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Abstract

Background: We have previously demonstrated that intranasal vaccination of highly susceptible BALB/c mice with
whole Leishmania amazonensis antigens (LaAg) leads to protection against murine cutaneous leishmaniasis. Here,
we evaluate the response of partially resistant C57BL/6 mice to vaccination as a more representative experimental
model of human cutaneous leishmaniasis.

Methods: C57BL/6 mice from different animal facilities were infected with L. amazonensis (Josefa strain) to establish
the profile of infection. Intranasal vaccination was performed before the infection challenge with two doses of 10
μg of LaAg alone or associated with the adjuvant ADDAVAX® by instillation in the nostrils. The lesion progression
was measured with a dial caliper and the parasite load by limited dilution assay in the acute and chronic phases of
infection. Cytokines were quantified by ELISA in the homogenates of infected footpads.

Results: C57BL/6 mice from different animal facilities presented the same L. amazonensis infection profile,
displaying a progressive acute phase followed by a controlled chronic phase. Parasites cultured in M199 and
Schneider’s media were equally infective. Intranasal vaccination with LaAg led to milder acute and chronic phases
of the disease. The mechanism of protection was associated with increased production of IFN-gamma in the
infected tissue as measured in the acute phase. Association with the ADDAVAX® adjuvant did not improve the
efficacy of intranasal LaAg vaccination. Rather, ADDAVAX® reduced vaccination efficacy.

Conclusion: This study demonstrates that the efficacy of adjuvant-free intranasal vaccination with LaAg is
extendable to the more resistant C57Bl/6 mouse model of infection with L. amazonensis, and is thus not exclusive
to the susceptible BALB/c model. These results imply that mucosal immunomodulation by LaAg leads to peripheral
protection irrespective of the genetic background of the host.
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Background
Leishmania amazonensis is a causative agent of localized
and diffuse cutaneous leishmaniasis in Latin America
[1, 2]. In Brazil, infections with L. amazonensis used
to be concentrated in the North of the country (Amazon
Forest Region) [3]. In Manaus, 8 % of cutaneous infections
were caused by L. amazonensis [4]. Since 2005, the
Brazilian Ministry of Health has demonstrated the
presence of L. amazonensis in all regions of Brazil
[3]. The concern about L. amazonensis in Brazil re-
lates to all forms of disease, including visceral and
mucosal leishmaniasis [5] and the refractoriness to
treatment of serious forms of the infection [6]. Diffi-
culty in access to the regions affected by the disease
hinders treatment efforts [3], thus the best strategy is
prevention through vaccination.
Leishmania amazonensis is highly virulent with cap-

acity to infect several hosts [7]. BALB/c mice have been
used for several studies; however, this model of infection
is a progressive non-healing disease. This fate is not re-
lated to the most prevalent presentation of natural cuta-
neous infection in human populations, which is
characterized by an open spontaneously healing wound,
leaving an unpleasant scar containing parasites [7].
C57BL/10 mice present the same phenotype as BALB/c
after experimental infection with L. amazonensis [8].
However, in C57BL/6 mice, the infection was described
to have a distinctive progressive [9] and a non-
progressive disease profile [10] even for the same para-
site strain (MHOM/BR/77/LTB0016). Some differences
in in vivo infection could be associated to differences in
strains [11], time post-infection studied, challenge used,
site of infection and infection route used [12]. Further-
more, the differences in microbiota is currently known
to affect the immune response in mice of the same back-
ground [13, 14].
The development of a vaccine against different

Leishmania parasites is the priority to control leishman-
iasis [15]. Unfortunately, we do not have any vaccine
approved for human use [16]. The Leishvacin® (or LaAg)
vaccine, comprised of whole Leishmania amazonensis
antigens, has been studied for several years. Although
the safety and capacity to induce IFN-gamma production
was demonstrated [17], the vaccine failed in the phase 3
of a clinical trial [18]. It is noteworthy that these trials
were performed using the subcutaneous or intramuscu-
lar route of administration. Using experimental models
and the same route, the immunization with LaAg in
monkeys [19] or BALB/c mice [20] exacerbated the
disease progression of L. amazonensis infection. How-
ever, when the same antigen was tested by intranasal
route, it induced protection on BALB/c mice [21]. Mu-
cosal vaccine elicits immune responses effective against
several pathogens [22], and the intranasal route has been

effective against leishmaniasis using BALB/c mice
[23–28] and hamster [29, 30] models.
To improve vaccine efficacy, several adjuvants have

been studied for use by the mucosal route [26, 28, 31].
Protective responses of Leish111f [26] and recombinant
LACK [28] were improved when associated to cholera
toxin, but this adjuvant is not approved for human use
[31]. The only adjuvant approved for intranasal use is
the MF59® [32]. A similar adjuvant called ADDAVAX®, a
nano oil-water emulsion formulated with scalene, was
developed by Invitrogen. Intranasal LaAg vaccine is
effective without association of adjuvants against leish-
maniasis [21] and the association with adjuvants, as
ADDAVAX®, could enhance the protective immunity.
In this paper, we established the infection model of

C57BL/6 from different animal facilities using L. amazo-
nensis (strain MHOM/BR/75/Josefa). This strain was
isolated from a patient with cutaneous leishmaniasis (the
most common form of the disease) in 1975 by Dr. Cesar
Cuba-Cuba (Universidade de Brasília, Brasília, Brazil).
We evaluated the LaAg intranasal vaccine in this mouse
model. The intranasal LaAg vaccine induced partial
protection during the progressive and chronic phase
against L. amazonensis on C57BL/6.

