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Abstract

The health impact of mosquito-borne diseases causes a huge burden on human societies. Recent vector control
campaigns have resulted in promising declines in incidence and prevalence of these diseases, notably malaria, but
resistance to insecticides and drugs are on the rise, threatening to overturn these gains. Moreover, several vector-borne
diseases have re-emerged, requiring prompt and effective response measures. To improve and properly implement
vector control interventions, the behaviour of the vectors must be well understood with detailed examination of
mosquito flight being an essential component. Current knowledge on mosquito behaviour across its life history is
briefly presented, followed by an overview of recent developments in automated tracking techniques for detailed
interpretation of mosquito behaviour. These techniques allow highly accurate recording and observation of mating,
feeding and oviposition behaviour. Software programmes built with specific algorithms enable quantification of these
behaviours. For example, the crucial role of heat on host landing and the multimodal integration of carbon dioxide
(CO2) with other host cues, has been unravelled based on three-dimensional tracking of mosquito flight behaviour.
Furthermore, the behavioural processes underlying house entry and subsequent host searching and finding can be
better understood by analysis of detailed flight recordings. Further potential of these technologies to solve knowledge
gaps is discussed. The use of tracking techniques can support or replace existing monitoring tools and provide insights
on mosquito behaviour that can lead to innovative and more effective vector-control measures.

Keywords: Flight behaviour, Automated tracking, Mosquito, 3D analysis, Infectious diseases, Malaria, Behavioural ecology,
Vector control

Background
Mosquito-borne diseases continue to impose a heavy
burden on human societies and impede welfare and eco-
nomic development [1]. Despite promising declines of
malaria incidence within the last 15 years [2], other
mosquito-borne diseases such as Zika, dengue, chikun-
gunya and West-Nile virus are on the rise and have
spread over various continents [3, 4]. In addition to
climate change, international trade and human transport
are considered to be the main drivers of introductions of
new vectors, with or without their pathogens, into
different geographical regions [5–9].
The recently reported global decline in malaria was

achieved mainly by wide-spread use of long-lasting

insecticide-treated nets (LLINs), indoor residual spraying
(IRS) and proper drug treatment, but insecticide resist-
ance and resistance to antimalarial drugs threaten to
prevent further reductions or may even lead to disease
resurgence [10, 11]. Innovative alternative methods are
being developed, such as the use of entomopathogenic
fungi [12], biolarvicides (Bacillus spp.) [13, 14], push-pull
systems and mass trapping techniques using odour-baited
traps [15, 16] in combination with house improvements
[17]. It is expected that the combined use of these tools,
along with LLINs, IRS and proper drug treatment, may
provide a more sustainable strategy for vector-borne dis-
ease control [18]. Recently, the World Health Organization
launched a strategic approach named Global Vector
Control Response, aiming for locally adapted sustainable
control measures to target multiple vectors [19, 20].* Correspondence: jeroen.spitzen@wur.nl
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Successful implementation of new vector control tools
along with existing tools following the integrated vector
management approach requires detailed understanding
of mosquito behaviour. For example, the contact rate of
mosquitoes with insecticide-treated bed nets is an im-
portant parameter in understanding the efficacy of this
technology [21, 22]; higher efficacy of mosquito traps re-
quires knowledge on trap entry behaviour [23–25], and
push-pull strategies can be made more effective if mos-
quito foraging behaviour in the peri-domestic area is
well understood [26].
Innovative tracking techniques have opened a new

array of possibilities for examining insect behaviour in
both the laboratory and (semi-) field [27–29]. The focus
of our review is on the tracking of mosquitoes in space
in order to elucidate fundamental aspects of their behav-
iour in different phases of their life history. An overview
of tools used for behavioural tracking of mosquitoes and
their technical complexities is provided. We discuss how
in-depth knowledge on mosquito behaviour can be
exploited for the development and evaluation of vector
control strategies.

