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Abstract

Background: Ticks and tick-borne diseases are increasing in many areas of Europe and North America due to
climate change, while land use and the increased abundances of large hosts play a more controversial role. The
pattern of host selection involves a crucial component for tick abundance. While the larvae and nymphs feed on a
wide range of different sized hosts, the adult female ticks require blood meal from a large host (>1 kg), typically a
deer, to fulfil the life cycle. Understanding the role of different hosts for abundances of ticks is therefore important,
and also the extent to which different life stages attach to large hosts.

Findings: We studied attachment site selection of life stages of I. ricinus ticks on a main large host in Europe, the
red deer (Cervus elaphus). We collected from 33 felled red deer pieces of skin from five body parts: leg, groin, neck,
back and ear. We counted the number of larval, nymphal, adult male and adult female ticks. Nymphs (42.2%) and
adult (48.7%) ticks dominated over larvae (9.1%). There were more larvae on the legs (40.9%), more nymphs on the
ears (83.7%), while adults dominated in the groins (89.2%) and neck (94.9%).

Conclusions: Large mammalian hosts are thus a diverse habitat suitable for different life stages of ticks. The
attachment site selection reflected the life stages differing ability to move. The spatial separation of life stages may
partly limit the role of deer in co-feeding transmission cycles.
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Background
Ticks are known vectors of several pathogens such as
Borrelia burgdorferi sensu lato causing Lyme disease,
the virus (TBEV) causing tick-borne encephalitis, and
Anaplasma phagocytophilum causing tick-borne fever in
livestock, to name some of the more common [1]. The
distribution of ticks and its associated diseases is in-
creasing in many areas [2,3], and understanding the
mechanisms provide potential for mitigation measures.
Some of these increases can be linked to warmer cli-
mate, at least at higher elevation and latitudes [4]. How-
ever, the topic of how large mammalian hosts and land
use affect ticks is heavily debated [5-7]. A crucial com-
ponent for tick abundance involves finding a suitable
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host. The larvae and nymphs can feed on a wide range
of different sized hosts, but the adult female tick re-
quires a blood meal from a large host (>1 kg) to fulfil
the life cycle. Such a large host is, in many systems, ty-
pically a deer. The extent to which the dependency for a
large host is limiting tick populations is nevertheless
unclear, as rodents and birds are likely the more im-
portant hosts for larvae [1]. In some ecosystems in the
USA, temporal variation in white-tailed deer abundance
seemed less important than rodents in driving the abun-
dance of nymphs [8], while in Scotland the abundance
of red deer (Cervus elaphus) was linked to tick abun-
dances [9]. In Europe, the distribution and density of roe
deer (Capreolus capreolus) and red deer have markedly
increased the last decades [10]. Red deer are considered
the most important large host to ticks in many areas of
Europe [9,11]. Nevertheless, we are lacking quantitative
information on the extent of which red deer may serve
different tick life stages. The attachment site selection of
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different stages on hosts also has importance for co-
feeding transmission of diseases such as TBE and several
other pathogens [12]. We here provide evidence that dif-
ferent body parts of red deer form different habitats for
different life stages of ticks with potential consequences
for understanding co-feeding transmission cycles.

Methods
Study area
The study area is in Kjølsdalen deer management unit
(57.0 km2), Eid municipality, Sogn og Fjordane county
in south-west of Norway (61°54′ N, 5°59′ E). This is a
coastal habitat stretching from sea level up to 500 m
above sea level. The habitat is dominated by deciduous
forest, mainly alder (Alnus incana) at low elevations
mixed with aspen (Populus tremula) and hazel (Corylys
avellana), while birch (Betula spp.) takes over at higher
elevation. There are several plantations of Norway spruce
(Picea abies) scattered in the area. Agricultural pastures
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Figure 1 The proportion of different tick life stages on different body
few ticks. Sizes of points are proportional to (sqrt) total number of ticks.
are situated at valley bottoms. The area is densely po-
pulation by red deer, with no other deer species in the
area.

