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Abstract

Background: To date, little has been documented about microorganisms harboured within Australian native ticks
or their pathogenic potential. Recently, a Borrelia sp. related to the Relapsing Fever (RF) group was identified in a
single tick removed from a wild echidna (Tachyglossus aculeatus). The present study investigated the presence of
Borrelia in 97 Bothriocroton concolor ticks parasitizing echidnas in Queensland, New South Wales, and Victoria,
Australia, using nested PCR with Borrelia-specific primers targeting the 16S rRNA (16S) and flaB genes.

Results: Borrelia-specific PCR assays confirmed the presence of a novel Borrelia sp. related to the RF and
reptile-associated (REP) spirochaetes in 38 (39 %) B. concolor ticks. This novel Borrelia sp. was identified in 41 %
of the B. concolor ticks in Queensland and New South Wales, but not in any ticks from Victoria. The resulting
flaB sequences (407 bp) were 88 and 86 % similar to the flaB sequences from Borrelia turcica and Borrelia hermsii,
respectively. Of the ticks confirmed as Borrelia-positive following the flaB assay, 28 were positive with the 16S assay.
Phylogenetic analysis of the 16S sequences (1097 bp) suggests that these sequences belong to a novel Borrelia sp.,
which forms a unique monophyletic clade that is similar to, but distinct from, RF Borrelia spp. and REP-associated
Borrelia spp.

Conclusions: We conclude that the novel Borrelia sp. identified in this study does not belong to the Borrelia
burgdorferi (sensu lato) complex, and that the phylogenetic analysis of the partial 16S gene sequences suggests
it forms a unique monophyletic cluster in the genus Borrelia, potentially forming a fourth major group in this
genus associated with monotremes in Australia. However, a thorough molecular characterisation will be required
to confirm the phylogenetic position of this unique Borrelia sp. The zoonotic potential and pathogenic
consequences of this novel Borrelia sp. are unknown at the current time.
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Background
Ticks (Acari: Ixodida) transmit the greatest diversity of
zoonotic pathogens, including bacteria, protozoa and
viruses, of any arthropod and are of major concern to
the health and wellbeing of humans, wildlife, livestock
and companion animals [1]. Globally, ticks are associ-
ated with the transmission of many bacterial pathogens;
those of most concern belong predominantly to the
genera Anaplasma [2], Borrelia [3], Ehrlichia [4], Fran-
cisella [5] and Rickettsia [6]. In Australia, enzootic ticks

that parasitise humans and companion animals also
serve as hosts for zoonotic pathogens [7].
In Australia, 70 native and introduced tick species

have been described, comprising 56 hard ticks (family
Ixodidae: genera Amblyomma, Bothriocroton (formerly
Aponomma), Haemaphysalis, Ixodes, and Rhipicephalus,)
and 14 soft ticks (family Argasidae: genera Argas and
Ornithodoros) [8]. Only a few of these ticks are known
to transmit pathogens associated with human tick-borne
diseases (TBD); currently there are three zoonotic TBDs
recognised in Australia associated with native tick
species. For example, Rickettsia australis and Rickettsia
honei, the causative agents of Queensland tick typhus
and Flinders Island Spotted Fever, respectively, are
associated with Ixodes holocyclus (Australian paralysis
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tick), Bothriocroton hydrosauri (reptile tick), and
Ixodes tasmani (marsupial tick) [9–12]. In addition,
Coxiella burnetii, the causative agent of Q fever, has
been detected in Haemaphysalis humerosa, the bandi-
coot tick [13, 14], and Amblyomma triguttatum, the
ornate kangaroo tick [15]. These ticks are thought to
play a role in the life-cycle of C. burnetii and this
pathogen has been detected in a number of wild
animals [16, 17]. Although wildlife are often suggested
to be reservoirs for such pathogens in Australia and
abroad [16, 18], the importance of wildlife ticks in
the ecology of these pathogens is often overlooked or
neglected.
Spirochaetes in the genus Borrelia are transmitted