Behaviour across the mosquito life history
The mosquito life history traits can be divided into plant
feeding, mating, host feeding, oviposition, larval develop-
ment and pupation. There is surprisingly little funda-
mental knowledge about the behavioural aspects of
these phases, despite a wealth of knowledge on the fac-
tors affecting these behaviours [30–36]. The behavioural
aspects of these phases are briefly described below.
We pay attention to anthropophilic mosquito species

which forage in and around human dwellings in search
of a blood meal [37]. For Anopheles species, many of
these behaviours occur in the evening or at night, when
darkness makes direct observations more challenging.
Video-recording makes it possible to visualize mosquito
behaviour on a small scale, even during the scotophase,
without having the experimental set-up affected by
(extra) cues associated with the researcher. Besides
host-seeking, describing other behaviours during the
mosquito life-cycle, e.g. mating, (post-) feeding and ovi-
position, can also greatly benefit the understanding of
mosquito-borne disease ecology and further assist in the
development and evaluation of surveillance and
intervention tools.

Plant feeding
Among the first activities of a mosquito after emergence
from the pupa is the search for a sugar source.
Carbohydrates provide energy for mosquitoes’ daily re-
quirements and males rely fully on sugar-feeding [38].
The sugar source is mostly nectar, but can also consist
of fruits, honeydew or extra-floral nectar. Mosquitoes

can show strong preferences for certain plant sources
(reviewed by [39]). Deprivation of sugar sources affects
the flight capacity and can consequently affect mosquito
dispersal, mating success and/or host-finding [40–42].
Recent studies indicate that mosquitoes can learn to

associate visual cues with the quality of sugar sources
[30]. Such studies contribute to further development of
effective use of (toxic) sugar baits to manipulate or con-
trol mosquito vectors [43, 44] or to monitor the pres-
ence of pathogens in local populations [45, 46].
Behavioural studies on sugar-feeding can contribute to
the knowledge of preferred plant sources, time-budget
spent based on efficiency and duration of feeding and
possible competition for these sugar sources with other
organisms visiting the plant [31, 38]. In addition, questions
such as whether mosquitoes are important for pollination
can be answered based on behavioural observations; this
is an area of research showing growing evidence that mos-
quitoes are not just nectar thieves [38, 47, 48].

Mating
Mosquitoes, along with other Diptera, have the special
ability to mate in flight [49]. Depending on the species,
mating occurs in swarms formed by males (most
anopheline species) but both sexes can also assemble
near emergence sites or around vertebrate hosts (mostly
culicine species) [50]. Acoustic signals play an important
role in mate selection, but the role of pheromones is less
clear and only explored for Aedes aegypti [51]. Mating be-
haviour receives increased attention as a result of the pro-
posed releases of sterile insects (SIT) through irradiation or
genetic engineering whereby mate finding and competition
are crucial for rapid spread in wild populations [52–56].
Furthermore, successful implementation of SIT requires a
large production of sterile males for which insights in mat-
ing behaviour can be used to optimize rearing conditions
and boost mosquito colonies [57, 58]. Attempts to study
the behaviour of nocturnal males using a camera and infra-
red (IR) light date back to 1974, when it was shown that
male responsiveness is closely related to their circadian
rhythm [59]. Butail & Manoukis et al. [60–62] were the first
to record, analyse and discern interactions between wild
mating swarms of male Anopheles gambiae. On a different
scale, mating behaviour has been studied in confined areas
using tethered mosquitoes [32, 63, 64] and follow-up stud-
ies in larger arenas with untethered Culex [65] and
Anopheles mosquitoes [66]. These behavioural studies
provided further evidence how acoustic signals play a role
during mate finding and courtship rather than being an
epiphenomenon [67]. Exploiting the flight tones to which
males respond opens a new array of techniques to
either enhance or disrupt mating success or to cap-
ture the mosquitoes for monitoring purposes or as a
control tool [57, 68–70].
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Host-seeking
Behavioural research on mosquitoes is dominated by
studies on host-seeking. This is not surprising, given the
direct link with mosquito nuisance and the mosquito
capabilities of vectoring human and animal pathogens.
Finding a suitable blood host is critical for the uptake of
protein needed for vitellogenesis. During host-seeking,
mosquitoes make use of multiple host-derived cues
[36, 71–73] and flight strategies vary among different
species [74]. Host preference and feeding habits are the
main drivers for these different strategies [33].
Studies on the host-seeking behaviour of mosquitoes

