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Abstract

Background: Allopatric populations present challenges for biologists working with vectors. We suggest that
conspecificity can be concluded in these cases when data from four character sets—chromosomal, ecological,
molecular, and morphological—express variation no greater between the allopatric populations than between

corresponding sympatric populations. We use this approach to test the conspecificity of Simulium nodosum Puri on
the mainland of Southeast Asia and Simulium shirakii Kono & Takahasi in Taiwan. The validity of these two putative
species has long been disputed given that they are morphologically indistinguishable.

Findings: The mitochondria-encoded cytochrome c oxidase subunit | (COI), 12S rRNA, and 16S rRNA genes and the
nuclear-encoded 28S rRNA gene support the conspecific status of S. nodosum from Myanmar, Thailand, and Vietnam
and S. shirakii from Taiwan; 0 to 0.19 % genetic differences between the two taxa suggest intraspecific polymorphism.

Conspecificity

The banding patterns of the polytene chromosomes of the insular Taiwanese population of S. shirakii and mainland
populations of S. nodosum are congruent. The overlapping ranges of habitat characteristics and hosts of S. nodosum
and S. shirakii corroborate the chromosomal, molecular, and morphological data.

Conclusions: Four independent sources of evidence (chromosomes, DNA, ecology, and morphology) support the
conspecificity of S. nodosum and S. shirakii. We, therefore, synonymize S. shirakii with S. nodosum. This study provides a
guide for applying the procedure of testing conspecificity to other sets of allopatric vectors.
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Background

Simuliid vectors of human and animal pathogens typic-
ally are complexes of evolutionarily and ecologically dis-
tinct cryptic species, for which accurate identification is
an essential first step in the epidemiological understand-
ing and control of arthropod-borne diseases [1-4]. Com-
pounding the challenge of recognizing cryptic species is
the difficulty of evaluating the species status of allopatric
populations. The problem is particularly acute when pop-
ulations are widely disjunct on the mainland, between
mainlands, or between an island and the mainland [5].
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Assigning the same or different names to allopatric popu-
lations has consequences for understanding vector poten-
tial and developing control strategies [6].

A classic example of the challenge of evaluating spe-
cies status for allopatric populations involves Simulium
nodosum Puri, distributed from India across southern
China, Myanmar, Thailand, and Vietnam [7], and the mor-
phologically similar Simulium shirakii Kono & Takahasi
from Taiwan, more than 130 km from the Chinese main-
land. Although S. shirakii has been treated for 80 years as a
separate species, its species status has long been questioned
because of morphological similarity with S. nodosum [8].
Simulium nodosum is mammalophilic, attacking humans
and bovids [9-11]. It is also a vector of the agents of filaria-
sis to ruminants [10].
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Although allopatry confounds the evaluation of repro-
ductive isolation, we suggest that allopatric populations,
including putative species, can be considered conspecific
when differences in their molecular sequences, chromo-
somal profiles, morphology, and ecology are within the
range of variation for a geographically cohesive, panmic-
tic set of populations. All four character sources require
evaluation, given the existence of homosequential sibling
species [12] and the failure of up to three of the charac-
ter sets to discriminate reproductively isolated sympatric
species [13].

We applied this test to two members of the Simulium
nobile species group, S. nodosum and S. shirakii. The de-
tailed morphological comparisons by Takaoka & Suzuki
[8] between S. nodosum and S. shirakii originally sug-
gested conspecificity and prompted the present study.
We used a multi-locus phylogenetic analysis of one nu-
clear and three mitochondrial genes, a comparative ana-
lysis of the polytene chromosomes, and an evaluation of
ecological data associated with our collections and in the
literature [9, 14—16].

Methods

No national permissions were required for this study,
which did not involve endangered or protected species.
No specific permissions were required to access the
study sites; the collections were made on public lands.

Larvae were collected by hand into ethanol from five
sites in Myanmar, Taiwan, Thailand, and Vietnam (Table 1).
Additional samples of larvae from Taiwan were collected
into 1:3 acetic ethanol for chromosomal comparison with
published information [15]. Habitat characteristics at each
collection site were recorded, including altitude, canopy
cover, and stream depth, temperature, and width. Species
identifications were performed using illustrated taxonomic
keys [8, 14, 17-19].