by arthropods and are classified traditionally into two
groups: Lyme Borreliosis (LB) Borrelia burgdorferi
(sensu lato) (s.l.), transmitted by several species of
ixodid ticks, and Relapsing Fever (RF) Borrelia, tran-
smitted primarily by argasid ticks (tick-borne RF,
TBRF) [19], a few species by ixodid ticks [20–23],
and also by lice [24]. The LB group is the most
significant from a human health perspective [25]. The
LB group consists of 18 species, of which the princi-
pal LB-causing agents include Borrelia afzelii, Borrelia
burgdorferi (sensu stricto) (s.s.), and Borrelia garinii,
which are transmitted by the ticks Ixodes pacificus
and Ixodes scapularis in the United States, Ixodes
ricinus in Europe, and Ixodes persulcatus in Europe
and Asia [25].
The TBRF Borrelia group is conventionally divided

geographically into ‘Old World’ RF organisms such as
Borrelia crocidurae, Borrelia duttonii and Borrelia
hispanica; and ‘New World’ RF species such as Bor-
relia hermsii, Borrelia parkeri and Borrelia turicatae
[26, 27]. Although RF Borrelia are predominantly
associated with soft ticks, well-known examples of
hard ticks-associated TBRF Borrelia include: Borrelia
miyamotoi, isolated from I. persulcatus and I. ricinus
in Europe and Asia [28–30] and I. scapularis and I.
pacificus in north-eastern and western United States,
respectively [31, 32]; Borrelia lonestari in Amblyomma
americanum [33]; ‘Candidatus Borrelia texasensis’ in
Dermacentor variabilis in the southern states of North
America [34]; and Borrelia theileri in Rhipicephalus
(Boophilus) microplus [21]. While also recorded in Europe,
Asia and North America [35–37], TBRF is a common
bacterial infection in several regions in Africa resulting in
febrile illness and spirochaetaemia [38–40].
In 2003, a novel Borrelia sp. was isolated from a hard

tick, Hyalomma aegyptium, removed from a tortoise in
Istanbul, Turkey [41]. This species was later named
Borrelia turcica [41, 42] and is genetically distinct from
the LB and RF spirochaetes. Further studies have since
supported a third major Borrelia group classification,

designated the reptile-associated (REP) Borrelia sp.
group [43].
In Australia, three borreliae have been reported: B.

theileri, the causative agent of bovine spirochaetosis
worldwide, transmitted by the cattle tick, R. (Boophilus)
australis [44, 45]; Borrelia anserina associated with
poultry and transmitted by the soft tick, Argas persicus
[7, 46, 47]; and Borrelia queenslandica from long-haired
rats, Rattus villosissimus, in north-west Queensland,
which at the time could not be detected within the
proposed tick vector, Ornithodoros gurneyi [48]. Spiro-
chaetes have also been observed within blood films of
bandicoots, cattle, kangaroo and rodents [49] and in I.
holocyclus and Haemaphysalis spp. ticks, collected from
companion animals and livestock [50].
Echidnas, also known as spiny anteaters, are egg-

laying mammals classified under the order Monotre-
mata and belonging in the family Tachyglossidae [51].
The short-beaked echidna (T. aculeatus) is found in
Australia and New Guinea, and is comprised of five
subspecies (ssp.): T. a. acanthion, T. a. aculeatus, T.
a. multiaculeatus, and T. a. setosus, can be found
exclusively in Australia, while T. a. lawesii is found in
New Guinea [51]. In a recent molecular survey of
bacteria associated with native Australian human-
biting ticks, a novel Borrelia sp. related to the RF
group was identified in a single I. holocyclus tick
removed from an echidna host [52]. This finding
prompted the current investigation to further assess
the occurrence and phylogenetic position of Borrelia
sp. in ticks collected from echidnas in three regions
of Australia and to provide greater insight into its
distribution in Australia.

Methods
Tick sample collection and identification
A total of 97 ticks were collected from 22 echidnas
(T. aculeatus ssp.) by veterinarians at the Australian
Zoo Wildlife Hospital in Beerwah, Queensland (n =
81), wildlife carers at the Wild Days Wildlife shelter
in Narre Warren, Victoria (n = 4), and through public
submission from Wagga Wagga, western New South
Wales (n = 12). Ticks were preserved in 70 % ethanol
immediately after removal and sent to Murdoch Univer-
sity for species identification and molecular analyses.
Twenty-six male and 71 female B. concolor ticks were
identified based on morphological assessment according
to the standard keys for identifying Australian ticks [53].