focus on the role of specific cues and, ideally, how the
integration with other cues drives their orientation. Be-
cause of the multi-modal integration, the exact role of a
single cue is difficult to determine [72]. Over the years,
extensive behavioural studies on the role of CO2, heat,
visual cues and specific host odours relevant for host
preference have been performed. Outcomes of such
studies were often quantified based on responses to a
trap and/or by personal observations [75–79]. However,
insects display a sequence of behaviours before ending
up inside a trap and responses to specific cues that initi-
ate attraction or landing may be missed [77]. With the
development of digital tracking techniques, more de-
tailed studies can now be performed, allowing links to
be made between detailed in-flight behaviours and a
combination of host cues [71, 72, 80–82]. The spatial
scale at which such studies are performed is strongly
correlated with the host cues of interest. The role of heat
or the effects of contact repellents, for example, are
studied in confined spaces such as small insect cages or
wind tunnels [80, 82–85]. Responses to CO2 in host-
seeking activation, source localization and host finding
are, on the other hand, studied not only in cages and wind
tunnels, but also in (semi-) field settings [72, 81, 86].
We distinguish between fundamental behavioural

studies that focus on the host cues (mainly volatiles) that
mosquitoes can encounter in the wild, and the cues that
may affect these behaviours as a result of interventions.
Understanding mosquito responses to host cues encoun-
tered under natural conditions is an important pre-
requisite for the correct interpretation of responses to
synthetic attractants and/or repellents. Tracking mos-
quito behaviour to study the effect of (synthetic) attrac-
tants, repellents, insecticide-impregnated bed nets or
variations in house improvements has shown its rele-
vance in understanding and improving vector-host
interventions [21, 22, 87–90].
Behavioural resistance to toxicants is relevant for

estimating the effectiveness of interventions with LLINs
or IRS. Such behavioural effects cannot be measured
with standard WHO susceptibility tests, whereas
behavioural data obtained with mosquito-tracking tools

can be included in predictive models for the effective-
ness of control strategies [91, 92].

Oviposition
Responses to oviposition cues depend on the physio-
logical state of the mosquito [73, 93, 94]. Female
mosquitoes show a temporary absence in behavioural re-
sponse to host cues when they are fully engorged with
blood [95]. After maturation of the eggs, oviposition
cues take over and responses to host cues are restored
after the eggs have been deposited [95, 96]. At the
oviposition site, Anopheles and Culex species have been
observed to hover above the water and make repeated
descents, whereas these behaviours are absent in Ae.
aegypti [97].
Finding and choosing a suitable breeding site is crucial

for gravid female mosquitoes. The water body should re-
tain water long enough for full development of the lar-
vae, contain sufficient nutrients and preferably be free of
predators [98, 99]. Disrupting this process of oviposition
site selection may be highly beneficial for the implemen-
tation of (larval) control methods, either by luring the
females to a less-favourable breeding site, e.g. one that is
treated with a larvicide, or by luring it into oviposition
traps [100–103]. Efficient lures could also benefit the de-
velopment of monitoring tools [104]. Responses to che-
mosensory cues that are involved in oviposition-site
selection are, however, highly species-specific [105]. In
addition to the chemical components, visual cues also
affect site selection [106, 107]. The success rate of
‘attract-and-kill’ methods can benefit from behavioural ob-
servations to unravel the range at which (chemical) cues
can mediate the desired behaviour [108, 109]. Interestingly,
oviposition behaviour may also be affected indirectly, for
example following the exposure to spatial repellents at an
earlier stage of the mosquito life-cycle [110].
Behavioural observations on actual egg laying are lim-

ited and most studies focus on the ‘end result’ for choice
assays by counting egg distributions in response to
certain oviposition cues [111–113].

Larval behaviour
Mosquito larvae are bounded by the breeding site in
which they hatched. Their development and survival de-
pend on factors such as water temperature as well as on
intra- and inter-species competition over food and space,
cannibalism and predation [114–116]. Behavioural re-
sponses of larvae can be triggered by direct physical con-
tact or water movement, fluctuations in light intensity
(phototaxis), temperature (thermokinetic) or by chemical
stimuli (reviewed by Clements [50]). Recently, responses
to chemical cues by larvae have been studied to further
unravel the olfactory signalling pathway of mosquitoes
[34]. 2D tracking of larvae in a Petri dish demonstrated
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opposite behaviours when exposed to DEET versus yeast.
As a follow-up, the thermosensory pathways and larval
responses of mosquitoes were studied using a similar
setup [35].
Behavioural analyses of mosquito larvae are few, but

the previously mentioned studies have improved our un-
derstanding of sensory response mechanisms in adult
mosquitoes [34, 35] and can contribute to model sys-
tems for community ecology studies [115].

