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Abstract

Lyme borreliosis (LB) and other Ixodes ricinus-borne diseases (TBDs) are diseases that emerge from interactions of
humans and domestic animals with infected ticks in nature. Nature, environmental and health policies at (inter)
national and local levels affect the risk, disease burden and costs of TBDs. Knowledge on ticks, their pathogens and
the diseases they cause have been increasing, and resulted in the discovery of a diversity of control options, which
often are not highly effective on their own. Control strategies involving concerted actions from human and animal
health sectors as well as from nature managers have not been formulated, let alone implemented. Control of TBDs
asks for a “health in all policies” approach, both at the (inter)national level, but also at local levels. For example, wildlife
protection and creating urban green spaces are important for animal and human well-being, but may increase the risk
of TBDs. In contrast, culling or fencing out deer decreases the risk for TBDs under specific conditions, but
may have adverse effects on biodiversity or may be societally unacceptable. Therefore, in the end, nature and
health workers together must carry out tailor-made control options for the control of TBDs for humans and
animals, with minimal effects on the environment. In that regard, multidisciplinary approaches in environmental, but
also medical settings are needed. To facilitate this, communication and collaboration between experts from different
fields, which may include patient representatives, should be promoted.
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Background
Ixodes ricinus is a hard tick species that transmits patho-
gens of medical and veterinary importance. It has
recently become clear that the bite of I. ricinus by itself
can also cause meat allergy [1, 2]. Ixodes ricinus-borne
infectious diseases are a considerable health concern in
many European countries for several reasons.
First of all, the European Center for Disease Preven-

tion and Control has predicted that the incidence of
tick-borne diseases (TBDs) will rise in the near future
[3]. Several studies describe a long-lasting increase in
the incidences of the two most commonly reported
TBDs, namely Lyme borreliosis (LB) and tick-borne

encephalitis (TBE) in several European countries [4–9].
Another trend is that human infections and diseases
involving other tick-borne pathogens (TBPs), such as
Anaplasma phagocytophilum, Borrelia miyamotoi,
Neoehrlichia mikurensis, spotted fever rickettsiae and
Babesia species, are emerging or being (re)discovered.
Indeed, the number of studies describing infections and
disease cases involving these agents is accumulating in
the literature [10–17]. The severity and incidence of
TBDs, other than LB and TBE, is unknown, awareness is
low and adequate diagnostic modalities are often lacking
in routine settings. Many of these pathogens are also of
veterinary relevance, not only for livestock, but also for
pet animals [18–21].
Secondly, the reliability of the diagnosis of LB and the

efficacy of antibiotic treatments are publicly being
questioned, including by some self-proclaimed experts
and medical doctors [22, 23]. The (inter)national guide-
lines on the clinical diagnosis with recommendations for
supporting laboratory diagnosis and treatment appear to
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be a matter of continuous debate [24]. This has led to
considerable societal unrest. Furthermore, as I. ricinus is
often infected with multiple zoonotic agents, it is still
unclear to what extent co-infections are able to affect
the course of LB [25]. Doubts and uncertainties about
the severity, symptoms, diagnosis and treatment of
TBDs are widespread in the media, and give rise to un-
certainties and controversies between patients and
health providers. This rising concern for TBDs has con-
tributed to the formation of LB interest groups in many
European countries, who actively seek public and polit-
ical awareness, particularly for LB. In the Netherlands,
for example, an association for LB patients presented a
petition with more than 70,000 signatures of concerned
citizens to the parliament for more awareness and re-
search on LB and political attention [26].
Together, these concerns require actions of public and

medical health professionals and require solid, evidence-
based solutions, to minimize the concerns and disease
burden of TBD. This review aims to link the knowledge
on I. ricinus and TBDs from different disciplines, in
order to formulate possible solutions and knowledge
gaps to control ticks and TBDs. An excellent review on
the public health concerns and the challenges to control
of I. scapularis-borne diseases in the USA has been
published [27]. Despite the differences in ecology,
epidemiology, environmental and health care systems,
there are overlapping research questions which can be
tackled together.

Abundance and spread of I. ricinus
Understanding which factors drive population densities
of disease vectors is an important step in assessing
disease risk and formulating possible intervention
strategies. Ixodes ricinus has a four stage life-cycle, i.e.
egg, larva, nymph and adult, requiring only one blood
meal during every active stage. The time for I. ricinus to
complete its life-cycle varies between three and six years,
mostly depending on climate and host availability. Ixodes
ricinus employs an ambush strategy for host finding
[28], which implies climbing the vegetation, clinging to
the tips of stems, and waiting for a vertebrate host.
Questing ticks cling to a host animal as the animal
passes through vegetation. After feeding for a few days,
ticks detach from the host and fall in the litter layer. It
takes several months to molt into their next developmen-
tal stage, or, in the case of adult females, to lay several
thousand eggs and subsequently die. Only a small fraction
of the ticks complete the life-cycle: about 10% of the
questing larvae will develop into a questing nymph, and
then again between only 1 and 10% of the nymphs manage
to develop into a questing adult.
Although I. ricinus can utilize a multitude of host spe-

cies, these host species differ considerably in the numbers

of ticks they feed, which further differs between the differ-
ent tick life stages. In forest areas, larvae predominantly
feed on rodents, nymphs feed on the highest variety of
host, but mostly forest birds and rodents, whereas the key
reproduction hosts for ticks are deer [29]. Although
annual fluctuations in rodent densities affect the densities
of nymphs the following year to some extent, the (local)
presence of propagation hosts, mostly deer, is often the
key factor for the presence of moderate tick densities in
forested areas [30]. Ixodes ricinus spends almost its entire
life in the vegetation. Temperature and relative humidity
are key requirements for the development, survival and
activity of I. ricinus. They are considered to be the princi-
pal factors limiting the geographic range of I. ricinus [31–
33]. More locally, the survival time of ticks also strongly
depends on (micro)climatic conditions. The large spatio-
temporal fluctuations in the densities of questing ticks
within a location is mostly determined by daily and sea-
sonal weather conditions [34]. More generally, the
climatic changes over the last decades have probably
resulted in an increased length of the annual tick questing
season [35], whether that has affected the population sizes
of ticks is unknown.
These key requirements imply that I. ricinus is mainly

