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Abstract

Leishmaniasis is a neglected tropical disease affecting millions of people around the world caused by organisms of
the genus Leishmania. Parasite escape mechanisms of the immune system confer the possibility of resistance and
dissemination of the disease. A group of molecules that has become a target for Leishmania survival strategies are
lipid mediators. Among them, leukotriene B4 (LTB4) has been described as a pro-inflammatory molecule capable of
activating cells of the immune system to combat Leishmania. In an opposite way, prostaglandin E2 (PGE2) is a lipid
mediator described as a deactivator of macrophages and neutrophils. The balance of these two molecules can be
generated by extracellular nucleotides, such as adenosine 5'-triphosphate (ATP) and adenosine (Ado), which activate
the purinergic receptors system. Herein, we discuss the role of extracellular nucleotides and the resulting balance of
LTB4 and PGE2 in Leishmania fate, survival or death.

Abbreviations: ATP, 5′-adenosine triphosphate; eATP, extracellular ATP; Ado, Adenosine; DC, Dermal dendritic cells;
LCs, Langerhans cells; LPG, Lipophosphoglyca; GP63, Glycoprotein 63; CR, Complement receptor; MR, Mannose
receptor; FcγRs, Fc gamma receptors; FNRS, Fibronectin receptors; TLR, Toll-like receptor; DAMP, Damage-associated
molecular pattern; cytosolic phospholipase A2; COX, Cicloxygenase; 5-LO, 5-lipoxygenase; LTB4, Leukotriene B4;
NO, Nitric oxide; ROS, Reactive oxygen species; PGE2, Prostaglandin E2; AMP, 5′-adenosine mono-phosphate;
TNF, Tumor necrosis factor; UTP, Uridine triphosphate; PAMPs, Pathogen-associated molecular patterns

Review
Background
The protozoan parasites of the genus Leishmania cause
a broad range of human diseases called leishmaniasis.
Leishmaniasis is a neglected disease of tropical and sub-
tropical areas that affects more than 12 million people
worldwide [1]. Moreover, every year, 2 million new cases
are diagnosed, among them, 75 % of the cases are cuta-
neous and 25 % are visceral leishmaniasis, leading to it
being the second most common cause of parasite-
associated death resulting in 20,000 to 30,000 deaths per
year [2]. Leishmania preferentially infect phagocytic
cells, as macrophages, neutrophils and dendritic cells of
susceptible mammalian hosts [3] causing numerous clin-
ical manifestations. In general, cutaneous leishmaniasis

is located adjacent to the infectious site, the skin or
lymph nodes. The parasite can escape into the nasal and
oropharyngeal mucosa causing mucocutaneous leishman-
iasis; or also migrate to the spleen, liver, bone marrow,
and distant lymph nodes, leading to lethal clinical mani-
festations, named visceral leishmaniasis or kala-azar [4].
Leishmaniasis is transmitted by a female blood-

sucking insects of the genus Phlebotomus in the 'Old'
World and by species of Lutzomya in the 'New' World.
The parasite can occur in two ways: the promastigote,
which has high mobility, and is found in the digestive
tract of the vector; and amastigote, without flagella,
which develops into the phagolysosomes of phagocytic
cells. Immediately before blood intake, the insect saliva
containing promastigote forms is inoculated into the
skin of the mammalian host. Soon after, the parasite is
phagocytosed, remaining viable inside the phagolyso-
some, the fused phagosome and lysosome. Then, the
promastigote form differentiates in amastigote approxi-
mately 12–24 h later [5, 6]. When an infected mammal
host is bitten by the sand fly, it sucks amastigote-
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infected macrophages or free amastigotes which will
transform into mobile flagellated promastigotes in the
midgut of the vector. In this process, procyclic promasti-
gotes (proliferative and non-infective forms) acquire the
ability to be virulent and non-proliferative, the metacyc-
lic promastigotes, and this process is called metacyclo-
genesis [7]. These promastigote forms migrate to the
oral cavity promoting the transmission in the next blood
meal.
The innate immune cells present in the skin are the

first line of defense against Leishmania infection [8].
Dermal dendritic cells (DCs), Langerhans cells (LCs) [9,
10], mast cells, T cells, and macrophages are the immune
cells in the skin. Interesting, keratinocytes, which are the
most abundant in the skin, also play an active role in the
local immune response and it has been reported that
they have an important role in polarization of the Th1
response during leishmaniasis [11, 12]. After parasite in-
oculum into the dermis, neutrophils quickly infiltrate
and phagocytose Leishmania parasites, becoming the
first circulatory cells to reach tissue space [13–15]. Mac-
rophages are the second wave of infiltrating immune
cells and are the principal host cells for the Leishmania
[16, 17]. Thus, neutrophils and macrophages play crucial
roles in disease progression, but ironically as profes-
sional phagocytic and killing cells, they become targets
because of evasion mechanisms employed by Leish-
mania to subvert the host immune system.
Macrophages and neutrophils possess several pattern