Parasite and pathogen mediated mosquito behaviour
Parasite and/or pathogen infections can affect the energy
budget and (flight-) behaviour of mosquitoes and this has
consequences for their vector competence [117–119]. In
fact, parasites and pathogens can manipulate mosquito be-
haviour directly because of the effects of the infection on
the mosquito and indirectly through the cues emitted
from the infected hosts [120–124]. Working with infected
mosquitoes comes with an extra experimental challenge,
as the study organisms should not pose a risk to the local
environment and their inhabitants. A number of controlled
studies demonstrated the role of mosquito infections and
how behaviours may be affected to enhance further
transmission of the pathogen [125–130]. Studies with
Plasmodium infections have demonstrated altered feeding
behaviours of mosquitoes [131]. Although there is growing
evidence that parasite/pathogen-infected mosquitoes ex-
press a modified behavioural response, data on actual flight
performance of infected mosquitoes are scarce [132–134].
Infections with entomopathogenic fungi used as a bio-

pesticide, whether or not in combination with
Plasmodium infections, have also demonstrated to have
an impact on flight behaviour and host location [135–139].
On another level, Wolbachia infections, which have

the potential to disrupt pathogen transmission cycles,
have been shown to affect mating success, probing be-
haviour and increased locomotor activities in Ae. aegypti
mosquitoes [140–144].

Insect flight tracking: the state of the art
Image tracking
Mosquito flight recordings were initially processed
manually, by describing or quantifying the recorded
behaviours [59, 78, 145]. More accurate quantification
was conducted by manually digitizing the recorded im-
ages: a laborious task, pointing the subject of interest
(the mosquito) frame-by-frame. For 3D analysis, the
process had to be done twice with a minimum of 2 × 25
frames per second (fps), requiring 50 mouse-clicks for
one second of video recording [24]. Machine-vision
technology has developed rapidly and with the increase
of computer power, development of high-resolution
cameras, the possibilities for automated tracking of mos-
quito behaviour became available [146]. In short, the

technology starts with acquiring images from cameras
which are processed using specific thresholds to identify
the object (insect) of interest. The thresholds mainly rely
on differences in contrast of the image. Calibration of
the set-up is critical, especially if data points from two
different cameras will be merged for 3D reconstruction
of the flight paths. Generally, the direct linear transform-
ation (DLT) method is used [147], in which sets of 2D
coordinates obtained from the cameras are linked to the
known 3D coordinates of markers on a calibration
frame. Depending on the lens type used, lens distortion
correction is needed. To date, software with codes for
automated tracking can be found online as freeware
[148–150]. Other software packages that cover auto-
mated tracking, and sometimes 3D reconstruction, are
mostly custom-made solutions and some have evolved
to an add-on tool next to commercially available motion
analysis systems (idTracker, Trackit 3D, Ethovision
Track3D) [27, 151, 152]. Overall, the technical develop-
ment has led to a variety of tracking systems to choose
from, a reduction in costs and an increase in the port-
ability of recording set-ups. Advantages and disadvan-
tages of quantification techniques have recently been
summarized in a non-exhaustive list by Poh et al. [153].
It is remarkable that the table lists a variety of tech-
niques that are described as either ‘complex to set up’ or
‘cover a small area of observation’ indicating that there
is still much room for improvement. Aspects that need
to be taken into account to improve tracking systems
are discussed below.