found in deciduous woodland containing small mam-
mals and deer, but in some areas with sufficient rainfall,
large populations may occur in open habitats such as
meadows, dune areas and moorland, where the majority
probably feed on livestock [36]. Although very focal and
often in low densities, I. ricinus has also been found in
green areas in cities, such as parks and gardens [37, 38].
There, hedgehogs, rather than deer, might act as propa-
gation hosts [39, 40].

Policy driven changes in abundance and spread
Although direct evidence is lacking, the increase in LB and
TBE incidence is very likely caused in part by the increase
and spread of I. ricinus populations [41]. Tick-suitable areas
in Europe are expanding, particularly due to reforestation
and other actions to restore and protect nature [35, 42–47].
For example, the protective status of wildlife has resulted in
increases in their abundance and spread, particularly of
deer populations. Expanding and creating ecological net-
works across Europe is not only beneficial for wildlife, but
also for ectoparasites and their associated pathogens, allow-
ing easier maintenance and spread to new areas. The
current policy of some European countries is to create
more green spaces in (sub)urban areas to improve human
health and well-being, and to mitigate the effects health
risks such as heat wave, air pollution and flooding (Com-
mittee on Climate Change 2014). It is important to realize,
however, that these spaces may also enhance opportunities
for contact between humans and I. ricinus, posing risks for
acquiring TBDs [38, 48–50].
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Transmission dynamics of TBDs
Pathogens can be acquired by ticks while feeding on
infected hosts. In suitable tick vectors, TBPs have the
ability to persist throughout the molting process to the
next instar, a phenomenon called transstadial transmis-
sion. The efficiency of vertical transmission, from female
tick to her offspring, varies from non-detectable for B.
burgdorferi (s.l.) and B. microti [51, 52], to ~40% for B.
venatorum [53] to close to 100% for R. helvetica [54].
Ixodes ricinus is capable to transmit more than twenty
different (potentially) pathogenic parasites, bacteria and
viruses via their blood meal to vertebrate hosts (Table 1).
Pathogen transmission by ticks requires many often
unexplored tick-pathogen interactions, from the migra-
tion of these pathogens from the gut to their secretion
in tick saliva [55].
Vertebrate hosts can be regarded best as amplifying

hosts for TBDs, their prominent role is to produce a
sufficient number of newly infected ticks to close the en-
zootic cycles of pathogens. The infection dynamics of
pathogens in vertebrate hosts varies in host range, tissue
tropism and infection time. The host range of some
pathogens, for example B. lusitaniae and A. phagocyto-
philum ecotype II, is relatively small with only a few
vertebrate species being able to act as amplifying hosts,
whereas the host range of others, such as B. afzelii and
A. phagocytophilum ecotype I, is much broader. Tissue
tropism varies from skin (B. afzelii), to blood (Babesia
species), immune cells (A. phagocytophilum, N. mikuren-
sis), endothelium (R. helvetica) and even to the central
nervous system (TBEV, B. garinii). Sometimes, adequate
immune responses are developed, for example against B.
miyamotoi and TBEV, giving rise to short-term, limited
infections. Other pathogens, such as B. burgdorferi (s.l.),
A. phagocytophilum and probably also several Babesia
species too can evade the immune system and cause
chronic, long-lasting infections. Infections with B. garinii
appear to be latent in thrushes (Turdus iliacus) for
several months, but can then be reactivated by physio-
logical cues [56]. Recurrent bacteremia also occurs in
sheep, which remain infected persistently with A. phago-
cytophilum [57].
Transmission dynamics can also be affected at the (ver-

tebrate) community levels via many, often poorly under-
stood, mechanisms. For example, most vertebrates often
are simultaneously or sequentially infected with multiple
pathogens. Patterns of (co-)infection arise because infec-
tion by one microorganism affects susceptibility to others
or due to inherent differences between hosts [58]. Another
example is the dilution effect hypothesis, where diluting
the abundance of transmission-competent hosts with
non-competent hosts will reduce the probability of ticks
feeding on transmission-competent hosts and conse-
quently decreases the infection prevalence of pathogens in

ticks [59]. This mechanism probably applies only in cer-
tain circumstances for a few TBPs, and even less often if
considering abundance rather than prevalence of infected
ticks [60]. Recently, we showed that mesocarnivores can
lower the number of ticks feeding on reservoir-competent
hosts, which implies that changes in predator abundance
may have cascading effects on tick-borne disease risk [61].
Transmission dynamics can also be affected by wea-

ther and climatic conditions. The seasonal synchrony of
larval and nymphal stages is an important driver of non-
systemic transmission of TBEV via co-feeding of
infected nymphs with uninfected larvae. This synchrony
in tick activity and feeding, in turn, is affected by
temperature patterns, in particular autumn cooling and
spring warming [62, 63]. Climate change might therefore
not only affect the distribution of ticks themselves, but
also the distribution and nymphal infection rate of
TBEV, and maybe also of other TBPs [41, 64].
These infection dynamics are important drivers for the