Methods
Animals
C57BL/6 mice were acquired from different animal
breeding facilities: Universidade Federal Fluminense
(C57Bl/6-UFF), Universidade Federal do Rio de Janeiro
(C57Bl/6-UFRJ), Fundação Oswaldo Cruz (C57Bl/6-FIO-
CRUZ) and Universidade Estadual de Campinas (C57Bl/
6-UNICAMP). BALB/c mice were from UFF animal
facility. Animals were maintained in our own animal fa-
cility at UFRJ using sterilized bedding, filtered water and
pelleted food. For experiments, females were used at
6–8 weeks of age.

Parasites
For infection experiments, L. amazonensis (strain
MHOM/BR/75/Josefa) [33] and L. amazonensis (MPRO/
BR/72/M1845, LV78 strain) [34] promastigotes were
maintained at 26 °C in M199 medium containing 10 %
heat-inactivated fetal bovine serum (HIFCS, GIBCO
Laboratories, Grand Island, NY, USA) or Schneider’s
medium containing 10 % HIFCS until the stationary-
growth phase. The Josefa strain was originally isolated
from cutaneous leishmaniasis [33], whereas the LV78
strain was isolated from skin of the rat Proechimis sp.
[34]. Quantification of metacyclic promastigotes was
performed routinely and was around 50 % using Ficoll
density gradient.
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LaAg preparation
Leishmania amazonensis (MHOM/BR/75/Josefa strain)
promastigotes were maintained at 26 °C in M199 medium
containing 10 % HIFCS. Leishmania amazonensis promas-
tigote antigens (LaAg) were prepared as previously de-
scribed [35]. Briefly, stationary-growth phase promastigotes
were washed three times in phosphate buffered saline
(PBS) and subjected to three cycles of freezing and thawing.
LaAg was lyophilized, stored at -20 °C and reconstituted
with PBS immediately prior to use.

Immunization, infection challenge and evaluation of
disease progression
Mouse immunization was by instillation of 10 μg of
LaAg in 20 μl of PBS, 10 μl in each nostril, using a
micropipette adapted with a polystyrene microtip. A
booster dose was given 7 days later [21]. Controls
received PBS alone. For association with adjuvant, 10 μg
of LaAg (in 10 μl) was mixed by pipetting with 10 μl of
ADDAVAX®, and 10 μl were administered in each
nostril. Seven days post-boost, animals were infected in
the right hind footpad with 5 × 105 or 2 × 106 stationary-
phase L. amazonensis promastigotes. Lesion sizes were
measured once a week with a dial caliper and expressed
as the difference between the thicknesses of infected and
contralateral non-infected footpads. The parasite load
was determined at the end of the experiments, when the
infected foot was skinned and individually homogenized
in 1 ml of PBS using a tissue grinder. Tissue debris was
removed by gravity sedimentation for 5 min. Homoge-
nates were submitted to limited dilution assay (LDA).

Cytokine quantification
For in situ production [24], infected footpads were
isolated, skinned, weighed, teased and individually
homogenized in 1 ml of PBS using a glass tissue
homogenizer. The footpad homogenates were centri-
fuged (10 min, 20,000 × g at 4 °C) and the supernatants
collected. For cytokine quantification, supernatants
prepared as above were assayed for TGF-β, IFN-γ, IL-10
and IL-4 by ELISA following the manufacturer’s instruc-
tions (R&D Systems, Minneapolis, USA). For TGF-β, the
supernatants were pre-heated to 80 °C for 5 min prior to
the assay.

Flow cytometry
Lymph node cells isolated from mice were cultured for 4
h to at 37 °C in the presence of PMA (20 ng/ml), Iono-
mycin (1μg/ml) and brefeldin A (Sigma-Aldrich, St. Lois,
USA). Cells were surface stained with Anti-CD3-Percp
and anti-CD8-FITC and anti-CD4-PE CY7 (Biolegend,
San Diego, USA) and fixed and permeabilized for
1 h using Foxp3/Transcription Factor Fixation/
Permeabilization Kit (e-Bioscience, Santa Clara, USA).