Lighting and contrast
Successful tracking relies on a clear contrast between
the object of interest and the background. The insect is
either illuminated against a dark background, or it is
depicted against a brighter background. Light conditions
of the experimental set-up should not interfere with the
natural day-night rhythm of the studied mosquito. For
An. gambiae, it has been suggested that filming with
infrared light at λ > 900 nm does not alter the visual envir-
onment of the mosquito [154, 155]. Filming at night re-
quires near-infrared lighting so that the reflection of the
light on the mosquito wing is caught by IR-sensitive cam-
eras and is visible against a dark background. A drawback
here is that most background materials/environments also
reflect the IR-light, causing unwanted bright areas that
make tracking difficult or impossible. The use of black
polycarbonate as a background solves this problem [80].
Black fibreglass netting and ‘blackboard paint’ can serve as
alternatives, especially when the contrast of uneven sur-
face areas has to be improved. Another approach is to
backlight the cameras so that the mosquito appears as a
silhouette in the recorded image [22, 155]. Careful evalu-
ation of the experimental requirements is needed to select
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optimal lighting solutions. This can be extra-challenging
under (semi-) field conditions.

Multiple object tracking
From the start of the development of automated track-
ing techniques, scientists searched for solutions to track
multiple objects. Occultations are a challenge and in the
case of mosquito flight studies, confined arenas are
needed to prevent individuals from flying out of sight,
with the risk of being confused with other individuals
upon returning to the arena. The best tracking results
are currently established with tailor-made (MATLAB)
tracking codes [60, 72, 151]. Angarita-Jaimes et al. [156]
extended the volume of their imaging system by connect-
ing two cameras. This system is able to track multiple
mosquitoes within 2.0 × 1.2 × 2.0 m, where it should be
noted that the presented parameters on mosquito velocity
are based on 2D data. Another way to enlarge the area of
interest is by using pan-tilt cameras [27, 157]. By adding
extra cameras, provided that they are properly synchro-
nized, occultations can be reduced and additional accur-
acy and details of flight tracks can be obtained.

Track the beat
Another method of ‘keeping track’ of mosquitoes is by
exploiting their wing beats. When the sound that mos-
quito wings produce is used to record the activity or
passage of mosquitoes, we refer to this as acoustic track-
ing. Literature on responses of mosquitoes to sound is
scarce, but dates back to 1949 [158]. Acoustic tracking
has the potential to be used as a relatively cheap method
to monitor behavioural activity of mosquitoes. Sound
sensors are generally cheaper than image sensors and
there is no additional lighting equipment required. Also,
the amount of incoming data is smaller compared to
image tracking. Differences in wingbeat frequencies can
be used to classify individual mosquitoes to species com-
plex level; however, overlap in frequencies does occur
[159–161]. Field tests report a major challenge in filter-
ing ambient noise [162], although a recent study using
mobile phones as acoustic sensors managed to filter this
noise and mosquito identification was succesful [163].
More promising seems the development of opto-
acoustic tracking, making use of break-beam technology.
When mosquitoes pass a set of infrared emitters and re-
ceivers, the interrupted beam is used as an electronic
signal by the receiver [164, 165]. Species identification
using this technique is challenging, but possible by ana-
lysing wingbeat patterns and proof of principle was
already reported in 1986 [166, 167]. Automated identifi-
cation is now reported based on wing movement or
wing shape- and pattern analysis and accuracy levels are
on the rise [168–172].

Mosquito behaviour at a glance
Using tracking technology as discussed above, several
studies have described the behaviour of mosquitoes dur-
ing different life stages. We are not aware of studies on
oviposition behaviour or plant feeding that have incor-
porated tracking techniques, but such studies could give
additional information on the approach strategies of
mosquitoes and measure responses to the provided cues
in a (semi-) natural environment [31, 99]. Butail et al.
[60] created a 3D reconstruction of a mating event of
wild An. gambiae mosquitoes, a critical step to charac-
terise the trajectories of both male and female mos-
quitoes before successful mating occurs. Tracking the
behaviour of larvae revealed that thermosensory re-
sponses are comparable to those of adult mosquitoes,
which may have indirect implications for adult mosquito
vectorial capacity, triggered at the larval stage [35]. The
same technique was used to demonstrate that larvae
show an altered behaviour after exposure to the mos-
quito repellent DEET [34]. In studies on host-seeking fe-
male mosquitoes, Spitzen et al. [80] and McMeniman et
al. [72] described how responses to specific host cues are
integrated and evoke completely different flight patterns,
compared to treatments where cues such as heat or CO2