The nucleotide sequences of the mitochondria-
encoded COI, 12S rRNA, and 16S rRNA genes and the
nuclear-encoded 28S rRNA gene were used. These gen-
etic markers have been used to differentiate other simu-
liid species [20-23]. In addition to S. nodosum and
S. shirakii, we included two nominal members of the S.
nobile species group—Simulium nobile De Meijere from
Gombak, Selangor, Malaysia (collected 23/07/14) and
Simulium timorense Takaoka, Hadi & Sigit from Kupang,
Timor Island, Indonesia (collected 27/02/14)—for phylo-
genetic analysis.

Genomic DNA was extracted from each of five speci-
mens per location, using the i-genomic CTB DNA Extrac-
tion Mini Kit (iNtRON Biotechnology Inc., Seongnam,
South Korea). Amplifications of the mitochondria-
encoded COI, 12S rRNA, and 16S rRNA, and nuclear-
encoded 28S rRNA genes were undertaken in a final vol-
ume of 50 pL containing 50-100 ng genomic DNA, 25 pL
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of ExPrime Taq Master Mix (GENETBIO Inc., Daejeon,
South Korea), and 10 pmol of each forward and reverse
primer. The primers used in this study were adopted from
Folmer et al. [24] for COI, Kocher et al. [25] and Simon
et al. [26] for 12S rRNA, Xiong & Kocher [20] for 16S
rRNA, and Low et al. [27] for 28S rRNA.

Data on the nucleotide sequences of the COI, 12S
rRNA, 16S rRNA, and 28S rRNA genes were deposited
in the NCBI GenBank under accession numbers
KP661441-KP661560. DNA sequences were analysed
and edited using ChromasPro 1.5 (Technelysium Pty
Ltd, Brisbane, Qld, Australia) and BioEdit 7.0.9.0. [28].
Statistical congruence was calculated using a partition
homogeneity test implemented in PAUP 4.0b10 [29]. No
significant differences were found among separate gene
regions (P =0.600); hence, data were concatenated for
further analyses (Fig. 1 and Table 2). Aligned sequences
of single genes and the concatenated dataset were sub-
jected to Bayesian inference (BI) analysis using MrBayes
3.1.2 [30], neighbour-joining (NJ) and maximum parsi-
mony (MP) analyses using PAUP 4.0b10, and maximum
likelihood (ML) analysis using Treefinder Version October
2008 [31]. Simulium tani Takaoka & Davies cytoform ‘K’
and Simulium leparense Takaoka, Sofian-Azirun & Ya'cob
were used as outgroups. To determine intra- and interspe-
cific variation among species/population pairs, uncor-
rected (p) pairwise genetic distances were calculated using
PAUP 4.0B10.

We used the Feulgen technique and chromosomal
slide-mounting procedures outlined by Adler et al. [32]
to prepare the polytene chromosomes of 51 larvae from
two sites (19 larvae from Guangfu, 32 larvae from
Ruisui) in Taiwan (Table 1). Larval carcasses were depos-
ited in the Clemson University Arthropod Collection.
The chromosomes of all 51 larvae (25 females, 26 males)
were compared band-for-band with the standard map
for the subgenus Simulium [33, 34] and with the chro-
mosomes of larvae analyzed by Tangkawanit et al. [15]
from nine sites in Thailand.

Findings

The phylogenetic tree for the concatenated dataset com-
prised two main clusters (Fig. 1). One cluster, consisting
of S. nobile and S. timorense, was supported with full
posterior probability/bootstrap values (BI=1.00, NJ=
100 %, MP =100 %, ML = 100 %). The other cluster, con-
sisting of S. nodosum and S. shirakii from different geo-
graphical regions, was supported with high to full
posterior probability/bootstrap values (BI=0.99, NJ=
100 %, MP =100 %, ML =100 %).

No phylogenetic tree from the concatenated dataset
nor the single-locus analyses separated S. nodosum from
S. shirakii. Both putative species were distributed ran-
domly in the trees (Additional file 1: Figures S1-S4). The
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Table 1 Collection data for populations used in chromosomal and molecular analyses of Simulium nodosum and S. shirakii

Locality Coordinates Date Taxon Altitude ~ Width ~ Depth ~ Temperature ~ Canopy cover

San Village, Chiang-Tung, Myanmar ~ 21°05'18.5”N 27/10/2013  S.nodosum 958 m 50m 20cm 227 °C Open
99°47'39.7"E

Da Chais, Lam Dong, Vietnam 12°08’32.4"N 24/04/2014  S. nodosum 1439 m 3-6m NA 20.0 °C Open
108°38'58.3"E