Intracellular cytokine staining was performed with anti-
IFN-γ -APC (Biolegend). At least 10,000 gated CD4+

lymphocyte events were acquired. Analytical flow
cytometry was conducted with a BD FACSCanto™ II (BD
Biosciences New Jersey, USA) and the data were
processed with FlowJo X software.

Statistical analysis
The experiments were performed two or three times,
and the result of one representative experiment is
shown. For experiments illustrated in Figs. 1 and 2, dif-
ferences of the peak of infection to the progressive phase
and the chronic phase were tested statistically by
Student's t-test. For the results provided in the
remaining figures, differences between vaccinated and
non-vaccinated groups were tested by Student’s t-test.
We used the GraphPad Prism v. 5 software, and were
considered significant when P ≤ 0.05.

Results
Characterization of the partially resistant model of L.
amazonensis infection in C57BL/6 mice
To characterize the chronic mouse model of infection
using L. amazonensis Josefa strain in C57BL/6 mice,
we evaluated mice from different animal facilities:
UNICAMP (Fig. 1a), FIOCRUZ (Fig. 1c), UFRJ
(Fig. 1e) and UFF (Fig. 1g). All mice presented a
similar profile after L. amazonensis infection, with
lesion progression until days 42–60 post-infection
followed by a partial resolution of the lesion, with
chronic parasite persistence (Fig. 1, Table 1).
Independently of the animal facility of origin, the
parasite load was very similar in the chronic infection
(Fig. 1b, d, f and h). The results demonstrated a par-
tially resistant mouse model with chronic infection by
L. amazonensis. All these experiments were performed
with parasites cultured in M199 medium. To evaluate
the interference of the culture medium on the infec-
tion, the assay was repeated using Schneider’s
medium. Results were very similar to M199 medium,
with compared lesion progression followed by partial
resolution and chronic infection (Fig. 2a) and parasite
load (Fig. 2b). We also evaluated this resistance
model using a different strain of L. amazonensis, to
test if this profile is general to the parasite species.
Using L. amazonensis LV78 strain (MPRO/BR/72/
M1845), we could observe a similar profile of infec-
tion (Fig. 2c, Table 2) and parasite load (Fig. 2d) in
comparison to L. amazonensis Josefa strain. For data
presented in Figs. 1 and 2, based on statistics, a le-
sion growth in the progressive phase, a partial lesion
resolution and lesion stabilization in the chronic
phase compared with the peak of infection, was ob-
served in all experiments performed.
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To show that this infection profile was related to mice
lineage and not to leishmanial strain, infection of L.
amazonensis (Josefa strain) was performed on BALB/c
mice to demonstrate a progressive (non-healing) disease
in this mouse model (Additional file 1: Figure S1). The
establishment and use of a partially resistant chronic in-
fection mouse model is interesting because this model is

more similar to the natural course of cutaneous infec-
tion in humans.

Efficacy of intranasal LaAg vaccine against L. amazonensis
infection in C57BL/6 mice
Intranasal LaAg vaccine has been demonstrated to be
effective on susceptible BALB/c mice against L. amazo-
nensis infection [21]. We evaluated intranasal LaAg
vaccine on C57BL/6 mice against L. amazonensis infec-
tion. As expected, non-vaccinated mice presented the
lesion profile described above, with a progressive lesion
until day 63 post-infection, when a partial lesion reso-
lution ensued associated with a chronic resistant lesion
(Fig. 3a). Immunized mice controlled the lesion progres-
sion from day 42 post-infection (Fig. 3a). After partial
lesion resolution, both, PBS and LaAg, showed the same
lesion size after day 84 post-infection (Fig. 3a). However,
the parasite load at day 98 day post-infection demon-
strated that intranasal LaAg vaccine reduced the number
of parasites in the chronic infection (Fig. 3b).
Varying the number of parasites used to infect mice,

low model of infection (challenge with 5 × 105 parasites)
and high model of infection (challenge with 2 × 106 para-
sites), we observed the same profile of lesion progression

Fig. 1 Course of infection by L. amazonensis challenge (Josefa strain)
in C57BL/6 mice from different sources. Leishmania amazonensis were
cultured on M199 Medium. C57Bl/6-UNICAMP (a, b), C57Bl/6-FIOCRUZ
(c, d), C57Bl/6-UFRJ (e, f) and C57Bl/6-UFF (g, h) were infected in the
footpads with 5 × 105 stationary-phase promastigotes of L. amazonensis
by subcutaneous route. Lesion sizes were measured at the indicated
days and are expressed as the difference in thickness between non-
infected and infected footpads (a, c, e, g). Parasite load was measured
at the end of the experiment and expressed as the mean number of
parasites in each footpad (b, d, f, h). The data (means ± standard
deviations; n = 4–5) are representative of two (a, b) and three (c, d, e, f,
g, h) independent experiments producing the same result profile.
*P≤ 0.05 in comparison to peak of infection (a, 42 days; c, 56 days; e,
56 days, g, 53 days; see Table 1 for details)

