed by USDA-APHIS
inspectors).
A detailed account of algorithm parameters, model

calibration and summary, and model evaluation is avail-
able in Additional file 7. Final model predictions are
presented in terms of habitat suitability on a scale of
0–10, where 0 indicates that none of the random subset
models agree on suitability, and 10 indicates that all
models agree on suitability (Figures 2 and 3).

Results
Persistent occurrences
AMOVA of genotyped R. microplus samples from south-
ern Texas indicated that southern cattle tick gene pools
are highly admixed at distances ≤3 km, with stable gene
pools (FST < 0.05) from one generation to the next (3–6
months) [see Additional file 4]. The temporally-based
AMOVA technique was initially employed to identify
locations where cattle fever ticks may be ecologically
established, against a background of occurrences created
by human-aided dispersal events. In light of its success
with our data, we recommend this method as an effec-
tive tool to assess persistence locations for diverse spatial
modeling studies in other species.
When a subsample of “persistent” occurrences was

taken with the spatial and temporal constraints inferred
from the AMOVA, we identified a climatic signature
distinct from that derived from all points. Specifically,
six climate variables unique to persistent locations for
both R. microplus and R. annulatus had distributions
significantly different from non-persistent ones; these
variables summarize environmental conditions related to
interactions between temperature extremes and mois-
ture [see Additional file 5]. Coincidentally, the joint role
of temperature and ambient humidity has been noted
repeatedly as an important determinant of population
dynamics of cattle fever ticks. Particularly, desiccation in
larval stages appears to be a strong driver of success
from one generation to the next [20,31]. For R. micro-
plus, key climate variables were annual mean tempe-
rature (Bio 1), minimum temperature of coldest month
(Bio 6), mean temperature of wettest quarter (Bio 8),
mean temperature of driest quarter (Bio 9), mean
temperature of coldest quarter (Bio 11), and precipita-
tion seasonality (Bio 15). For R. annulatus, climate vari-
ables selected were annual mean temperature (Bio 1),
mean diurnal temperature range (Bio 2), temperature
seasonality (Bio 4), maximum temperature of warmest
month (Bio 5), mean temperature of coldest quarter
(Bio 11), and precipitation of wettest quarter (Bio 16).
Within the TEQA, distributions of the two cattle fever

tick species are segregated, with R. microplus found to
the southeast of Laredo, Texas, and R. annulatus to the
northeast [75]. Our climate bias analyses indicated that
the two species are also distinct with regards to climate
parameters (see Additional file 5, including temperature
seasonality (Bio 4), minimum temperature of coldest
month (Bio 6), temperature annual range (Bio 7), mean
temperature of driest quarter (Bio 9), mean temperature
of coldest quarter (Bio 11), and precipitation of wettest
month (Bio 13). Differences in climate preferences be-
tween R. microplus (in general – hot and humid) and
R. annulatus (drier and cooler) may explain why the two
species separate into distinct northern and southern dis-
tributions within the quarantine zone (Figure 1). Also it
suggests that R. annulatus, in view of its greater toler-
ance for seasonal extremes and temperature and precipi-
tation minima, is the species most likely to re-establish
in the greater United States.

Model predictions
Based on independent regional subsets of occurrence
points excluded from model calibration, Maxent out-
performed GARP with higher partial-AUC scores; there-
fore, only its results are presented here [see Additional
file 7: Table S1]. Figure 2 displays historical (1906) spatial



Figure 2 Model predictions for R. microplus. Models developed with ‘ALL’ and ‘PERS’ data used to predict climate suitability for R. microplus in
1906, present, and 2050 with three 2008 traceback samples shown as green filled circles.
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predictions for R. microplus, wherein models built with
both ALL and PERS occurrences identified suitable areas
across southern Texas, Louisiana, and Florida, along with
southern California and parts of Arizona. Cattle fever ticks
were previously known throughout the southern United
States and parts of the Midwest; however, R. microplus is
thought to have been responsible for infestations in the
more humid southern regions, since it was originally from
the Tropics [22]. Although these models recreate only a
portion of the historical range for R. microplus, it is prom-
ising that they effectively extrapolate climate patterns
found in the TEQA into environments that previously
supported populations of this species. Figure 2 also shows
present-day models for R. microplus, where ALL and
PERS predictions show high suitability near the TEQA.
However, the ALL model identified suitable areas across
the southern United States and Florida; projecting these
same models onto future (2050) climate scenarios yielded
a similar spatial pattern, but with areas of highest suitabil-
ity shifted north and east.
The three cases of R. microplus that were found in
central and eastern Texas in 2008 occurred in areas that
are already predicted as moderately suitable by the ALL
present day model. Further, both ALL and PERS models
anticipated increased suitability at these same locations
by 2050 (Figure 2). The infested cattle in this instance
were intercepted within a few days of transport, prevent-
ing ecological establishment of the ticks that they car-
ried. However, if they had not been identified in a timely
manner, these ticks could have established populations
in these suitable areas; according to our projections, this
scenario becomes even more likely under future climate
conditions.
Models for R. annulatus (Figure 3) were built with