Doi Saket, Chiang Mai, Thailand 19°02'27.2"N 24/08/2014  S. nodosum 733 m 35m 35cm 22.7 °C Open
99°20'06.0"E

Guangfu, Hualien, Taiwan 23°31712.7"N 24/11/2008 S shirakii 70m Tm NA 220 °C Shaded
121°24'445"E

Ruisui, Hualien, Taiwan 23°38’11.9"N 25/11/2008  S. shirakii 15 m 15 m NA 220 °C Open
121°25"17.8"E

NA not available

pairwise genetic distance analysis revealed intraspecific
variation ranging from 0 to 0.23 % for S. nodosum from
Vietnam, Myanmar, and Thailand; 0 to 0.08 % for S.
shirakii from Taiwan; and 0 to 0.19 % for S. nodosum/S.
shirakii (Table 2). The interspecific variation between S.
nodosum/S. shirakii and S. nobile, and between S. nodo-
sum/S. shirakii and S. timorense, ranged from 5.10 to
545 % and 5.18 to 5.45 %, respectively. Thus, the level
of polymorphism (0-0.19 %) between S. nodosum and S.
shirakii was less than that between all pairs of mainland
populations and within the Myanmar population (0.04—
0.23 %) and far below that of S. nobile or S. timorense.

Chromosomal banding patterns of all Taiwanese larvae
were four fixed inversions (IS-1, IIL-a, IIIL-b, IIIL-2) re-
moved from the Simulium subgeneric standard se-
quence, and matched the fixed banding sequence of all
247 Thai larvae studied by Tangkawanit et al. [14]. Tai-
wanese and Thai populations had the nucleolar organ-
izer in the end of IIS, undifferentiated sex chromosomes,
and only two autosomal polymorphisms each, one of
which (IIIL-1) was shared. The frequency of IIIL-1 was
0.99—nearly fixed—in Taiwan, and an average of 0.28 in
Thai populations analyzed by Tangkawanit et al [15].
The chromosome map of Tangkawanit et al. [15] for
IIIL, however, shows the homozygous sequence for the
IIL-1 inversion rather than the claimed standard se-
quence; in addition, the distal breakpoint is shown as ex-
tended by one band beyond the actual breakpoint. IIL-1
was an infrequent inversion (average frequency = 0.04) in
Thailand [15] and absent in Taiwan. IL-1 was a new, but
rare (0.01) inversion, with breakpoints before the last bands
in each of sections 39 and 40, in one male larva in Taiwan.
Ectopic pairing of centromeres formed a loose pseudochro-
mocenter in populations in Thailand [15] but was present
in only about 1 % of nuclei per larva in Taiwan.

Habitat characteristics for our collection sites of S.
nodosum and S. shirakii, such as stream width, over-
lapped broadly. Altitude, however, was considerably

greater for our mainland populations (733-1439 m) than
for our Taiwanese populations (15-70 m) (Table 1).

Discussion

All four data sources—molecular, chromosomal, mor-
phological, and ecological—independently support the
conspecificity of S. nodosum and S. shirakii across a lon-
gitudinal range of 2365 km, providing a powerful con-
sensus that S. shirakii and mainland populations in
Myanmar, Thailand, and Vietnam are a single species.
Our multi-locus analysis demonstrates that genetic dif-
ferences within mainland populations of S. nodosum are
greater than the differences between S. nodosum collect-
ively and S. shirakii.

Simulium nodosum from Thailand and S. shirakii from
Taiwan are identical in all details of their fixed chromo-
somal inversions and sex chromosomes, and share one
of three autosomal inversions, the other two being rare.
Inversion IIIL-1, which is found in about one-third of all
homologues of Thai larvae and is nearly fixed in Taiwan-
ese larvae, possibly expresses clinal variation, with lowest
polymorphism in the Taiwan population, a common
characteristic of insular and peripheral populations [32].