Fig. 2 Comparison of infection of C57BL/6 mice by L. amazonensis
Josefa strain versus LV78 strain. Leishmania amazonensis (Josefa or
LV78 strains) were cultured on Schneider’s medium. C57Bl/6-UFF
were infected with stationary-phase promastigotes of L. amazonensis
Josefa strain (a, b) or LV78 strain (c, d). Lesion sizes were measured
at the indicated days and expressed as the difference of thickness
between non-infected and infected footpads (a, c). Parasite load was
measured at the end of the experiment and expressed as the mean
number of parasites per footpad (b, d). The data (means ± standard
deviations; n = 4–5) are representative of two independent experi-
ments producing the same result profile. *P ≤ 0.05 in comparison to
peak of infection (a, 49 days; c, 55 days; see Table 2 for details)
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control (Additional file 2: Figure S2a) and reduction of
parasite load (Additional file 2: Figure S2b) following
LaAg vaccination. To determine the parasite load during
lesion progression, we vaccinated mice and evaluated le-
sion progression and parasite load at day 44 post-

Table 1 Comparison of lesion size to size at peak of infection

C57Bl/6-UNICAMPa

(Fig. 1a)
C57Bl/6-FIOCRUZb

(Fig. 1c)
C57Bl/6-UFRJc

(Fig. 1e)
C57BL6-UFFd

(Fig. 1g)

DPI t-value
(df = 6)

P-value DPI t-value
(df = 6)

P-value DPI t-value
(df = 8)

P-value DPI t-value
(df = 6)

P-value

14 20.77 <0.0001 7 15.46 <0.0001 7 12.08 <0.0001 13 7.371 0.0003

21 12.06 <0.0001 14 14.29 <0.0001 18 11.18 <0.0001 19 6.256 0.0008

28 7.997 0.0002 18 8.697 0.0001 25 10.10 <0.0001 26 4.707 0.0033

35 6.237 0.0008 25 9.102 0.0001 32 6.158 0.0003 33 3.069 0.0220

56 3.381 0.0148 39 9.133 0.0001 39 2.647 0.0294 74 3.706 0.0100

63 4.210 0.0056 46 3.245 0.0176 69 2.395 0.0435 82 3.709 0.0100

70 5.186 0.0020 68 5.106 0.0022 76 3.464 0.0085 89 3.744 0.0096

77 4.490 0.0041 80 5.178 0.0021 87 3.421 0.0091 101 3.948 0.0076

84 5.112 0.0022 89 5.213 0.0020 101 3.151 0.0136 111 3.863 0.0083

91 5.117 0.0022 96 5.404 0.0017 112 3.306 0.0108 117 3.606 0.0113

98 7.532 0.0003 104 5.126 0.0022 126 3.192 0.0128

115 5.733 0.0012

We evaluated mice infection with L. amazonensis (Josefa strain) from different animal facilities: UNICAMP, FIOCRUZ, UFRJ and UFF. The results of the Student’s
t-test for lesion size from different times (days post-infection, DPI) with peak of infection are shown; see also Fig. 1
Abbreviations: DPI days post-infection, FIOCRUZ Fundação Oswaldo Cruz, UFF Universidade Federal Fluminense, UFRJ Universidade Federal do Rio de Janeiro,
UNICAMP Universidade Estadual de Campinas
aPeak of infection at day 42 post-infection
bPeak of infection at day 56 post-infection
cPeak of infection at day 56 post-infection
bPeak of infection at day 53 post-infection

Table 2 Evaluation of lesion growth for Josefa strain and LV78
strain infections in mice

Josefa C57Bl/6-UFFa

(Fig. 2a)
LV78 C57Bl/6-UFFb

(Fig. 2a)

DPI t-value
(df = 8)

P-value DPI t-value
(df = 8)

P-value

7 5.668 0.0005 6 23.16 <0.0001

14 5.233 0.0008 14 23.09 <0.0001

28 2.801 0.0232 20 15.83 <0.0001

70 2.561 0.0336 26 14.50 <0.0001

77 3.322 0.0105 34 8.164 <0.0001

85 3.644 0.0065 41 10.70 <0.0001

92 3.845 0.0049 49 2.454 0.0397

100 3.845 0.0049 91 3.274 0.0113

105 4.253 0.0028

112 4.512 0.0020

118 4.712 0.0015

125 5.632 0.0005

We evaluated mice (from UFF) infection with L. amazonensis using Josefa
strain or LV78 strain. The results of the Student’s t-test for lesion size from
different times (days post-infection) with peak of infection are shown; see
also Fig. 2
Abbreviations: DPI days post-infection, UFF Universidade Federal Fluminense
aPeak of infection at day 49 post-infection
bPeak of infection at day 55 post-infection