ALL occurrence data because the PERS classification of
occurrences returned too small a sample size for spatial
prediction [see Additional file 6: Table S1]. When the
R. annulatus model was projected onto 1906 climate
data, the resulting distribution closely resembles the out-
line of counties that historically reported infestations of



Figure 3 Model predictions for R. annulatus. Models developed with ‘ALL’ data identify areas of climate suitability for R. annulatus in 1906,
present, and 2050.
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cattle fever ticks (Figures 1B and 3). This is perhaps not
surprising because R. annulatus is thought to have been
responsible for most cattle fever tick infestations during
the height of the cattle fever era, possibly because it
is more tolerant of dryer and colder conditions than
R. microplus.
Model predictions for the present day conservatively

predicted highly suitable habitat for R. annulatus in
southern Texas and Arizona (Figure 3). When the same
model was projected onto future climate data (2050),
favourable environments demonstrated a sizeable expan-
sion in area, across all of Texas and the southern United
States, including Florida. Even a small increase (2-3°C)
in annual mean temperature as projected by the IPCC
greatly induces increased suitability for R. annulatus, far
beyond the TEQA and TPQAs [see Additional file 1].

Discussion
This paper presents the first large-scale and high-
resolution spatial models of suitability for cattle fever
ticks in the United States across multiple time scenarios,
and our results are congruent with the historical ranges
of both R. microplus and R. annulatus in the US. Bram
et al. [5] noted that R. microplus infestations on deer
were responsible for the prolonged persistence of cattle
fever in Florida during the height of the CFTEP. Coinci-
dentally, our R. microplus models for 1906 show suitabil-
ity in Florida, which suggests the persistence of tick
populations despite CFTEP efforts until the 1940’s may
have been aided by suitable climatic conditions in that
region (Figure 2). R. annulatus is considered the main
tick species responsible for the full extent of cattle fever
occurrence across the southern United States [8]. Our
models agree with this notion, as they predict environ-
mental suitability across broad areas of the south-eastern
United States and southern California, with range limits
that are similar to the counties reporting cattle fever ticks
in 1906 (Figures 1B and 3). The thorough efforts of
USDA-APHIS and the Texas Animal Health Commission
currently restrict occurrences of cattle fever ticks to south-
ern Texas. Our models for the present day indicate high
suitability in areas surrounding this zone, which suggests
that suitable tick habitat is limited climatically to areas
near the Rio Grande. However, this result likely stems
from spatially conservative predictions produced by the
nature of our occurrences used in our modeling efforts,
which were all clustered within the TEQA.
Based on our models, we anticipate potential for a dra-

matic range shift to the north and east of the TEQA for
both R. microplus and R. annulatus by midcentury. A re-
cent study by Pérez de León et al. [76] used wavelet ana-
lysis to identify a 30-yr cyclical pattern in historical
records (1959–2011) of cattle fever tick infestations in
southern Texas—a pattern potentially driven by broad-
scale climate phenomena, such as the El Niño Southern
Oscillation (ENSO) and the Accumulated Cyclone En-
ergy Index (ACE). Accordingly, the current increase in
cattle fever tick infestations along the quarantine zone is
part of a recurring cycle that may be currently decreas-
ing, with another upsurge in tick occurrence expected
around 2050, potentially in areas that our spatial models
predict as suitable far beyond the current TEQA.
Model projections onto likely 2050 conditions predict