DNA extraction
Prior to DNA extraction, ticks were surface-sterilised
with 10 % sodium hypochlorite and washed with sterile
and DNA-free water, and 70 % ethanol. The extractions
were carried out as described by Gofton et al. [52].
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Negative controls were treated in an identical manner.
Borrelia afzelii and B. burgdorferi (s.s.) DNA previously
extracted from questing nymphal I. ricinus ticks (LN1,
LN6, LN7 and LN9) from Leipzig, Germany [52], were
used as positive controls in all PCR assays. DNA from
one Borrelia sp.-infected female I. holocyclus tick
(NL230) described in Gofton et al. [52], collected from
an echidna host in New South Wales was also reana-
lysed in the present study.

Borrelia-specific PCR and sequencing
To determine the presence of Borrelia sp. within the
97 B. concolor ticks, and one I. holocyclus tick, DNA
extractions were subjected to two Borrelia genus-
specific PCR assays. Borrelia-specific nested-PCR as-
says were conducted targeting the 16S rRNA (16S)
and flaB genes (Table 1). Each 25 μl PCR reaction
contained 1× PerfectTaq buffer, 2.5 mM MgCl2, 1 mM
dNTPs, 400 nM of each primer, 1.25 U PerfectTaq
polymerase, and 2 μl undiluted DNA. Both the primary
and nested Borrelia 16S PCR assays were performed with
the following thermal conditions: initial denaturation at
95 °C for 5 min, 35 cycles of denaturation at 95 °C for
30 s, annealing at 51 °C for 40 s, and extension at 72 °C
for 2 min, and a final extension at 72 °C for 5 min. The
flaB PCR assays were performed with an initial dena-
turation at 95 °C for 5 min, 35 cycles of denaturation at
95 °C for 30 s, annealing at 52 °C (primary) or 55 °C
(nested) for 30 s, and extension at 72 °C for 30 s, and a
final extension at 72 °C for 5 min. No-template controls
and positive controls were included in all PCR assays.
Amplified PCR products were electrophoresed through

1–2 % agarose gels, stained with GelRed (Biotium), and
visualised under UV light. Amplicons of expected sizes
were excised from the gel and purified with the Wizard®
SV Gel and PCR Clean-Up System (Promega Madison,

WI, USA,), according to the manufacturer’s recommen-
dations. Purified PCR products were sequenced with both
forward and reverse nested PCR primers using BigDye
v3.1 terminator on an ABI 373096 Capillary Sequencer
(Life Technologies, USA).

Sequence analysis
Trimmed 16S sequences (1097 bp) generated in this
study, together with sequences from other Borrelia spp.
retrieved from GenBank, were aligned using MAFFT
v7.017 [54], and the alignment was refined using
MUSCLE [55]. Spirochaeta americana ASpG1 strain
(AF373921) [56] was used as an outgroup. Following
multiple sequence alignments, MEGA version 6 [57] was
used to determine the most suitable nucleotide substi-
tution model based on the Bayesian Information Criter-
ion (BIC). General time reversible (GTR) model was
selected and the Borrelia 16S phylogenetic tree was
generated using FastTree 2 [58], with 20 rate categories
of site and resampling 1000 times. 16S sequences gene-
rated in this study were deposited in GenBank under
accessions KU954112 to KU954115, and flaB sequences
were deposited in GenBank under the accession
KX192143 to KX192150.

Results
Molecular and phylogenetic analyses
A partial fragment (407 bp) of the Borrelia flaB gene
was successfully amplified in three male and 35 female
B. concolor ticks (38/97, 39 %) and also in the single I.
holocyclus tick from the previous study [52] (Table 2).
All ticks (n = 4) from Victoria were negative for Borrelia
spp. Bothriocroton concolor ticks that were Borrelia-posi-
tive originated from Queensland and New South Wales
(38/93, 41 %) (Additional file 1: Table S1). BLAST
analysis showed that, with 100 % query coverage, these

Table 1 Primers used for Borrelia-specific 16S rRNA and flaB genes amplification in this study, including primer sequences, annealing
temperature and expected product size

Gene Primer Sequence (5' – 3') Annealing temperature Expected product size (bp) Reference

16S External

Bor-16 F TGCGTCTTAAGCATGCAAGT

Bor-1360R GTACAAGGCCCGAGAACGTA 51 °C 1,344 This study

Internal

Bor-27 F CATGCAAGTCAAACGGAATG

Bor-1232R ACTGTTTCGCTTCGCTTTGT 51 °C 1,205 This study

flaB External

FlaB280F GCAGTTCARTCAGGTAACGG

FlaRL GCAATCATAGCCATTGCAGATTGT 52 °C 645 [33, 66]