Fig. 3 Evaluation of intranasal LaAg vaccine efficacy in the chronic
stage of infection. C57Bl/6-UFF mice received 10 μg of LaAg by the
intranasal route on days -14 and -7 of infection. Non-vaccinated
controls received PBS alone. On day 0, animals were infected with
5 × 105 promastigotes of L. amazonensis (Josefa strain). a Lesion sizes
were measured at the indicated days and expressed as the difference
of thickness between non-infected and infected footpads. b Parasite
load was measured on day 98 of infection and expressed as the mean
number of parasites per footpad. The data (means ± standard
deviations; n = 4–5) are representative of three independent
experiments producing the same result profile. *P≤ 0.05 in comparison
to PBS controls as follows: a Day 42 (t(6) = 2.853, P = 0.0291); Day 49
(t(6) = 6.113, P = 0.0009); Day 56 (t(6) = 3.970, P = 0.0074); Day 64 (t(6) =
3.416, P = 0.0142); Day 72 (t(6) = 2.481, P = 0.0478); Day 78 (t(6) = 2.921,
P = 0,0266). b t(6) = 3.472, P = 0.0070
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infection. As expected, we could observe the control of
lesion progression (Fig. 4a) and a reduction in parasite
load, showing that parasite control happens in parallel to
lesion progression inhibition (Fig. 3) in vaccinated mice.

Intranasal LaAg vaccine induced a Th1 response
To evaluate the mechanism of vaccine protection, we
quantified in situ cytokine levels in the footpad homoge-
nates. We could observe during the lesion progression at
day 44 post-infection that LaAg induced in vaccinated
mice an increase in IFN-gamma release (Fig. 5a) that
paralleled the lesion control (Fig. 4a) and reduction in
parasite load (Fig. 4b). However, no modulation of IL-4
(Fig. 5b), TGF-beta (Fig. 5c) and IL-10 (Fig. 5d) were
detected. In the chronic infection at day 98 post-
infection, despite the reduction in parasite load (Fig. 3b),
we could not detect any modulation of IFN-gamma
(Additional file 3: Figure S3a), IL-4 (Additional file 3:
Figure S3b), TGF-beta (Additional file 3: Figure S3d) and
IL-10 (Additional file 3: Figure S3c). Probably, the
immune modulation during the lesion progression was
enough to decrease and maintain a reduced parasite
load, and it is important to point out that the level of
IFN-gamma is higher in the chronic phase in compari-
son to the progressive phase, probably associated to the
self-healing (lesion resolution) process. In a preliminary
experiment, we observed, in the peak of infection at 44
days post-infection, an induction of CD4+ IFN-γ+ T cells
by intranasal LaAg vaccine in comparison to PBS
(Additional file 4: Figure S4f ) in popliteal lymph node
cells. We could not detect any difference in CD8+

IFN-γ+ T cells at the peak of infection (result not shown).
This result suggests CD4+ T cells as the major mechanism
of Th1 response by Intranasal LaAg vaccine.

Association of LaAg with Addavax® adjuvant did not
enhance the protective efficacy
Scalene based adjuvant known as MF59 was the first ap-
proved adjuvant to be used by intranasal route in the Flu
vaccine [32]. Addavax® is a nano emulsion based on sca-
lane oil-water emulsion from Invitrogen. Based on the
capacity to induce T cell response by intranasal route of
scalene- based adjuvants [32], we hypothesized the asso-
ciation of LaAg with Addavax® could improve the vac-
cine efficacy. Surprisingly, the association of LaAg with
Addavax® partially impaired the lesion control promoted
by LaAg (Fig. 6a, Table 3) and reverted its parasite load
control in chronic infection (Fig. 6b). The administration
of Addavax® alone by intranasal route did not affect the
lesion and parasite load (data not shown).

Discussion
Before clinical studies for vaccines, it is necessary to per-
form very robust pre-clinical studies using different in-
fection models, such as mice, dog and non-human

Fig. 4 Evaluation of intranasal LaAg efficacy in the progressive stage
of infection. C57Bl/6-UFF mice received 10 μg of LaAg by the
intranasal route on days -14 and -7 of infection. Non-vaccinated
controls received PBS alone. On day 0, animals were infected with
5 × 105 promastigotes of L. amazonensis (Josefa strain). a Lesion sizes
were measured at the indicated days and expressed as the difference
of thickness between non-infected and infected footpads. b Parasite
load was measured on day 44 of infection and expressed as the mean
number of parasites. The data (means ± standard deviations; n = 5)
are representative of three independent experiments producing
the same result profile. P ≤ 0.01 in comparison to PBS controls as
follows: a Day 39 (t(7) = 3.566, P = 0.0073); Day 44 (t(7) = 5.037,
P = 0.0015). b t(7) = 4.614, P = 0.0024 Fig. 5 In situ cytokine profile in the acute stage of infection. C57Bl/6