abundance and spread of infected ticks, and therefore
have major clinical implications, implications on the
incidence, but also on the risk management and control
of the associated diseases. For example, the geographical
distribution of TBEV is multifocal [63] with relatively
low infection rates, whereas Lyme spirochetes are more
widespread with relatively high infection rates in I.
ricinus [65]. Five genospecies of B. burgdorferi (s.l.) are
commonly associated with LB in Europe: B. afzelii, B. gari-
nii, B. burgdorferi (sensu stricto), B. spielmanii and B.
bavariensis [23]. Borrelia afzelii is predominantly involved
in cutaneous manifestations, such as erythema migrans
(EM) and acrodermatitis chronica atrophicans (ACA), B.
garinii and B. bavariensis in neuroborreliosis (LNB), and
B. burgdorferi in Lyme arthritis (LA) [23, 66]. The
incidence of the different manifestations of LB can be par-
tially explained by their pathogenicity and by the relative
occurrences of different genospecies in questing ticks [34].
Specific associations have also been found between verte-
brates and Borrelia genospecies. For example, rodents and
voles appear to contribute most to the transmission cycle
of B. afzelii, whereas thrushes contribute most to the B.
garinii and B. valaisiana cycles [29]. It is to be expected
that local abundances of these animals in tick suitable
recreational areas determine the risk of acquiring the
specific disease manifestations [38, 45].

Epidemiology of TBDs
Measuring incidences and cost of illness (humans) or pro-
duction loss (livestock) can guide decision-makers to
prioritize health policies and initiate cost-effective actions
to control diseases with the highest economic or societal
impact [67]. As TBE is notifiable in many European coun-
tries, incidences and sometimes also cost of illness have
been estimated [68]. This information has enabled the
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calculation of the cost-effectiveness of vaccination strat-
egies against TBE in several countries [69], which further
aided the formulation of various strategies to control TBE,

from creating awareness alone to incidence-, travel- or
profession-based vaccination advises to mass-vaccination
campaigns [9, 70].

Table 1 Pathogens detected in, or transmitted by, I. ricinus. Pathogens are defined here as microorganisms which have been implicated
in disease, because of evidence of infection in patients. Some pathogens have only caused disease in immune compromised cases. For
most pathogens the Koch’s postulates have not been fulfilled and solid epidemiological evidence is lacking too [217]. Some pathogens,
particularly Bartonella, Francisella and Coxiella, have other main modes of transmission. Transmission of Hepatozoon spp. by I. ricinus is not
proven, but the infection of animals with Hepatozoon spp. usually involves the digestion of infected ticks. Finally, human infections of
TBEV have also occurred through ingestion of contaminated, unpasteurized milk products [218], and other tick-borne pathogens have
been transmitted via blood transfusion

Microorganism Variants Disease Reference

Borrelia burgdorferi (s.l.) B. afzelii Human [23, 91, 219]

B. garinii Human

B. burgdorferi (s.s.) Human/ animal

B. spielmanii Human

B. valaisiana Human

B. bavariensis Human

B. bissetti Human

B. finlandensis –

B. lusitaniae Human

B. turdi –

Babesia species B. venatorum Human/animal [220–222]

B. divergens Human/ animal

B. microti Human

B. capreoli Animal

B. odocoilei(-like) –

Spotted fever rickettsia R. helvetica Human [223]

R. monacensis Human

Anaplasma phagocytophilum Ecotype I Human /animal [224]

Ecotype II –

Borrelia miyamotoi Russian Human [17]

European Human

Neoehrlichia mikurensis Human/animal [225, 226]

Spiroplasma ixodetes Human/animal [227, 228]

Orbivirus Kemerovo virus Human [229]

Lipovnik virus Human

Tribeč virus Human

Flaviviruses Tick-borne encephalitis virus Human [18, 230, 231]

Louping ill virus Animal/ human

Nairovirus Grotenhout virus – [232]

Coltivirus Eyach virus Human [230, 233]

Phlebovirus viruses Uukuniemi(-like) virus – [234]

Midichloria midichondria – [235]

Hepatozoon species – [236]

Coxiella burnetti Human/animal [237]

Francisella tularensis F. tularensis holarctica Human/animal [238, 239]

Bartonella species Human [240]
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The epidemiology of LB is more complex. In most
European countries LB is not notifiable and incidence
estimates are often based on passive reporting laboratory
surveillance or on incidental, systematic investigations
[71, 72]. Early stages of LB are underreported in labora-
tory surveillances, because most cases are serologically
negative at presentation. Furthermore, laboratory testing
at that stage is often not required, hence not recom-
mended by guidelines, for the diagnosis of EM. Most
importantly, the clinical manifestations of LB differ enor-
mously in incidence and disease burden. In the
Netherlands, 95% of the LB cases are EM, 2% LNB, 2%
LA, 0.9% ACA, 0.4% borrelial lymphocytoma, 0.1%
Lyme carditis and 0.1% had ocular manifestations [71].
In Germany, comparable proportions were observed
[73]. A recent study estimated the total disease burden
of LB for the Netherlands. Although ~91% of the LB
cases had EM, it only constitutes ~6% of the disease bur-
den, whereas the ~5% cases which displayed persisting
symptoms attributed to LB accounted for almost 90% of
the disease burden [74]. Thus, controlling the incidence
of patients with persisting symptoms attributed to LB,
will have the highest impact on reducing disease burden,
but hardly on the disease incidence.
Only a few studies have investigated the incidence of