Internal

flaB_737F GCATCAACTGTRGTTGTAACATTAACAGG

FlaLL ACATATTCAGATGCAGACAGAGGT 55 °C 407 [33, 66]
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flaB equences shared 87.4–88.6 % similarity with flaB
sequences from B. turcica (GenBank: AB109245;
AB109244; AB109241) [41, 42], and with 85.5–86.4 %
similarity with B. hermsii (GenBank: AY597795;
AY597798) [59]. BLAST analysis of the positive samples
isolated from I. ricinus ticks revealed 100 % identity with
the LB spirochaetes, with samples LN1, LN7 and LN9
identical to B. afzelii at the flaB locus (GenBank:
GU826786) [60]; and LN6 identical to B. burgdorferi
(GenBank: DQ016620; AF386506; AB035618) [61, 62].
The Borrelia-specific 16S PCR assay was positive for

one male and 27 female B. concolor ticks (28/97; 29 %),
all of which were also positive at the flaB locus (Table 2).
Three distinct Borrelia 16S sequences were produced
from B. concolor ticks, which differed by only a single
nucleotide polymorphism (SNP) (99.9 % similarity)
between the isolates. Alignment with the Borrelia
sequence isolated from an I. holocyclus tick, from the
previous study [52], revealed that the sequences shared >
99 % identity, with one verified SNP. The three unique
Borrelia 16S sequences from B. concolor ticks were puta-
tively designated Borrelia sp. Aus A, Borrelia sp. Aus B,
and Borrelia sp. Aus C, which occurred in 22, five, and
one sample, respectively. The Borrelia 16S sequence
from the I. holocyclus tick was putatively designated
Borrelia sp. NL230.
Phylogenetic analysis indicates that Borrelia 16S

sequences from this study form a unique monophyletic
clade, with high confidence, and that is most similar to,

but distinct from the RF and REP Borrelia groups (Fig. 1).
Borrelia 16S sequences from these echidna ticks were
most dissimilar to the LB group (96.1–96.7 % similarity);
and most similar (98.6–98.7 %) to both Borrelia sp.
tAG66M and B. hermsii DAH (Additional file 2: Table
S2). Borrelia 16S sequences generated from nymphal I.
ricinus ticks clustered within the B. burgdorferi (s.l.)
group, with high (99.9–100 %) similarity to B. burgdor-
feri and B. afzelii (Fig. 1).

Discussion
This study presents the first molecular characterisation
in Australia of a novel Borrelia sp. identified in B. con-
color (this study) and in a single I. holocyclus tick [52],
with a close relationship to the RF and REP-associated
Borrelia groups. The current investigation aimed to pro-
vide further evidence for Borrelia in echidna ticks, if
any, and to validate the previous findings [52] with an
increased sample size and by targeting the highly con-
served Borrelia housekeeping genes (e.g. flaB and 16S
rRNA).
The reduced sensitivity of detecting Borrelia with the

16S PCR assay, compared to the flaB PCR assay, may be
explained by the reduced PCR efficiency that is typically
observed when amplifying longer gene fragments. For
this reason, PCR assays targeting short gene fragments,
such as the flaB assay used in the present study, are
recommended for sensitive detection of Borrelia spp.
However, short gene fragments are often inadequate to
produce meaningful phylogenetic reconstructions, and
therefore must be complimented by assays that amplify
longer gene sequences, albeit with less sensitivity, such
as the 16S assay in the present study.
Recently, REP-associated Borrelia spp. isolated from

reptile ticks, H. aegyptium, were shown to form a mono-
phyletic clade [42], while sharing a common ancestor
with the RF and LB Borrelia groups, supporting the no-
tion of a third Borrelia group [43]. Likewise, the Borrelia
sp. identified in this study also forms a unique mono-
phyletic clade, and may form a fourth major phylogen-
etic Borrelia group. However, further analyses of other
Borrelia housekeeping genes, such as gyrB, groEL, glpQ
genes, and 23S-16S intergenic spacer region [43], and
morphological characterisation are necessary for a
complete description of this novel Borrelia sp.
The current investigation has provided new records of

a Borrelia sp. found in a native Australian hard tick, B.
concolor [44, 45, 52]. Currently, the degree of similarity
and differences between the Borrelia sp. characterised in
the present study and B. queenslandica, identified in
long-haired rats, R. villosissimus [48], is unknown as
molecular data does not exist for this species.
All ticks removed from echidna hosts for the present

study were B. concolor, a known specialist tick species

Table 2 Summary of the sex and life stages of the tick
specimens used in this study, including the positive controls
Ixodes holocyclus and I. ricinus. The geographical regions where
the ticks were collected either from a host or vegetation were
recorded and the number of ticks positive for Borrelia genes is
presented in terms of percentage