Red deer data
During the annual autumn harvest in 2013, we collected
from 33 felled red deer, pieces of skin from five body
parts: leg (below carpus), groin, neck, back and ear. We
counted the number of larval, nymphal, adult male and
adult female ticks. Most adult males were attached to
adult females rather than the skin. The hair was if nee-
ded shaved off skin to enhance detection of ticks. We
measured size of skin piece to enable calculation of den-
sity. We further retrieved date of harvest (Sept. 1st – Oct.
30th), elevation at location of harvest (50–500 m a.s.l.),
sex and age class (0.5, 1.5 and ≥2.5 years) of the deer.
Data were retrieved from 4 male and 4 female calves, 3
male and 7 female yearlings and 7 male and 8 female
adults.
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Table 1 An overview of tick life stage placement on
different body parts of red deer (n = 33), Norway

Ear Neck Leg Groin Back Total

Larvae 54 7 180 13 2 256

Nymphs 848 31 257 50 0 1186

Adult males 38 326 1 200 14 579

Adult females 73 374 2 319 24 792

Larvae (%) 5.3 0.9 40.9 2.2 5.0 9.1

Nymphs (%) 83.7 4.2 58.4 8.6 0 42.2

Adults (%) 11.0 94.9 0.7 89.2 95.0 48.7

Size of skin piece (dm2) 1.77 4.50 1.87 3.05 4.14

Density of all ticks (/dm2) 17.3 4.97 7.13 5.78 0.29
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Statistical analyses
We analysed separately the (i) abundance of ticks, (ii)
density of ticks and (iii) proportion of life stages of ticks
on the different body parts. (i) We analysed number of
ticks using a negative binomial error known to fit such
data better than Poisson [11,13,14] with individual “ID”
Table 2 Parameter estimates and test statistics from
mixed effects models with negative binomial error for
the relationship between (A) abundance and (B) density
of ticks on red deer, Norway

Parameter Estimate Std. Error z value P

A. Abundance

Intercept 7.3617 2.1670 3.400 0.001

Bodypart (groin vs leg) 0.3586 0.2198 1.630 0.103

Bodypart (neck vs. leg) 0.1177 0.2221 0.530 0.596

Bodypart (ear vs. leg) 1.0613 0.2200 4.820 <0.001

Bodypart (back vs. leg) −2.7549 0.2931 −9.400 <0.001

Sex (f vs. m) −0.4887 0.2862 −1.710 0.088

Age (1.5 vs. 0.5) 0.6453 0.3802 1.700 0.090

Age (≥2.5 vs. 0.5 0.7498 0.3507 2.140 0.033

Julian date −0.0189 0.0079 −2.380 0.017

Elevation −0.0015 0.0011 −1.370 0.170

B. Density

Intercept 5.3200 1.9700 2.710 0.007

Size of skin 2.24e-05 4.26e-06 5.260 <0.001

Bodypart (groin vs leg) 0.0435 0.2030 0.210 0.830

Bodypart (neck vs. leg) −0.6670 0.2410 −2.760 0.006

Bodypart (ear vs. leg) 1.0500 0.1950 5.370 <0.001

Bodypart (back vs. leg) −3.1800 0.2890 −11.010 <0.001

Sex (f vs. m) −0.2120 0.2590 −0.820 0.414

Age (1.5 vs. 0.5) 0.4900 0.3390 1.440 0.149

Age (≥2.5 vs. 0.5 0.5640 0.3140 1.800 0.072

Julian date −0.0136 0.0071 −1.910 0.056

Elevation −0.0006 0.0010 −0.620 0.533
as random term using library “glmmADMB” in R vs.
3.1.0. (ii) For analysis of density, we entered size of skin
piece as a covariate. (iii) For proportion of life stages, we
used first a MANOVA (proportion of all stages as re-
sponse as a function of body part) and then an ordinary
GLMM for each stage. In the GLMM, the response vari-
able was arcsin-sqrt-transformed proportions of larvae,
nymphs and adults of total tick count for a given body
part with body part as a categorical factor and individual
“ID” as a random term using package “lme4”. We weigh-
ted the regression with the (sqrt) number of ticks on
the body part. For all models, we added sex, age, Julian
date of harvest and elevation to the models, but consid-
ered sample sizes too small to include interactions. We
used a triangle plot to visualize how different proportion
of ticks attached to different body parts using library
“ade4”.

Findings
There were marked differences in abundance, density
and proportion of tick life stages depending on the body
part (Figure 1, Tables 1 and 2, MANOVA, df = 4, Pillai =
1.308, P = 2.2e−16). Adult male and female ticks were
mainly found on the neck (94.9%), back (95.0%) and in the
groin (89.2%, Table 3A). Nymphs were mainly found on
the ears (83.7%) and to some extent also on legs (58.4%,
Table 3 Parameter estimates from mixed effects models
with (arcsin[sqrt]) proportion of (A) larvae, (B) nymphs,
and (C) adult ticks as response ticks on red deer, Norway