other TBDs transmitted by I. ricinus, such as anaplasmo-
sis and babesiosis, in Europe [75]. For example, a sero-
epidemiological study estimated between 10 and 40 hu-
man anaplasmosis cases in Belgium per year [11, 76].
Human cases of other TBDs are being reported in the
literature, mostly as case studies or series. In contrast,
the exposure through bites of infected ticks in the gen-
eral population and in risk groups such as forest workers
is high. Based on molecular evidence alone, the probabil-
ity of infection with a TBP other than Lyme spirochetes
after a tick bite is roughly 2.4% [12]. Similarly, among
patients with EM, the probability of a co-infection with
another TBP is approximately 3% [12]. How often these
infections cause disease or to what extent co-infections
affect the course of LB needs further investigation. Infec-
tions with TBDs in humans is supported by many sero-
logical studies where antibody titers against for example
A. phagocytophilum have been found in a few percent of
human populations [77–79]. Nonetheless, the incidence
and severity of the medical problems caused by these
TBPs in many, if not all, European countries are un-
known. One of the reasons for that is that current diag-
nostic tools for many of the TBDs are non-existing, of
questionable quality, or poorly validated in the European
setting. As a consequence, the awareness of other TBDs
among physicians and the public is generally low. There-
fore, to gain more knowledge on the incidence and na-
ture of TBDs it is imperative to improve laboratory
diagnostic tests and awareness.

Domestic animals are more prone to exposure to ticks
than humans, as they generally spend more time out-
doors, are in closer proximity to the ground and vegeta-
tion, and have coats that facilitate tick attachment. Since
none of the TBDs associated with I. ricinus are notifiable
in Europe, official information on TBD incidence in
animals is not available. One exception is Q-fever caused
by Coxiella burnetii, but the role of ticks in the epidemi-
ology of the disease is considered to be negligible [80].
Most reports concern case descriptions, seroprevalence
studies or molecular surveys looking at the occurrence
of pathogens in ticks collected from the vegetation or
animals, which says little about the actual incidence of
clinical disease in animals.

Clinical aspects of TBDs: clinical presentation,
diagnostics and treatment
Clinical presentation of LB and TBE
LB is divided in three partially overlapping stages, reflect-
ing the duration of the infection and the severity of the
disease [23, 81]. The first stage is characterized by the
hallmark EM, an erythematous expanding skin lesion at
the site of the tick-bite (Fig. 1), usually occurring 1–2
weeks after the tick-bite. When left untreated or un-
noticed the infection can disseminate and cause early dis-
seminated and eventually late disseminated LB, the
second and third stage respectively [81]. The characteristic
manifestations of early disseminated LB include other skin
manifestations, such as lymphocytoma and multiple EM,
carditis, oligoarthritis and neurological symptoms, such as
meningo-(poly)radiculitis (Bannwarth syndrome) with or
without cranial nerve involvement [82], amongst other
rare manifestations. The central nervous system or the
joints can also be affected in late disseminated disease, but
the hallmark clinical manifestation of late LB is ACA [83].
Apart from these clear-cut manifestations, there are

patients with non-characteristic complaints such as
myalgia, arthralgia, fatigue, which are sometimes attrib-
uted to LB. These complaints are often long-lasting and
can even be debilitating. The constellation of these
symptoms is sometimes referred to as chronic Lyme,
however this term seems to be an umbrella name for a
variety of diseases and syndromes [22, 84]. Examples
thereof include late disseminated LB, post-treatment LB
syndrome (a post-infectious syndrome), a persisting B.
burgdorferi (s.l.) infection after antibiotic treatment, or
one of many other diagnoses misattributed to LB [85].
How to define “chronic Lyme” is more than a semantic
discussion as a proper diagnosis [84], i.e. the identifica-
tion of the nature and cause of an illness, greatly deter-
mines the care and cure of patients [85], and could
lower the disease burden and medical costs.
Exposure to Lyme spirochetes in animals in Europe is

common, with reported seroprevalences in Europe in
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healthy dog populations ranging from 0.3% in southern
Italy [86] to 26% in Serbia [87] and 7% in horses from in
Italy [88] to 30% in France [89], but clinical disease with
a conclusive LB diagnosis is rare. Clinical LB caused by
B. burgdorferi (s.s.) has nonetheless been reported in
dogs, horses and cats [90–95]. A broad spectrum of clin-
ical signs has been associated to Borrelia infections in
animals, including fever, lethargy, weight loss, (shifting)
lameness, ataxia, uveitis, polyarthritis, glomerulopathy
and neuritis [96–98]. This variation might to some
extent be the result of unapparent co-infections with
other pathogens, such as A. phagocytophilum [99, 100].
Ixodes ricinus ticks transmit the European variant of

TBEV [101]. Although the majority of human infections are
asymptomatic, the first symptoms are displayed between 2–
28 days (median = 8) after a tick bite [102, 103]. Infections
with the European TBEV usually display a typical biphasic
course with a viremic phase of 2–10 days and a neurological
phase of 1–21 days, separated by a period (median = 7 days)
without symptoms [104]. In the first phase the most com-
mon symptoms are fever, fatigue and headaches [103]. After
a temporary recovery, neurological symptoms appear in the
second phase, ranging from mild meningitis to severe
meningoencephalomyelitis [103]. Although TBEV-EU mor-
tality is relatively low (1–2%), neurological sequelae, which
can greatly affect the quality of life, often occur [105]. TBEV
may also affect dogs and result in fever, change in behavior
and various neurological symptoms (reviewed in [106]). A
variant of the TBEV, Louping Ill virus causes acute enceph-
alomyelitis, resulting in severe illness and death in livestock,
especially sheep and red grouse [18].