mice (from UFF) received 10 μg of LaAg by the intranasal route on
days -14 and -7 of infection. Non-vaccinated controls received PBS
alone. On day 0, animals were infected with 5 × 105 promastigotes
of L. amazonensis (Josefa strain). On day 44 of infection (see Fig. 4),
the levels of IFN-γ (a), IL-4 (b), TGF-β (C), IL-10 (d) were measured in
the lesion homogenates. The data (means ± standard deviations;
n = 4–5) are representative of two independent experiments.
*P ≤ 0.05 in comparison to PBS controls (t(6) = 2.491, P = 0.0471)
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primates [36]. Intranasal LaAg vaccine is protective to
BALB/c mice against L. amazonensis [21] and L. infantum/
chagasi infection [23] and to hamsters against L. braziliensis
[29]. LaAg ability to protect against different parasite
species (L. amazonensis, L. chagasi and L. braziliensis) and
positive results in two different species (BALB/c and
Hamster) is very promising. However, it is very important
to find the best model to evaluate LaAg vaccine efficacy
[37]. In this study, we evaluated immunization against L.
amazonensis infection in the C57BL/6 mouse model, which
displays a different profile of infection.
At the beginning, we characterized the infection of L.

amazonensis using Josefa strain on C57BL/6 mice. In the

early infection, infected mice presented a progressive
phase (42–60 days post-infection), followed by a partial
resolution and chronic infection (Figs. 1 and 2). Human
cutaneous leishmaniasis infection is a self-healing dis-
ease, however, parasites can be found in healed lesions
[38]. Human disease is very different from the clinical
outcome observed in BALB/c mice [12], being more
alike to C57BL/6 mice described here. Although BALB/c
mice have been used for drug trials, it is necessary to
use a self-healing model that more closely reproduces
the natural infection course in humans to evaluate and
confirm the efficacy of these compounds [39]. The same
concept has to be transposed for vaccine development.

Fig. 6 Evaluation of intranasal LaAg vaccine associated with ADDAVAX®. C57Bl/6-UFF mice received 10 μg of LaAg (10 μl) associated or not with
ADDAVAX (10 μl) by the intranasal route on days -14 and -7 of infection. Non-vaccinated controls received PBS alone. On day 0, animals were
infected with 5 × 105 promastigotes of L. amazonensis (Josefa strain). a Lesion sizes were measured at the indicated days and expressed as the
difference of thickness between non-infected and infected footpads. b Parasite load was measured on day 70 of infection and expressed as the
mean number of parasites in each footpad. The data (means ± standard deviations; n = 5–6) are representative of three independent experiments
producing the same result profile. *P ≤ 0.05: LaAg in comparison to PBS controls; #P ≤ 0.05: b LaAg in comparison to LaAg + ADDAVAX; +P ≤ 0.05;
LaAg + ADDVACS in comparison to PBS controls Test statistics for a are provided in Table 3. b LaAg in comparison to PBS: t(8) = 5.788, P = 0.0022;
LaAg in comparison to LaAg + Addavacs: (t(8) = 6.501, P = 0.0013)

Table 3 Evaluation of LaAg vaccine associated or not with ADDAVACS®

LaAg vs PBS LaAg vs LaAg + ADDAVACS LaAg + ADDAVACS vs PBS

DPI t-value
(df = 8)

P-value t-value
(df = 8)

P-value t-value
(df = 8)

P-value

21 7.117 0.0001 6.424 0.0002 – –

28 7.363 <0.0001 8.113 <0.0001 – –

35 16.86 <0.0001 5.000 0.0011 20.68 <0.0001

42 16.68 <0.0001 – – 16.71 <0.0001

49 16.58 <0.0001 – – 18.65 <0.0001

56 14.28 <0.0001 12.36 <0.0001 – –

63 13.07 <0.0001 13.46 <0.0001 – –

75 8.180 <0.0001 15.91 <0.0001 – –

. Mice were vaccinated twice with LaAg or LaAg plus ADDAVACS or control (PBS) and then mice were infected. The results of the Student’s t-test for lesion size at
different days post-infection between experimental groups (LaAg versus PBS; LaAg versus LaAg plus ADDAVACS; and LaAg plus ADDAVACS versus PBS) are shown;
see also Fig. 6a
Abbreviation: DPI days post-infection
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It is important that differences between experimental
models and humans are accounted for in vaccine devel-
opment [40]. We presented here a partially resistant
mouse model using C57BL/6 mice with a chronic infec-
tion with persistent parasite load. Using this model it is
possible to evaluate the efficacy of LaAg vaccine in the
progressive phase (Fig. 4) and in the chronic phase
(Fig. 3). In vaccinated mice, the control of lesion growth
(Figs. 3a and 4a) is very important to avoid tissue de-
struction. The partial reduction of parasite load (Figs. 3b
and 4b) could also be important to prevent disease
transmission in the progressive phase and in the chronic
phase [41].
For standardization of our mouse model, we evaluated