Parameter Estimate SE Lower
95% CL

Upper
95% CL

A. Larvae

Intercept 0.6109 0.0402 0.5305 0.6913

Bodypart (groin vs. leg) −0.5594 0.0527 −0.6647 −0.4541

Bodypart (neck vs. leg) −0.5670 0.0541 −0.6752 −0.4588

Bodypart (ear vs. leg) −0.4536 0.0496 −0.5527 −0.3544

Bodypart (back vs. leg) −0.4508 0.1075 −0.6658 −0.2358

B. Nymphs

Intercept 0.9479 0.0478 0.8524 1.0434

Bodypart (groin vs. leg) −0.7018 0.0646 −0.8310 −0.5727

Bodypart (neck vs. leg) −0.7835 0.0661 −0.9157 −0.6512

Bodypart (ear vs. leg) 0.2680 0.0607 0.1466 0.3894

Bodypart (back vs. leg) −0.9450 0.1310 −1.2071 −0.6830

C. Adults

Intercept 0.0230 0.0447 −0.0664 0.1124

Bodypart (groin vs. leg) 1.2677 0.0608 1.1461 1.3894

Bodypart (neck vs. leg) 1.3564 0.0622 1.2319 1.4809

Bodypart (ear vs. leg) 0.2526 0.0572 0.1382 0.3669

Bodypart (back vs. leg) 1.3816 0.1232 1.1352 1.6280

Individual ID of red deer was a random term in the models.



Mysterud et al. Parasites & Vectors 2014, 7:510 Page 4 of 5
http://www.parasitesandvectors.com/content/7/1/510
Table 3B). Larvae were mainly found on legs (40.9%,
Table 3C). Number of ticks was highest on ears, similar
on groin, neck and leg, and lower on the back (Tables 1
and 2A). The higher abundance of ticks on adults com-
pared to calves (Table 2A) was not significant when cor-
recting for size of skin sample, i.e. densities were similar
(Table 2B). Density of ticks was higher on the ear (17.3
ticks/dm2) than on the leg (7.13 ticks/dm2), the groin
(5.78 ticks/dm2) and the neck (4.97 ticks/dm2), with sig-
nificantly lower density on the back (0.29 ticks/dm2,
Table 2B). There were fewer ticks and lower density of
ticks on red deer harvested late in the fall (Julian date;
Sept. 1st – Oct. 30th), while elevation did not affect num-
ber or density of ticks notably. Effects of sex or age class
did not have a significant impact on density (Table 2B).

Discussion
The role of large sized hosts for determining tick abun-
dances and their role in the transmission cycles of dis-
ease remain controversial [7,15,16]. We provide insight
on how different stages of ticks select different body
parts for attachment on a main large host in Europe, the
red deer. The attachment site selection reflected the life
stages differing ability to move. The larvae were mainly
found on legs and ears with a short distance to move
after encountering the host, with nymphs mainly on ears
and some on legs, while adult ticks moved longer dis-
tances to the neck and groin region. Deer species are
most often discussed in general terms when it comes to
their impact on tick ecology. However, deer species may
differ in importance as hosts for ticks for a number of
reasons, and patterns of attachment site selection of
ticks may also differ among deer species. Larger species
or age classes of deer would mean longer distances to
move to reach a given location for a tick entering the leg
or head. A study on attachment site selection on roe
deer reported similarly that larvae mainly attached to
legs (and head), nymphs on the head and adults on neck
[12]. However, fewer adult ticks were found on ears of
roe deer and red deer calves compared to adults [17].
Further, feeding niches of deer species differ. We would
expect large browsers such as moose (Alces alces) to
have fewer ticks on the head due to more feeding on
trees and less on ground vegetation and thus a lower op-
portunity for ticks to enter the head. Indeed, fewer ticks
and a higher proportion of adult ticks and lower propor-
tion of larval and nymphal ticks were found on moose
ears compared to ears from red deer and roe deer [17].
Deer ears are often used in tick burden studies due to
ease of sampling by hunters [17], but our study also
highlights that sampling of ears may give biased esti-
mates of the overall proportion of tick life stages. Our
data derive from sampling in Autumn. Similar studies in
the main questing period in early summer may affect
proportions of life stages if questing times differ [18],
but are unlikely to affect attachment site selection. Co-
feeding of larval and nymphal ticks is important for
transmission of TBE and may occur for several other
pathogens [19]. The partial spatial separation of tick stages
on deer may partly limit the opportunity for such trans-
mission [12], though legs and ears do have both larvae
and nymphs. Our study thus has potential implications
for understanding tick disease transmission, and high-
lights and suggests that more studies are needed for
understanding how different species of deer function as
hosts for ticks.
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