Clinical presentation of other TBDs
The clinical spectrum of human granulocytic anaplas-
mosis ranges from subclinical and self-limiting to sub-
acute, chronic or severe in the immunocompromised
[107]. The incubation period is 1–2 weeks, after which
non-characteristic symptoms (e.g. fever, flu-like symp-
toms) arise, accompanied by nausea, vomitus, abdominal
pain and arthralgia in approximately one-third of the
patients. A skin rash or neurological symptoms are less
frequently observed, and the estimated fatality rate is
less than 1% [108–112]. Animal species that may be
affected by A. phagocytophilum include dogs, cattle,
horses and sheep and clinical signs vary in severity but
are usually non-specific such as fever, lethargy and an-
orexia [113]. To date, there are dozens of case reports of
human neoehrlichiosis, the disease caused by N. mikur-
ensis, describing acute and chronic infections character-
ized by fever, headache, nausea, arthralgia, haemorrhages
and weight loss [16]. Borrelia miyamotoi causes hard
tick-borne relapsing fever (HTBRF). The onset of symp-
toms starts approximately two weeks after a tick-bite
with a sudden onset of high fever with signs of septicae-
mia accompanied by headache, myalgia, arthralgia, and
coughing or even gastrointestinal symptoms. The relaps-
ing fever episodes typically last three days, divided by
seven relatively healthy days, although for HTBRF the
typical relapsing fever pattern is not that often observed
[114]. The general trend of the course of the disease is
subsiding and self-limiting, but in rare cases, i.e. in
highly immunocompromised individuals, the disease
appears to be neuro-invasive [114–118]. The two spotted

Fig. 1 Clinical representation of an EM, the most common manifestation of LB. A culture-proven EM (diameter ~6 cm) on the leg of a 62-year-old
female. This patient presented with this slowly expanding macula with very faint central clearing as the only symptom. There was no known tick
bite prior to the development of the lesion.
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fever rickettsias transmitted by I. ricinus are R. helvetica
and R. monacensis. Their infections may cause vasculitis
with fever, headache, myalgia and local lymphadenop-
athy. An inoculation eschar and generalized maculopap-
ular rash, which are pathognomic for other spotted fever
rickettsiosis, are rarely described for these genospecies
[115, 119, 120]. The pathogenicity of R. helvetica is only
partly established by several case series and reports in
Europe [121–126]. Rickettsia monacensis infection is
even less defined, although culture, molecular and sero-
logical evidence of human exposure has been reported
[127–129].
In Europe, human babesiosis is caused by B. microti,

B. divergens and B. venatorum [12, 130–132]. All Babe-
sia species infect erythrocytes and cause haemolysis,
leading to the clinical manifestations of fever, anaemia,
jaundice, haemoglobinuria and potentially also renal
insufficiency. Over 40 human babesiosis cases have been
reported in Europe, mostly in asplenic patients. Other
risk factors are immunosuppression, depletion of mature
B-cells and old age [21]. Judging from the discrepancy
between case reports and seroprevalence, an asymptom-
atic and/or self-limiting course is common [133]. Al-
though serious infection appears to be uncommon,
when acquired, the disease has a mortality rate of 42% in
B. divergens and 5% in B. microti [134]. Babesia diver-
gens is the causal agent of bovine babesiosis in Europe.
The clinical picture is similar to that seen in humans,
with a bimodal seasonal occurrence of the disease that is
associated with I. ricinus activity. In cattle, an inverse
age resistance phenomenon is present in which calves
up to the age of 9–12 months are susceptible for infec-
tion, but resistant to disease [21].
Human infections with multiple TBDs and even with

non-tick borne pathogens have been described [135,
136]. Co-infections have been shown to affect the course
of LB causing a longer and more disabling course of dis-
ease [137–142]. Although co-infections in ticks are the
rule rather than the exception [25, 34], the opposite is
probably true in humans: co-infections seem to occur
only occasionally [129, 143–146]. Our recent findings in-
dicate that among patients with EM the probability of a
co-infection with second TBP is merely 3% [12]. To
date, there is no convincing evidence that infection with
any other TBP or any other infectious agent, is associ-
ated with chronic Lyme [147, 148].

Diagnosis of LB
In diagnosing LB, the foremost tool for a physician is a
thorough history and physical examination. An EM is
considered a clinical diagnosis and additional laboratory
testing for EM is discouraged [82]. For many other
disseminated forms of LB, laboratory work-up, including
a search for alternative explanations, may serve to aid

the physician. Serology is the current standard as it has
good diagnostic parameters with a sensitivity and specifi-
city of more than 90–95% in LB patients with late (dis-
seminated) manifestations [149]. Serology has some
disadvantages. First, the sensitivity is low in early stages
of LB, approximately 50% [149], which may lead to a
wrong or delayed diagnosis. Secondly, approximately 5%
of the general population - and even higher depending
on the age, geographical region and the population
examined - have antibodies against Lyme spirochetes,
while not having active LB [150]. Thus, serology cannot
always differentiate well between a past and a current
Borrelia infection [151–153]. Additional tests include
PCR or culture, which are only recommended for
specific manifestations and specific tissues or fluids: on
synovial fluid/tissue in the case of LA, on a skin biopsy
in the case of an ACA or in some specific cases of LNB
on cerebrospinal fluid (CSF) [154, 155]. For LNB, other
laboratory tests are available, such as leukocyte count,
intrathecal antibody production, or intrathecal CXCL-13
concentration, to support the presence of an infection in
the central nervous system or other inflammatory condi-
tions [156].
The diagnosis of any form of chronic Lyme is far more

complicated. Some of these patients may benefit from
(additional) antibiotic treatment, while others may be
better helped with other forms of treatment or rehabilita-
tion. A laboratory test that is able to adequately differenti-
ate between a past and active Borrelia infection is desired
for these patients. It has been hypothesized that cellular
tests have this ability. Several of these tests are already
commercially available, but their accuracy has not been
adequately determined [157–160] and, therefore, warrants
more research before they can be used in clinical practice
[159]. In addition, there are many alternative methods,
which are said to test for LB, but sound evidence for these
methods (e.g. as dark field microscopy directly on blood,
VEGA-test or bio-resonance) is lacking [161].
When deciding to test for a given condition, whether