mice from different animal facilities and parasites grown
in different culture medium. It has previously been de-
scribed that mice from different facilities could present
different microbiota, and this can influence their im-
mune response [14, 42]. We used C57BL/6 mice origin-
ally from Jackson Laboratories, however, housed and
bred in UNICAMP, FIOCRUZ, UFRJ and UFF animal fa-
cilities. Our experiments demonstrated that independent
of facility, the infection profiles were very similar (Fig. 1).
These results minimize the possibility that results are
relevant only for animals from a specific supplier.
Then, we tested different culture media for Leishmania

growth and infectivity. The three more important media
(199 medium, Grace’s insect tissue-culture medium and
Schneider’s Drosophila Medium) have been used for a
long time [43]. In this study, we evaluated L. amazonensis
infectivity after growth in 199 (Fig. 1) and Schneider’s
(Fig. 2) medium, and no difference was observed on the
profile of infection. Besides, we evaluated different num-
bers of parasites used to infect mice: 2 × 105 and 2 × 106.
There was no difference in the profile either (data not
shown).
It is important to note that different strains of the

same parasite can present different disease progression,
for example, for Leishmania major, the strain V1
(MHOM/IL/80/Friedlin) has a healing model, but the
strain Sd (MHOM/SN/74/SD) is a progressive non-
healing model in C57BL/6 mice [11]. There are three L.
amazonensis strains being used for research in Brazil:
Josefa strain (used in this work), PH8 and LBT0016.
LBT0016 was isolated from cutaneous leishmaniasis;
Josefa strain was also isolated from cutaneous leishman-
iasis [33] and not from diffuse cutaneous leishmaniasis
[44]. Thus, this strain was isolated from a patient with
the most prevalent presentation of the disease and
reproduced the same infection profile after inoculation
in mice. LV78 (results herein) and LBT0016 strains also
showed the same profile of infection, and as such, are an
interesting model to evaluate the impact of vaccines
relevant to human leishmaniasis.

However, L amazonensis (MHOM/BR/76/Ma-5) iso-
lated from a human patient with cutaneous diffuse leish-
maniasis demonstrated a different profile, presenting a
progressive lesion on C57BL/6 mice until 90 days post-
infection [45]. In the chronic phase, despite the presence
of a large lesion, it was not possible to detect parasites
[45]. Others demonstrated that intradermal infection on
ears of C57BL/6 mice using L amazonensis PH8 strain,
isolated from sand flies, showed a progressive disease
with a chronic lesion, in other words, in the chronic
phase, the lesion was not uncontrolled; however, also did
not heal [46, 47]. The different site of infection (ear) or
the different route of infection (intradermal) from sub-
cutaneous injection in the hind paw could affect the le-
sion progression [12]. These results demonstrate that
each parasite should be empirically evaluated to deter-
mine the behaviour of infection in mice, but they seem
to generally reproduce in the animal model the original
behaviour in lesions of human patients. The model used
herein presents a chronic phase with a high parasite load
resembling the natural history of leishmaniasis and is
more interesting for vaccine evaluation due to this simi-
larity with human disease outcome (progressive phase,
partial resolution and chronic phase development).
Leishmania amazonensis has the capacity to induce a

mixed cytokine response, Th1-IFN-gamma/Th2-IL-4
[48], IL-10 [49] and TGF-beta [20, 50]. Immunization
did not modulate IL-4, IL-10 or TGF-beta, maybe indi-
cating a secondary role of these molecules in a vaccine
context. The protection observed by intranasal LaAg
vaccine on C57BL/6 mice was correlated to IFN-gamma
levels in the lesions (Fig. 5). IFN-gamma is a crucial
cytokine to control L. major [51, 52] and L. donovani
infection [53]. IFN-gamma is described to increase L.
amazonensis parasite load in vitro [54], however, in vivo
it is considered important for infection control [55].
Moreover, production of IFN-gamma in the site of infec-
tion in BALB/c mice is associated with protection
against L. amazonensis infection [24]. The mechanism of
intranasal LaAg vaccine against L. amazonensis in
BALB/c [21]; L. chagasi in BALB/c [26]; L. braziliensis in
hamster [29]; and now L. amazonensis in C57BL/6 mice,
is associated with IFN-gamma production. These results
together demonstrate the importance of IFN-gamma as
the major marker for vaccine studies against leishmania-
sis. In preliminary experiments, we suggested the partici-
pation of CD4+ T cells to produce Interferon-gamma
(Additional file 4: Figure S4f ) in LaAg vaccine, as
indicated for several studies as the most important Th1
parasitic-specific response against leishmaniasis [56].
The human vaccine candidate has to be feasible to