recognition receptors (PRR) that respond to pathogen-
associated molecular patterns (PAMPs) present in the
Leishmania surface, such as lipophosphoglycan (LPG)
and glycoprotein 63 (GP63), both in humans and in
mice [18–21]. Several host immune receptors can bind
Leishmania components or antibodies against Leish-
mania, such as: the first and third complement receptor
(CR1 and CR3, respectively) [22, 23], mannose receptor
(MR) [24, 25], Fc gamma receptors (FcγRs) [26], fibro-
nectin receptors (FNRS) [18], and Toll-like receptors
(TLR) [27–30]. TLRs are phylogenetically the most an-
cient and best studied PRRs. In humans, 10 TLR family
members have been identified and there are 12 in mice
[31]. TLRs activation has been associated with the pro-
duction and release of inflammatory mediators, such as
cytokines, lipid mediators, and adenosine 5’-triphosphate
(ATP) in extracellular medium [32–34]. ATP is widely
present in the intracellular environment, at concentra-
tions in the millimolar range, whereas it is almost imper-
ceptible in the extracellular space, being around
nanomolar [35]. We recently showed that Leishmania
amazonensis recognition by macrophages leads to ATP
release [36] (Fig. 1a). However, the receptor involved in
this release and the mechanism that triggers this process
has not yet been elucidated.

Purinergic receptors
Extracellular ATP (eATP) is defined as a damage-
associated molecular pattern (DAMP) causing biological
effects though the activation of purinergic receptors that
are presented on the cell membrane. Purinergic recep-
tors are classified into two large families: P1 and P2. The
P1 receptor family is characterized by metabotropic re-
ceptors activated by adenosine: A1, A2a, A2b, and A3
[37]. The P1 receptor activation has been discussed in
several systems, suggesting a role in both physiological
and pathological processes. In the immune system, P1
receptors are widely expressed by cells of the myeloid
and lymphoid lineage [38]. P1 receptors act in regulating
the immune response, and are involved mainly in resolv-
ing inflammation [39].
The P2 family of receptors is subdivided into P2X and

P2Y. The P2Y receptors are G-protein coupled recep-
tors, [35] while P2X are ionotropic receptors, capable of
forming cationic channels activated by eATP. The par-
ticipation of P2Y receptors in inflammatory events has
been described [40, 41]. Furthermore, it has been
reported that P2Y2 receptors act in neutrophil chemo-
taxis after activation by eATP [42]. The family of P2X
receptors, in contrast, consists of ionotropic receptors.
These receptors are intrinsic ion channels for Na+, K+,
and Ca2+. To date, seven subtypes of P2X family have
been cloned: P2X1 to P2X7 [43, 44]. The most studied
of P2X receptors is the P2X7 subtype. This receptor has
two transmembrane domains, being a polypeptide of 595
amino acids with a longer C-terminal domain, compared
to other members of the P2X family. This peculiarity
makes it capable of inducing the formation of pores per-
meable to molecules up to 900 Daltons after sustained
eATP stimulation [45]. Moreover, the elongated C-
terminal enables it to initiate various intracellular signal-
ing cascades culminating with apoptosis, vesicular
fusion, phospolipase D activation, exosome release, acti-
vation and secretion of pro-inflammatory cytokines IL-
1β and IL-18 [44]. The expression of P2X7 receptor is
well characterized under many cell types, including mac-
rophages [46], monocytes [47], neutrophils [48], among
others [49]. Furthermore, many studies have demon-
strated the participation of purinergic receptors in the
induction of bioactive lipid mediators [50–54].

Lipid mediators
Lipid metabolites of arachidonic acid (AA), including
leukotrienes (LTs) and prostaglandins (PGs), have
emerged as important mediators of a variety of physio-
logical and pathophysiological functions. They are syn-
thesized through the metabolism of AA released by
cytosolic phospholipase A2. The lipid metabolites can be
subsequently metabolized by different pathways, includ-
ing the cycloxygenase (COX) enzymes and lipoxygenase
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(LO) generating a range of bioactive eicosanoids, named
PGs and LTs, respectively. The activation of cPLA2 and 5-
LO involves an increase of intracellular Ca2+ and subse-
quently activation of certain protein kinases, as well as
translocation of 5-LO from cytoplasm and nucleoplasm to
membrane sites such as the nuclear envelope [55]. The
AA is presented to 5-LO by an essential accessory protein
called 5-LO activating protein (FLAP), producing an un-
stable precursor of all other leukotrienes, the LTA4 [55].
Once generated, LTA4 can be conjugated with reduced
glutathione by LTC4 synthase (LTC4S) to form LTC4, or
LTA4 can also be hydrolyzed by LTA4 hydrolase (LTA4H)
to form LTB4 [56]. LTC4 as LTB4 can be exported to the
extracellular space through specific transporters [57–59].
In the extracellular environment, LTC4 is rapidly con-
verted to LTD4 by the glutamyl leukotrienase removing
glutamic acid molecule of LTC4, and LTD4 can be further
converted to LTE4 by the dipeptidase which removes a
glycine residue of LTD4 molecule [60]. LTB4 is best known
as a chemotactic and activator for leukocytes, and cystei-
nyl leukotrienes (LTC4, LTD4, and LTE4) are widely
known in the pathogenesis of asthma [61].