it be LB or any other disease, it is important not to only
take into consideration what the technical performance
of a test is, but to also consider the pre-test probability
that the patient has the disease [155]. When the pre-test
probability of LB is low, then - taking into account the
current diagnostic parameters of serological tests and
the incidence of IgG-seropositivity in the general popu-
lation - the added value of testing is limited. Further-
more, the various LB manifestations, the pre-test
probabilities as well as the population under study and
their expectations vary greatly between primary, second-
ary, and tertiary care. This might also affect recommen-
dations for the use of Borrelia serology in current
guidelines and requires further investigation. In that
regard, although not recommended in most guidelines,
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it could be argued that testing for LB in patients with
longer-lasting symptoms with a low pre-test probability
in the primary care setting, could actually be helpful. In
this situation, a negative test result would make an LB
manifestation extremely unlikely, whereas a positive test
result would require further investigation, e.g. referral to
secondary or tertiary care center. Nevertheless, in some
situations testing for LB is discouraged altogether, specific-
ally when the patient is clinically diagnosed with an EM.
The non-specific clinical picture, together with a high

seroprevalence, also complicate the diagnosis of LB in
animals. The combination of a history to tick exposure
within an endemic region, clinical signs consistent with
LB, a positive test result, exclusion of differential diagno-
ses and response to treatment are required for a pre-
sumptive LB diagnosis in animals [162].

Diagnosis of TBE and other TBDs
TBEV infection is associated with general non-specific
infectious biochemical and blood count results. CSF
analysis usually shows pleocytosis with polymorpho-
nuclear cells early, and mononuclear cells late, in the
disease development [163]. Serology can be performed
on both liquor and serum by IgM/IgG ELISA, which is
the most common diagnostic method for TBEV-
infection in dogs as well [106]. A four-fold rise in TBEV-
specific antibodies in liquor or serum confirm the diag-
nosis. A neutralization assay is recommended in flavivi-
rus endemic regions to avoid a false positive result [104,
164]. Imaging of the brain and/or myelum may result in
focal abnormalities; however it does not contribute
greatly to the diagnosis [163].
Diagnosis of other TBDs is based on the assembly of

specific clinical characteristics, laboratory findings to-
gether with diagnostic tools in a setting of relevant epi-
demiological exposure. The main non-specific laboratory
findings associated with other TBDs are general parame-
ters found in infection, such as elevated inflammation
parameters (C-reactive protein, erythrocyte sedimenta-
tion rate), leukopenia or leucocytosis, thrombocytopenia
and anaemia, with or without elevated liver enzymes or
kidney dysfunction. Especially in A. phagocytophilum
and N. mikurensis infection, leukopenia is observed due
to leukocyte infection [108, 165]. Babesia spp. can cause
a distinct haemolytic anaemia due to erythrocyte infec-
tion with accompanying elevated bilirubin, reticulocyto-
sis and decreased haptoglobin [166]. Thrombocytopenia
appears to be most pronounced in anaplasmosis,
babesiosis and HTBRF. In the rare severe cases of ana-
plasmosis and HTBRF with involvement of the central
nervous system, the CSF can reveal pleocytosis [167,
168]. For some TBDs, there are additional, more specific,
tests available, such as a buffy coat examination for A.
phagocytophilum or peripheral blood smear with Giemsa

staining in A. phagocytophilum and Babesia spp. to look
for respectively morulae or merozoites by microscopy
[169, 170].
Most additional targeted diagnostic tests in TBDs are

either in the experimental phase or not widely validated
(molecular tests), based on cross-reactivity between other
species (serology), time-consuming, or difficult to perform
and requiring a high level of expertise (cultures) [171–
173]. In general, the sensitivity of available molecular tests
for all these TBDs is high in the first week of disease and
rapidly decreases over time, and after proper treatment.
Therefore, a positive PCR result is helpful, but a negative
result does not rule out the diagnosis. As an exception to
the rule, Babesia spp. can be detected up to months to
years after (un)treated infection [174, 175].
For most TBPs, there are no standardized antigens, or

well-defined consensus as to what thresholds constitute
a significant antibody titer. As a rule of thumb, sero-
logical tests are usually required to show a four-fold rise
in antibody titer in convalescent sera. It should be noted
that the onset of symptoms sometimes precedes the rise
in antibody titer. In addition, because antibodies may
persist beyond the clearance of infection, it can be
difficult to distinguish between a past, recent or current
infection [21, 169, 176]. For A. phagocytophilum, Babe-
sia and Rickettsia spp. indirect fluorescent antibody tests
are available, yet they make use of other strains or even
genospecies than the ones found in Europe, with the
exception of B. microti [166, 171, 177, 178]. Serological
tests for B. miyamotoi are in the experimental phase and
based on specific antigens (glycerophosphodiester
phosphodiesterase (GlpQ) and more recently also vari-
able major proteins (Vmps) identified in the available
different isolates from Asia and the USA [179, 180].
These assays do not discriminate between the different
relapsing fever Borrelia genospecies. There is no widely
available and established serological test for the diagno-
sis of N. mikurensis infection.