Habitat characteristics that typically differ between
closely related species, especially stream size [35], are
broadly overlapping among populations from Taiwan
and the mainland, in agreement with records from the
literature [14, 15]. Known hosts, which can differ between
closely related species [36], are consistent (bovids and
humans) across the distribution [9, 11, 14]. Altitude, how-
ever, which can be associated with genetic isolation [37],
differs between our populations in Taiwan (15-70 m) and
on the mainland (733-1439 m). The altitudinal distinc-
tion, however, narrows or disappears when we draw from
published information [14], suggesting that some of the
discrepancy is attributable to sampling artifact. Elevation
for S. nodosum in Thailand, for instance, ranged from 168
to 800 m [15]. The available ecological data suggest that a
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0.1

1.00/100/100/98

S. leparense

Fig. 1 Bayesian inference phylogenetic tree of Simulium taxa based on concatenated COI, 12S rRNA, 16S rRNA, and 28S rRNA sequences.
Posterior probability/bootstrap [Bayesian inference (Bl)/neighbour-joining (NJ)/maximum parsimony (MP)/ maximum likelihood (ML)] values are
shown on the branches. The scale bar represents 0.1 substitutions per nucleotide position

Table 2 Ranges of intra- and interspecific genetic distances (uncorrected p, expressed as percentages) based on concatenated COlI,
12S rRNA, 16S rRNA, and 28S rRNA sequences

1 2 3 4 5 6
1. S. nodosum (Myanmar) 0.04-0.23
2. S. nodosum (Vietnam) 0.04-0.23 0.00-0.15
3. S. nodosum (Thailand) 0.04-0.23 0.04-0.19 0.00-0.19
4. S. shirakii (Taiwan) 0.00-0.19 0.04-0.12 0.04-0.15 0.00-0.08
5. S. nobile 5.18-541 522-541 5.14-545 510-537 0.08-0.35

6. S. timorense 5.22-541 5.29-541 5.26-545 5.18-537 1.00-1.27 0.04-0.23
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broad range of habitat conditions is typical for S. nodosum
and S. shirakii. Insular populations, in particular, are more
likely to have a broader ecological niche, resulting in part
from ecological release [38].

The molecular separation of S. nodosum and S. shirakii
from S. nobile and S. timorense is in concordance with
their morphological characters. The simple claws of the
females and the number and form of the pupal gill fila-
ments (three inflated horn-like tubes) separate S. nodo-
sum/S. shirakii from other members of the S. nobile
species group [8].

Conclusions

Given the conspecificity of S. shirakii with mainland
populations, what taxonomic decision should be applied
to populations across the entire range of S. nodosum and
S. shirakii, from the type locality in India to Taiwan? At-
tempts by colleagues from India to collect S. nodosum
from its type locality, approximately 2500 km from our
nearest site of analysis (Thailand), did not produce S.
nodosum. Lacking topotypical material for molecular
and chromosomal analyses, we acknowledge two alterna-
tive possibilities: (1) recognition of two species—S. nodo-
sum, represented by the type from India, and S. shirakii,
represented by the material in our study, from Myanmar
to Taiwan, or (2) recognition of a single species, S. nodo-
sum, across the full range from India to Taiwan. We pro-
visionally select the latter option on pragmatic grounds;
the same name, when applied across the entire range,
holds greater information content, emphasizing the mor-
phological and ecological similarity of all populations.
We, therefore, synonymize S. shirakii with S. nodosum.

Additional file

Additional file 1: Figure S1. Bayesian inference phylogenetic tree of
Simulium taxa based on COI sequences. Posterior probability/bootstrap
[Bayesian inference (Bl)/neighbour-joining (NJ)/maximum parsimony
(MP)/ maximum likelihood (ML)] values are shown on the branches. The
scale bar represents 0.1 substitutions per nucleotide position. Figure S2.
Bayesian inference phylogenetic tree of Simulium taxa based on 125
rRNA sequences. Posterior probability/bootstrap [Bayesian inference (BI)/
neighbour-joining (NJ)/maximum parsimony (MP)/ maximum likelihood
(ML)] values are shown on the branches. The scale bar represents 0.1
substitutions per nucleotide position. Figure S3. Bayesian inference
phylogenetic tree of Simulium taxa based on 165 rRNA sequences.
Posterior probability/bootstrap [Bayesian inference (Bl)/neighbour-joining
(NJ)/maximum parsimony (MP)/ maximum likelihood (ML)] values are
shown on the branches. The scale bar represents 0.1 substitutions per
nucleotide position. Figure S4. Bayesian inference phylogenetic tree of
Simulium taxa based on 285 rRNA sequences. Posterior probability/bootstrap
[Bayesian inference (Bl)/neighbour-joining (NJ)/maximum parsimony (MP)/
maximum likelihood (ML)] values are shown on the branches. The scale bar
represents 0.1 substitutions per nucleotide position.
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