PGs are formed when AA is metabolized by sequential
actions of cyclooxygenase and their specific synthases
[62]. COX has both cyclooxygenase (COX) and peroxid-
ase activity, and three COX isoforms were described:
COX-1, COX-2 and COX-3 [63, 64]. COX-1 and COX-3
are constitutively expressed while COX-2 is induced by
inflammatory stimuli [64, 65]. There are six bioactive
PGs: PGE2, PGI2, PGD2 and PGF2 [62]. Much is known
about the pro-inflammatory functions of PGs, but, in the
past years, it has been proven to also possess potential
anti-inflammatory effects of PGs observed in resolution
phase [66], and, importantly, these effects can be used
by parasites to evade the immune system.

Purinergic receptor, lipid mediators and immune evasion
The most effective mechanisms against infection by
Leishmania already described involve the production of
reactive oxygen species (ROS) and nitric oxide (NO)
[67]. Furthermore, it has been shown that an effective
response against infection by Leishmania is given by the
induction of Th1 and Th17 responses [68–72], while Th2
response promotes susceptibility [68, 70].

Fig. 1 Schematic representation of elimination and evasion mechanisms mediated by purinergic signaling and lipid mediators during Leishmania
infection. a Leishmania spp. promastigotes can be recognized by PRRs. This recognition leads to the release of ATP into the extracellular medium.
b eATP active P2X7 receptors, which in turn leads to release of LTB4. c LTB4 binds to specific receptors on cell membrane, as BLT1, causing the
elimination of Leishmania spp. by production of ROS, NO, and participates on Th1 and Th17 polarization. d In order to evade the immune system
and ensure its survival, Leishmania spp. possess ecto-nucleotidase enzymes, such as E-NTPDase and ecto-5’-nucleotidase, removing eATP and
favoring Ado accumulation. e Ado actives P1 receptors, such as A2B, increasing COX-2 expression and therefore leads to the release of PGE2.
f PGE2 in turn binds EP receptors on cellular membranes, causing the decrease of ROS and NO production, and participates on Th2 polarization,
resulting in establishment and dissemination of Leishmania spp. infection
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The role of extracellular nucleotides and the activation
of purinergic receptors during infection by L. amazonen-
sis have been investigated [73]. Marques-da-Silva and
colleagues [74] showed that P2Y2 and P2Y4 receptors
have its expression upregulated and increased levels of
uridine triphosphate (UTP) nucleotide into the extracel-
lular environment during infection can lead to death of
the macrophage by apoptosis and the elimination of the
parasite. Other studies have shown that eATP can lead
to the elimination of L. amazonensis in infected macro-
phages via P2X7 receptor [75]. A recent study demon-
strates that elimination of L. amazonensis by P2X7
receptor depends on the production of LTB4 and leuko-
triene B4 receptor 1 (BLT1) [36] (Fig. 1b, c). Addition-
ally, other studies have demonstrated the production of
LTB4 in resistance to L. amazonensis and L. braziliensis,
in humans and mice [76–78]. Furthermore, latest
studies have demonstrated the participation of 15d-
Prostaglandin J2 in L. donovani elimination [79]. This
resistance can be due to the production of ROS and
NO, which may be produced after P2X7 receptor ac-
tivation [80, 81] and LTB4 release [82–85]. Moreover,
the P2X7 receptor activation and LTB4 release have
been implicated in the polarization of Th1 and Th17
responses, participating in the immune response
against Leishmania [86–90] (Fig. 1c).
Regarding the participation of lipid mediators in Leish-

mania infection, the role of PGE2 in susceptibility has
been discussed. It is known that PGE2 possesses anti-
inflammatory activity, facilitating Leishmania infection
in macrophages, suppressing inflammatory response in
both cutaneous and visceral leishmaniasis [91–94].
Moreover, reinforcing the context of a beneficial effect
of PGE2 for Leishmania survival, it was demonstrated
that several Leishmania species possess lipid corpuscles
as organelles and L. infantum is able to produce and re-
lease PGs, such as PGF2α itself [95, 96] (Fig. 1d). It is im-
portant to highlight that PGE2 inhibits NO production
[97], and Th1 and Th17 development [98–101] and, con-
sequently, stimulates Th2 response, favoring infection
[99] (Fig. 1f ).
On the other hand, in order to perpetuate itself, Leish-