Treatment of TBDs
LB is treated with antibiotics. The prognosis, especially
when treated early in the course of the disease is good,
although rarely antibiotic failure can occur. In contrast,
persisting symptoms can be observed in approximately
5–20% of LB patients despite recommended antibiotic
treatment [181, 182]. Therefore, this condition has been
referred to as post-treatment LB [169]. It has been shown
in multiple placebo controlled randomized trials that pro-
longed antibiotic treatment is not effective in treating
these non-specific yet disabling and long-lasting symp-
toms [183–187]. LB in animals is also treated with antibi-
otics, usually with doxycycline given per os at 10 mg/kg
every 12 or 24 h for a period of one month [162, 188]. In
horses, the intravenous administration of oxytetracycline
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(5 mg/kg/day) was more effective in clearing experimen-
tally induced Borrelia infections than doxycycline treat-
ment [189].
There is no causal treatment for TBEV. Treatment con-

sists of supportive care and there is no evidence that steroids
or immunoglobulins are beneficial [104]. Asymptomatic or
subclinical infection frequently occurs for all of the other
TBDs and thus infection does not necessarily require treat-
ment. However, when symptomatic, treatment is, or may be,
warranted. The large group of intracellular other TBDs,
such as A. phagocytophilum, N. mikurensis and spotted fever
rickettsia, as well as B. miyamotoi are all susceptible to
doxycycline, which is the drug of choice [116, 169, 173, 190]
for adults. For younger children, pregnant women and when
the central nervous system is affected, specific alternatives
exist. Therefore, in countries where doxycycline is recom-
mended as the first line treatment for LB, these pathogens
would be concomitantly treated. In countries where beta-
lactams are the drug of first choice for LB, clinicians should
have a higher level of suspicion for other TBDs, since these
are likely not co-treated as such. Moreover, babesiosis
requires a different treatment, consisting of azitromycine
and atovaquone or clindamycine and quinine depending on
the severity of the disease [169]. Cattle suffering from
babesiosis are treated with imidocarb diproprionate. In
Africa, diminazene aceturate is frequently used to treat

bovine babesiosis caused by B. bovis or B. bigemina, but this
product is not available in Europe [21].

Control of LB and other I. ricinus-borne diseases
Knowledge on I. ricinus, its associated pathogens and
the diseases they cause have been increasing in many
fields and many approaches to control or prevent TBDs
have been investigated and proposed (Table 2). Excellent
reviews and even (hand)books on this topic are available
[191–195].

Personal preventive actions
Control of I. ricinus-borne diseases primarily consist of
the promotion of personal preventive actions for the
public and for risk groups, such as forest workers, by
providing information and education. Such actions
include avoiding high-risk habitats, wearing protective
clothing, application of repellents, prompt removal of
attached ticks, and seeking medical advice when devel-
oping symptoms (e.g. fever, skin rash) or another illness
in weeks to months after a tick bite. Personal protective
measures have poor rates of compliance and their effect-
iveness has been difficult to demonstrate in terms of re-
ducing disease cases [196, 197]. For example, providing
information and education has not resulted in a decline

Table 2 Present and potential measuresa to control TBDs. This table is modified from Eisen & Gray [241]. There is not a single
method that effectively controls all TBDs. National and local strategies, which combine several methods probably work best [191,
192]. Anti-tick vaccines blocking pathogen transmission in humans and domestic animals might encompass the silver bullet to
control TBDs. Hygiene measuresb involve checking for tick bites, prompt removal, and most importantly, seek medical advice when
developing symptoms (e.g. fever, skin rash) or illness in weeks to months after a tick bite

Personal Domestic animal Residential Vegetation Fauna Medical

Avoid tick habitats Avoid tick habitats Xeriscaping/
Hardscaping

Awareness for visitors Increase awareness and
knowledge of medical
doctors

Protective clothing Treatments with
topical or systematic
acaricides

Keep grass short,
remove weeds, remove
leaf litter and brush

Reduce tick abundance
on sites with high
recreational activities

Deer fencing Technical improvement of
laboratory tests

Repellents Hygiene measuresb Remove harborages/
food for rodents and
insectivores

Avoidance tick
habitats/ directing
visitor flows

Deer removal Improvement of diagnostic/
clinical pathways

Acaricide-impregnated
clothing

Fencing to exclude
wildlife

Mowing/extensive
grazing of paths and
recreational sites

Topical acaricide
for propagation
hosts (deer)

Improve cure and care of
patients with late LB and
persisting complaints

Hygiene measuresb Move play/rest
structures to low
risk areas

Create open habitats
rather than woodlands

Sheep mopping Prophylactic antibiotic
treatment after a tick bite

Control ticks on
dogs/ cats and in gardens

Chemical/fungal
acaricides

Topical
acaricide/antibiotics
for rodents

sTBE vaccine TBE vaccine Oral LB vaccine
for rodentsa

LB vaccinea LB vaccine Oral tick growth
regulator/acaricidea

Tick vaccinea Tick vaccinea Tick vaccinea
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in the incidence of LB in the Netherlands, not even after
intensified efforts since 2003 [7].

Environmental-based approaches
Environmental-based approaches mostly rely on reduc-
tion of tick suitable habitats, the disruption of the tick
life-cycle or interference with pathogen transmission. A
major advantage of environmental-based control options
is that most of them can readily be applied in various
practical situations, as they involve existing nature man-
agement options, such as mowing, grazing or fencing
[195]. Furthermore, controlling tick abundance or tick
exposure reduces the risk of acquiring any TBD for both
humans and domestic animals. So far, there has been
little interest in Europe in environmentally-based pre-
ventive measures. Large-scale and long-term spraying
with acaricides was carried out in Russia during the
1970s and 1980s in an attempt to control I. persulcatus,
the main vector of the TBEV [198]. The widespread
application of acaricides has been publicly criticized and
has become socially undesirable, because of their detri-
mental effects on the ecosystem and biodiversity [191,
199]. Unlike in the USA, only a limited number of stud-
ies exploring environmental-based methods to control
ticks have been conducted in Europe [30, 195, 200–202].
A wide range of acaricidal products in various formula-
tions, which are effective against I. ricinus, is being used
for tick control on domestic animals [203].