increases in suitable areas for each species north and
east of the TEQA (Figures 2 and 3). The particular direc-
tion of the north-eastern range shift observed in this
study is congruent with broad expectations that dynamic
distribution changes will occur in vector-borne diseases
in temperate regions [44,45,76]. When compared with
the updated climate types presented in Peel et al. [77],
future models exhibit movement from arid/desert steppe
climate towards, what is currently classified as, a sea-
sonal temperate region that extends through the south-
ern United States. In a parallel vector-based disease
system with Theileria (the causative agent of theileriosis,
or East Coast Fever), Olwoch et al. [30] noted increases
in prevalence of the tick vector Rhipicephalus appendi-
culatus upon elevated minimum temperatures in sub-
Saharan Africa, and reduced prevalence with increased
temperatures in already-hot and/or arid regions [78,79].
Increases in temperature minima over the course of the
season can contribute to disease incidence by reducing
pathogen incubation period, expediting vector generation
time, larval survival rate, and overall population growth
rate [48,80]. Beyond temperature extremes, changes in
seasonal precipitation regimes impact tick life cycles via
changes in vegetation-based micro-climate that provide
stable seasonal and diurnal humidity at egg-laying and lar-
val development sites, in addition to host questing oppor-
tunities [78,79]. Consequently, changes in macro and
micro-climatic extremes as a result of climate changes can
directly impact range expansions and range shifts of tick-
borne disease systems [78,81]. Based on their individual
climatic tolerances, this suggests alternative outcomes for
R. microplus and R. annulatus in temperate regions of the
southern United States as a possible consequence of cli-
mate change [28,30,44,45,80,82].
An increase in total area of suitability in the future

does not guarantee the presence of the species in those
new areas [44,47,76,83,84]. The models we developed
here offer several unique insights into the natural
history, ecology, and potential distribution of both
R. microplus and R. annulatus. However, several caveats
must accompany interpretation of our models. First,
models are only as good as the input data [81]. Our
spatial predictions originate from occurrence data from
the TEQA only. Extrapolating such models across novel
environments can be perilous because these models
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were calibrated with a restricted set of environments
relative to the complete range of tolerance of the species
(i.e. across a considerably smaller area compared to its
natively accessible range). We regard the marginal set
of occurrences used for model training as the foremost
contributor to our conservative spatial predictions. Hence,
we made a thorough effort to remove bias in the data and
adjusted algorithm parameters to allow for extrapolation
outside the initial range of training values. Second, our
chosen predictor variables characterize habitat as suitable
based on climate only. The biogeography of disease sys-
tems is complex, and requires appropriate land cover, as
well as factors related to ungulate hosts for transmission
to occur.
In addition to potential climate change, other factors

also present potential challenges for future control of
the cattle fever tick and Babesia disease system. The
disease system currently exists in an ecologically imbal-
anced state as a result of habitat fragmentation, urbani-
zation, land-use changes, and human-imposed species
disequilibria, making it especially susceptible to the un-
certain effects of global change [76]. White-tailed deer
are known hosts for ixodid ticks, and were recently
found to be sero-positive for exposure to Babesia spp. in
Texas and northern Mexico [9,85,86]. Since formation of
the CFTEP, the population size of this free-ranging host
has increased dramatically in Texas (from ~10,000 to
~3-4 million), which significantly improves the dispersal
capabilities of both R. microplus and R. annulatus
[5,9,87]. Additionally, some Rhipicephalus tick popula-
tions in Mexico have now evolved resistance to organo-
phosphates and other acaricides owing to liberal use in
control efforts, which now confound future use of che-
micals in the CFTEP [13,14,88].
The tick infestations in east-central Texas in 2008

illustrate the substantial risk of the re-invasion of cattle
fever ticks. Although these instances of quarantine
breach were noted promptly, they transpired in areas
suitable for persistent populations. Given the conserva-
tive nature of our spatial predictions and the historical
distribution of cattle fever ticks, introductions could also
potentially occur further from the TEQA. If cattle fever
ticks were to reach their former distribution, large deer
populations, acaricide resistance, and increased habitat
suitability would pose considerable challenges to a re-
eradication effort [5]. These developments indicate that
other changes, in addition to climate change, may mod-
ify cattle fever tick distributions in the southern United
States [46,47].

Conclusions
Many factors may permit the prevalence of a disease to
increase over time. The biology and ecology of the host-
vector-pathogen system is complex, even without human
intervention. Based on our model results, we predict a
dramatic range shift and increase of suitable climate for
R. microplus and R. annulatus into temperate regions in
the southern United States by midcentury. The risk im-
posed by global change and the movement and/or control
of species integral to this system presents unique future
challenges that emphasize the increasing risk of a re-
invasion of cattle fever ticks. Should the CFTEP be com-
promised, climate-based spatial predictions of ecological
suitability for cattle fever ticks may be the best predictor
of cattle fever tick prevalence in a changing world.
The patterns discussed here are important not only for

the ongoing management of the cattle fever system.
They are also broadly applicable to global research con-
ducted on a vast array of zoonotic diseases, which often
manifest from a symphony of multi-dimensional vari-
ables resulting in disease occurrence, absence, and per-
sistence. Studies like the one presented here fill an
integral role in inter-disciplinary research that attempts to
triangulate central processes driving disease emergence
and occurrence which are vital for a comprehensive
understanding of the dynamics of infectious ecological
diseases.
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