are lacking, or cannot be sensed by mutant mosquitoes.
Several studies incorporated mosquito-behavioural ana-
lysis in more applied settings directed at interventions
with mosquitoes as target. These studies focus on the ap-
proach of mosquitoes to host cues in different settings.
The obtained information is used to evaluate the effects of
the intervention technique [22, 24], or to provide ideas on
how and where to implement interventions [90, 136]. The
parameters selected to interpret the behaviours of interest
show many similarities across studies. Spatial-temporal
distributions reveal the relative attractiveness, and thus
importance, of the (host-) cues studied. The change in vel-
ocity of the insect is closely related to the distance from
and intensity of the stimulus, and is a measure of ortho-
kinesis. In addition, the velocity parameter is used as an
indicator of the insect nearing mechanical barriers, e.g.
when mosquitoes approach a house, bed net or host.
Change of headings, the intensity of convoluted pathways,
sometimes expressed as the number of turns, are closely
related parameters and linked to whether mosquitoes are,
or have been, tracking odour cues. At close range, loco-
motor activity or mobility thresholds can be used to deter-
mine whether a mosquito is still in flying modus or has
landed and is sitting on or near the target. This parameter
is also valuable in 2D tracking systems where accurate es-
timates of flight velocities are lacking. Setting the mobility
threshold should be carefully evaluated, as automated
tracking can also produce ‘movements’ while the insect is
actually sitting still and the deviation is caused by slight
shifts in illuminated pixels [21]. The latter can cause
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interpretation errors, especially when filming under low
resolution.

Data evaluation and considerations before taking off
The tracking data that are generated need careful evalu-
ation before any meaningful interpretations of the ob-
served behaviours can be made. Occasional tracking
errors, for example caused by reflections of IR on inter-
fering objects, should be filtered out to avoid inaccurate
data on flight parameters. Such filters can be based on
previously-reported maximum flight velocities. Missing
data, for example caused by lack of resolution or lighting
conditions, can be fixed using interpolation. This avoids
unnecessary cuts in tracks that would otherwise be
appointed to multiple individuals or flight events. Data
interpolation seems especially acceptable for set-ups
where more than one camera is used, when missing data
is only replaced in cases where the other camera
‘confirms’ the actual continuation of the track [24, 80].
Analysing the average value of measured flight param-

eters over an entire track may not explain the observed
behaviour correctly. For example, the flight speed of
host-seeking mosquitoes can drastically change when
they lose track of an odour or when they come close to
their target [24, 80, 84]. This becomes apparent when
the data are divided in sections or bins with certain in-
crements from the target stimuli. With conventional re-
cording speeds (25 fps), however, the number of data
points within these smaller sections is limited; this has
consequences for the power of the statistical analysis.
Recording with higher frame rates solves this problem.
For multiple object tracking, high frame rates help to
minimize the likelihood of incorrect assignments of indi-
vidual mosquitoes, as the typical mosquito displacement
between frames becomes smaller than the spacing be-
tween two individuals [156]. High-speed recording, how-
ever, comes with other limitations since it requires extra
illumination, computer processing speed and data storage.
Filming with high-resolution cameras at high frame

rates generates large data files. When recording gigabytes
per minute, data storage becomes the limiting factor for
the duration of the behavioural experiment. Real-time
tracking would be the solution here, where ‘only’ the x,y,
(z) positions of the insect are stored for further analysis
and not the video itself. However, the tracking code used
should be verifiable using sample videos [173, 174].

Future perspectives
Integration of spatial observations with fundamental
studies on flight dynamics
Recent studies on the flight kinematics and aerody-
namics of mosquitoes, together with the spatial data
reviewed above, throw new light on the way mosquitoes
move through their environment [29, 175, 176]. Compared

to other similarly-sized insects, mosquitoes fly with excep-
tionally high wing beat frequencies and low amplitudes
[175], and after taking a blood meal they can escape from
their host without being noticed [176]. Although studying
the aerodynamics of mosquito flight often requires an ex-
perimental set-up that is highly confined in space, it re-
veals the physical possibilities and limitations of mosquito
flight. Integrating the technical expertise and obtained
knowledge on biomechanics with the expanding informa-
tion on flight behaviours observed in the (semi-) field can
accelerate the innovation of vector control tools, for ex-
ample by fine-tuning fan-powered traps or manipulation
of mating behaviour.