Health in All Policies
Most, if not all, of the available environmentally-based
preventive and control measures suffer from the fact that
they are not highly effective on their own [192]. Probably,
long-term implementation of control strategies, i.e. the in-
tegrated use of two or more control measures, are neces-
sary to effectively reduce disease risk. Only a few studies
on the effectiveness of control strategies have been carried
out in the USA, but not in Europe [192]. The successful
implementation of environmentally-based preventive and
control measures requires involvement of stakeholders
from both nature management and human (and animal)
health (‘One Health’). Of key importance is that the envir-
onmental control options for TBDs are put into the con-
text of other aims and ambitions, such as nature
conservation, ecosystem services or heat mitigation in
urban areas. Indeed, sectors involved in nature manage-
ment and environmental planning are often more familiar
with a so-called ‘Health in All Policies’ approach. The
‘Health in All Policies’ approach integrates and articulates
many health considerations, far broader than infectious
diseases alone, into policymaking across sectors. A future
challenge is to integrate the risk of TBDs, but also of wild-
life- and other vector-borne diseases, into the ‘Health in
All Policies’ in local nature organizations, such as

Municipal Health Services and nature owners, but also
governmental institutions and (inter)national organiza-
tions responsible for nature and health.

Healthcare actions
More and better awareness of the epidemiology, clinical
presentation and course of the various TBDs amongst
physicians could raise a suspicion on these diseases in
endemic regions. For example, the communication with
health professionals on the presence of B. miyamotoi
and TBEV in questing ticks in the Netherlands has re-
sulted in the identification of the first cases of HTBRF
and TBE [70, 168]. Clearly, there is room for the
improvement of laboratory tests for the diagnosis of LB
and especially other TBDs. Both direct (antigen tests,
cultivation or molecular tests) and indirect tests (ser-
ology or cellular tests) could greatly aid in establishing
the diagnosis. Rather than making one guideline for each
tick-borne disease separately, it might be more advanta-
geous to have one guideline for all TBDs for primary
care centers with clear consensus on diagnostic testing
and referral to secondary and tertiary care centers. Spe-
cialized guidelines for secondary and tertiary care centers
can aid the diagnosis and treatment for more severe mani-
festations of LB, but also and for all variants of chronic
Lyme. Finally, better knowledge on the course of the vari-
ous diseases after treatment could prevent overdiagnosis
and retreatment.

Vaccination
Where the risk of infection is high or the resulting disease
severe, vaccines may be the most efficient and cost-
effective means of prevention and control [204]. TBE is
well under control in Austria because of mass vaccination
programs. The available TBE vaccines have an effective-
ness of ~98%. With a vaccination rate in the population of
85%, it is estimated that more than 4000 severe cases of
TBE were prevented in Austria between 2000 and 2011
[205]. Remarkably, the vaccination coverage in many
central and eastern European countries is low [206], des-
pite predictions that TBE vaccination programs in central
and eastern Europe can be cost-effective [207]. A vaccine
protecting against LB is currently unavailable in Europe,
but a potential vaccine has recently been tested in a Phase
I/II trial [208, 209], and another LB vaccine is being devel-
oped for the European market as well [210]. Based on the
experiences with a previous Lyme vaccine that was on the
American market, with an effectivity between 62% and
85%, it remains to be seen whether a Lyme vaccine will be
widely accepted and used, or only cost-effective for high
risk groups [211, 212]. Ideally, one would like to have a
single vaccine for humans, protecting against multiple
TBDs [213]. Anti-tick vaccines targeting other tick species
already exist and are being used in the veterinary field.
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The strategy behind these vaccines is to locally control
Rhipicephalus (Boophilus) tick species, and act as a safe
and environmentally friendly alternative to acaricides
[214, 215]. Application of anti-tick vaccines was shown to
dramatically decrease the incidence of bovine babesiosis
[216]. Whether anti-tick vaccines can also be used to (lo-
cally) eradicate I. ricinus populations and prevent human
TBDs is difficult to predict due to its very large host range,
yet is a topic of investigation [213].

Conclusion
Unfortunately, there is no silver bullet to control TBDs
yet. In order to effectively control TBDs, “health” should
be considered in a broader context, involving ecosystems,
the environment, wildlife, animals and also curative and
public health and policymaking. This implies a multidis-
ciplinary approach and asks for international collabora-
tions throughout Europe, but also multidisciplinary
collaborations and approaches at local levels. Patient
representatives or patient advocacy groups are part of
such a multidisciplinary approach. In our experience, pa-
tients and researchers often have shared goals and convic-
tions, yet comprehensive collaboration in the field of LB
research seems rare. Patient advocates can have a valuable
role in anything from designing the study and securing
funding, to effectively communicating study results to pa-
tients and the general public.
Since the ecology and epidemiology of TBDs are di-

verse, yet greatly influence the burden of the different
TBDs, these should also be considered. In addition,
more awareness amongst physicians, prompt recognition
of the various clinical symptoms and improved diagnos-
tic tools could aid in combating TBDs in the future. A
variety of personal and environment-based preventive
and control measures exist, but suffer from the fact that
they are not highly effective on their own. Combining
them, and investing in fundamental as well as transla-
tional research, to be able to formulate (evidence-based)
strategies on the control of TBDs might prove to be the
way forward. Last, but most certainly not least, for most
of the TBDs no vaccine exists and therefore research
should most definitely focus on vaccine discovery and
development. In that regard, vaccines targeting the tick
vector, which could potentially prevent multiple TBPs,
have the potential to become the next silver bullet, and
require further investigation.
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