protect against different parasites and against different
clinical forms [56–58]. Intranasal LaAg vaccine has
demonstrated being effective in different mouse models,
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against different Leishmania species and with different
forms of disease [21, 26, 29]. In our work, the choice of
a model of infection more similar to human infection
based on the self-healing in human with normal immun-
ity using C57BL/6 mice allowed us to do consideration
about the LaAg vaccine. The efficacy of the vaccine in
the control of the lesion size in the progressive phase is
very interesting. Besides, there is a reduction of parasite
load in the chronic phase in mice, demonstrating the
quality of this vaccine. When we considered the efficacy
on BALB/c mice, we can transpose the vaccine against
the severe form of disease to cutaneous diffuse leish-
maniasis based on the uncontrolled parasite load. The
perspective of LaAg intranasal vaccine as a human vac-
cine candidate is due its capacity to reduce the size of
the lesion and control the parasite load. Intranasal LaAg
vaccine has all the concepts expected for a human vac-
cine candidate.
The importance of adjuvants to enhance the immune

response of vaccines is already known, and new adju-
vants based on squalene emulsion open the possibility to
development of new vaccines [32]. The association with
ADDAVAX® adjuvant can enhance the protection in
some vaccines [59], and hinders efficacy for others [60].
This type of adjuvant has been used to enhance both
Th1 and Th2 responses [61, 62]. Here, we demonstrated
that the use of LaAg associated to ADDAVAX® de-
creased the LaAg vaccine efficacy (Fig. 6). The protec-
tion of LaAg adjuvant free is very encouraging, but we
are still looking for new adjuvants to enhance LaAg pro-
tection [26] and for characterization of LaAg compo-
nents to developing more defined vaccines [24, 63–65] .

Conclusion
Adjuvant free LaAg by intranasal route is protective
against L. amazonensis infection using the C57BL/6
mouse model that more closely reproduces the infection
profile in humans. The efficacy against other parasites
such as L. chagasi and L. braziliensis point to intranasal
LaAg immunization as a promising vaccine candidate
against leishmaniasis.

Additional files

Additional file 1: Figure S1. Course of infection by L. amazonensis in
BALB/c mice. BALB/c mice were infected with 5 × 105 stationary-phase
promastigotes of L. amazonensis (Josefa strain) in the footpads. a Lesion
sizes were measured at the indicated days and are expressed as the
difference of thickness between non-infected and infected footpads. b
Parasite load was measured in the chronic infection phase and expressed
as mean number of parasites. The data (means ± standard deviations;
n = 5) are representative of three independent experiments producing
the same result profile. (TIF 210 kb)

Additional file 2: Figure S2. Efficacy of intranasal LaAg against high
challenge of L. amazonensis infection on C57BL/6. C57Bl/6-UFF received
10 μg of LaAg by the intranasal route on days -14 and -7 of infection.

Non-vaccinated controls received PBS alone. On day 0, animals were
infected with 2 × 106 stationary-phase promastigotes of L. amazonensis (7
days of culture). a Lesion sizes were measured at the indicated days and
are expressed as the difference of thickness between non-infected and
infected footpads. b The parasite load was measured on day 98 of
infection and is expressed as number of parasites. The data (means ±
standard deviations; n = 4–5) are representative of three independent ex-
periments producing the same result profile. *P ≤ 0.05 in comparison to
PBS controls. a Day 38 (t(6) = 3.303, P = 0.0164), Day 45 (t(6) = 2.813,
P = 0.0306), Day (t(6) = 3.743, P = 0.0096), Day 61 (t(6) = 6.917, P = 0.0010);
Day 70 (t(6) = 3.757, P = 0.0198). b t(6) = 6.778, P = 0.0025. (TIF 232 kb)

Additional file 3: Figure S3. In situ cytokine profile in the chronic
phase. Mice (from UFF) were intranasally vaccinated with LaAg and
infected with L. amazonensis as described for data in Fig. 3. On day 110
of infection (see Fig. 3), the levels of IFN-γ (a), IL-4 (b), TGF-β (c), IL-10 (d)
were measured in the lesion homogenates, and expressed as ng per g of
footpad. The data (means ± standard deviations; n = 4–5) are representative
of three independent experiments. *P≤ 0.05 in comparison to PBS controls.
(TIF 285 kb)

Additional file 4: Figure S4. LaAg vaccine induced CD4+ IFN-γ+ T cells
in progressive stage of infection. Mice were vaccinated and infected as in
the experiment in Fig. 4. Lymph nodes were removed at day 44 post-
infection. Frequency CD3+CD4+ cells from PBS mice (a) and from LaAg-
vaccinated mice (b). Dot plot (frequency) of IFN-γ staining of CD4+ from
PBS mice (c) or LaAg-vaccinated mice (D). e Number of CD3+CD4+ cells
for each mouse from PBS and LaAg-vaccinated groups. f The production
of IFN-γ+ by CD3+CD4+ cells was calculated for each mouse. The data
(means ± standard deviations; n = 4–6) are from one experiment. *P ≤
0.01 in comparison to PBS controls (cf. Fig. 4f, t(10) = 3.410, P = 0.0067).
(TIF 4245 kb)
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