How to exploit mosquito behaviour for surveillance and
intervention
With the rapid development and increased availability of
tracking hardware and (open-source) software, scientists
should consider what system(s) are required to answer
their research question(s). This seems obvious, but in
the field of mosquito research we distinguish between a
focus on fundamental questions on flight behaviour and
a more applied approach, where flight data are used for
innovation purposes, surveillance, or measuring the ef-
fectiveness of intervention strategies. For the applied
questions, 2D data are often sufficient and this can dras-
tically reduce the budget required, decrease the amount
of incoming raw data and thereby minimize the time re-
quired for answering the initial question. For example
studies analysing number of landings, or amount of time
spent on (insecticide-) treated surfaces, or whether mos-
quitoes pass certain intervention barriers can benefit
from 2D tracking solutions [21, 87, 177]. However, when
detailed data on the approach of mosquitoes to certain
targets, or responses to particular cues is requested, 3D
data are a prerequisite because of their typical convoluted
flight patterns, both horizontally and vertically [72, 80].
Our understanding of behavioural repertoires of mos-

quito vectors during their life-cycle, whether infected or
not, can be exploited for the development and effective im-
plementation of novel monitoring and control tools (e.g.
[16, 133, 178]). Behavioural data can be added to data ob-
tained from conventional monitoring tools such as traps,
resting catches and human landing collections, in order to
validate models on malaria transmission [179, 180]. Track-
ing techniques can be combined with trapping techniques
or even replace traps as a surveillance tool to assess mos-
quito abundance or activity. For the monitoring of species
abundance, or measuring the activity of mosquitoes around
human dwellings, there is no need to analyse the full
behavioural repertoire. The break-beam technology that
exploits specific wing beat characteristics can be advanta-
geous here, especially when combined with a timer to
register circadian rhythms [164, 165, 171, 181]. Whereas
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the use of microphones seems inapplicable for larger
arenas because of background noise, the use of opto-
acoustics to measure activity and classify mosquitoes that
enter houses (e.g. via eaves or eave tubes) or traps may
provide an easier-to-install and cheaper method than film-
ing. Even if species recognition is imperfect, the technique
can still provide data on flight activity on a temporal scale.
Given their size, it is unlikely that (harmonic) radar sys-
tems will become available to follow long-range move-
ments of mosquitoes [182–184]. Aerial sampling with
balloons at 40–250 m above ground level revealed that a
significant number of mosquitoes exploit wind streams to
migrate at high altitudes (Tovi Lehmann, personal com-
munication). Such studies can help to explain seasonal
(re-) appearance of mosquito species and predict the need
for continuous vector control measures. Mark-recapture
studies form another alternative to measure (migration)
movements, with the challenge being to capture the wild
individual in the first place so that it can be marked [185].
The latter can be solved by using the stable isotope
method, with which larvae can be marked and re-
captured as adults [186]. Mark-recapture studies will not
reveal details on movements between point A and B, but
can give valuable information on mosquito dispersal.

Conclusions
The implementation of vector intervention tools, as part of
the Global Vector Control Response strategy launched by
the WHO [20], comes along with questions on the effect-
iveness and possible behavioural adaptations of mosquitoes
to such tools. For example, the shift towards outdoor trans-
mission by behaviourally resistant mosquitoes requires ad-
justments in intervention techniques [180]. Recent
developments in insect tracking technology are promising
for further implementation in the field and are expected to
provide the necessary feedback and estimations of mos-
quitoes that pass through holes, eaves, windows and doors
[89, 90, 187, 188]. Interventions may have an effect on air-
flow coming from houses and quantifying this requires par-
ticle tracking of airflows, as reviewed by Fu et al. [189].
More directly, manipulating the airflow using fog dis-
pensers has shown to affect the flight capabilities of mos-
quitoes and could function as an intervention tool in itself
[190]. To date, automated tracking techniques have
contributed to our understanding of how the multimodal
integration of (host-) cues plays a role in source finding of
mosquitoes [72, 80]. The tools have provided information
on attraction or repellent modes by studying mosquito
behaviour around treated surfaces such as bed nets
[21, 22, 191, 192] or around odour-baited traps [24]. Re-
cently, the obtained knowledge led to promising implemen-
tations in the field where adding a heat source to an
odour-baited trap resulted in a 6.5 fold increase of trap
catches of An. gambiae compared to traps without heat [193].
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