mania has developed methods to subvert microbicidal
mechanisms and immune responses against itself. As
already described before, eATP has proved to be an en-
dogenous molecule able to induce the death of L. ama-
zonensis through P2X7 receptors activation [36]. It has
also been well established that the presence of enzymes
capable of degrading ATP in the mammalian cell mem-
brane forming ADP (adenosine-diphosphate) and adeno-
sine (Ado), named ecto-nucleotidases. Among them,
CD39 (ecto-NPTDase) and CD73 (ecto-5′-nucleotidase)
exert relevant actions, regulating inflammatory re-
sponses of ATP and UTP. Thus, Ado is formed through

the action of CD39 that converts ATP and ADP to 5'-ad-
enosine mono-phosphate (AMP). AMP is the substrate
for CD73. This enzyme, in turn, catalyzes the reaction
that converts AMP to Ado [39, 102]. In this scenario, it
has been shown that Leishmania express ecto-
nucleotidase activity. This is confirmed by the observa-
tion of increased Ado levels in serum from visceral leish-
maniasis patients [103, 104]. This can cause the
prevention of the activation of macrophages and leads to
the increase of infection by Leishmania species [105–
109]. Moreover, the virulence of L. amazonensis promas-
tigotes could be due to its high ecto-nucleotidase activity
[110] (Fig. 1d). Moreover, ecto-5-nucleotidase activity
also has been seen in L. chagasi [105]. Furthermore, it
has been observed that L. amazonensis infection in-
creases ecto-nucleotidases expression in DC [111]. Thus,
the blocking of the A2B receptors is found to increase
production of NO and decrease parasite survival, sug-
gesting participation of Ado in this process [109].
Others have shown that Ado increases COX-2 expres-

sion and PGE2 production in neutrophils [112, 113]
(Fig. 1e). This corroborates the fact that both Ado and
PGE2 stimulates the release of anti-inflammatory cyto-
kines, such as interleukin (IL)-10 in macrophages [114,
115], while inhibiting the release of pro-inflammatory
cytokines, such as tumor necrosis factor (TNF)-α and
IL-12 in DCs and macrophages [116, 117]. This stimu-
lates an anti-inflammatory environment, allowing estab-
lishment of infection.
It has been shown that Ado decreases production and

release of LTB4 [118–121], which modulates microbici-
dal mechanisms. Moreover, it is known that L. amazo-
nensis is capable to negatively modulate the production
of LTB4 via P2X7 receptor activation in macrophages
from C57BL/6 and BALB/c mice [36]. Neutrophils are
recruited to the infection site when infection is initiated
by sand fly bite [14, 122], spreading Leishmania parasites
[17, 123, 124]. However, in other species of Leishmania,
such as L. braziliensis, the neutrophils are important for
parasite elimination [125]. Nevertheless, the role of the
Ado in stimulation of PGE2 production in macrophages
still needs to be studied. Moreover, other pathogens use
Ado to subvert the immune system such as Toxoplasma
gondii, Staphylococcus aureus and Streptococcus agalac-
tiae [126–128].
The role of sand fly saliva substances in modulating

Leishmania infection has been demonstrated [129, 130].
Furthermore, it has been described that sand fly saliva
can inhibit NO production, and consequently increase
the parasite load [131, 132]. It has also been described
that Lutzomyia longipalpis saliva possesses ATPase ac-
tivity, which can hydrolyse eATP [133]. Sand fly saliva
also contains high levels of Ado, modulating the inflam-
matory micro-environment, causing NO inhibition, and
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macrophage inactivation, which in turn increases the
parasitic load in macrophages and neutrophils [134–
136]. Recently it was shown that exosomes are co-
inoculated with Leishmania into mammalian hosts
[137]. It is tempting to correlate it with a burst of ATP
secretion, local Ado generation and PGE2 production. It
is known that L. longipalpis saliva triggers the produc-
tion and release of PGE2 and decreases LTB4 in macro-
phages [138, 139].

Conclusion
The establishment of Leishmania infection can be due to
the balance of several factors. Extracellular nucleotides
can modulate the balance of pro- and anti-inflammatory
factors such as PGs and LTs. To ensure their survival,
Leishmania spp. developed strategies throughout its evo-
lution to guarantee its perpetuation (Fig. 2a). The ability
of Leishmania spp. to modulate extracellular concentra-
tions of ATP and Ado, and consequently the balance of
LTB4 and PGE2 shows how organisms can subvert the im-
mune system of the host (Fig. 2b). Thus, the importance
of knowledge of these strategies of evasion is essential in
order to develop drugs capable to counterbalance Leish-
mania evasion.
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