Ticks Region Host/questing n Gene
(% of positive samples)

16S flaB

B.
concolor

M QLD Echidna 12 0 16.6

NSW Echidna 10 10 10

VIC Echidna 4 0 0

F QLD Echidna 69 36.2 50.7

NSW Echidna 2 100 100

I.
holocyclus

F NSW Echidna 1 100 100

I. ricinus

N Leipzig,
Germany

Questing 4 100 100

Abbreviations: M male adult, F female adult, N nymph, QLD Queensland, NSW
New South Wales, VIC Victoria
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usually restricted to parasitising echidnas (family Tachy-
glossidae) [53, 63]; however, kangaroos (Macropus fuli-
ginosus fuliginosus) were recently recorded as a new
host of B. concolor on Kangaroo Island, South
Australia [64]. Bothriocroton concolor has a relatively
wide distribution including both coastal and sub-coastal
regions of Queensland and New South Wales, as well as
inland New South Wales; whereas the distribution of I.
holocyclus (the host of the first isolate reported by Gofton
et al. [52]) is mainly restricted to coastal regions of the
eastern Australia [53]. It has been reported that echidnas
can also host other tick species such as Amblyomma
australiense, Amblyomma echidnae, Amblyomma moyi,
Amblyomma papuanum, Bothriocroton tachyglossi,
Bothriocroton undatum, Haemaphysalis humerosa and
I. tasmani [53]. Therefore, different tick species that
feed on the same host may become infected through
blood meals, if the echidna serves as a bacteraemic
vertebrate reservoir for this bacterium.
Generally, many tick-borne microorganisms circulate

within unique sylvatic cycles in an ecosystem, and
wildlife and their ticks play important roles as reservoirs
and bridging vectors, respectively [65]. In Australia,

wildlife and their ticks have long been considered as
reservoirs for a number of tick-borne pathogens [10, 16].
In the case of the vector of Borrelia in Australia, the soft
tick, O. gurneyi from long-haired rats, was proposed as a
vector of B. queenslandica, however, transmission
attempts were unsuccessful [48]. Here in the present
study, a novel bacterium harboured within B. concolor was
identified in two tick genera, suggesting that echidnas may
be a potential reservoir of this bacterium. However,
whether these ticks are able to acquire this bacterium
from infected echidna hosts remains to be confirmed
through the analysis of echidna blood samples, and until
further studies are completed, the vertebrate reservoir of
this spirochaete remains to be determined. Likewise, the
role of B. concolor and I. holocyclus ticks as potential
bridging vectors of this novel Borrelia sp. remains to be
assessed via transmission studies. Despite this, the poten-
tial and importance of wildlife and their ticks acting as
reservoir and vector in maintaining the persistence of this
bacterium in the environment cannot be disregarded. The
pathogenic consequences (if any) and potential infectivity
of this Borrelia sp. to animals and humans are unknown
at the present time.

Fig. 1 Molecular phylogenetic analysis of 1097 bp fragment of 16S rRNA of the Borrelia sp. amplified in B. concolor ticks from echidnas.
Phylogenetic distances were inferred using FastTree 2 [57], and specimens were compared with the B. burgdorferi (sensu lato) complex, the
TBRF group, and the REP-associated spirochaetes. “*” represents Borrelia sequences from B. concolor ticks; “**” indicates Borrelia sequence from
Ixodes holocyclus tick; and “***” represents positive controls from I. ricinus nymphs
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Conclusions
The current study has identified a novel Borrelia sp.
harboured within echidna ticks. Phylogenetic analysis of
the partial 16S sequences showed that this Borrelia
forms a unique monophyletic clade that is closely related
to the RF and REP Borrelia groups and is most dissi-
milar to the LB group. Moreover, this study highlights
the significance of studying Australian wildlife ticks. The
presence of a novel Borrelia sp. in Australia is of signi-
ficant public health importance and warrants further
investigations to better understand the biology, ecology,
pathogenicity (if any), and infectivity of this organism to
humans, domestic animals, and wildlife.
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