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Abstract

Background: Many mosquito-borne diseases exhibit substantial seasonality, due to strong links between
environmental variables and vector and pathogen life-cycles. Further, a range of density-dependent and density-
independent biotic and abiotic processes affect the phenology of mosquito populations, with potentially large
knock-on effects for vector dynamics and disease transmission. Whilst it is understood that density-independent
and density-dependent processes affect seasonal population levels, it is not clear how these interact temporally to
shape the population peaks and troughs. Due to this, the paucity of high-resolution data for validation, and the
difficulty of parameterizing density-dependent processes, models of vector dynamics may poorly estimate
abundances, which has knock-on effects for our ability predict vector-borne disease outbreaks.

Results: We present a rich dataset describing seasonal abundance patterns of each life stage of Culex pipiens, a
widespread vector of West Nile virus, at a field site in southern England in 2015. Abundance of immature stages
was measured three times per week, whilst adult traps were run four nights each week. This dataset is integrated
with an existing delay-differential equation model predicting Cx. pipiens seasonal abundance to improve
understanding of observed seasonal abundance patterns. At our field site, the outcome of our model fitting
suggests interspecific predation on mosquito larvae and temperature-dependent larval mortality combine to act as
the main sources of population regulation throughout the active season, whilst competition for resources is a
relatively small source of larval mortality.

Conclusions: The model suggests that density-independent mortality and interspecific predation interact to shape
patterns of mosquito seasonal abundance in a permanent aquatic habitat and we propose that competition for
resources is likely to be important where periods of high rainfall create transient habitats. Further, we highlight the
importance of challenging population abundance models with data from across all life stages of the species of
interest if reliable inferences are to be drawn from these models, particularly when considering mosquito control
and vector-borne disease transmission.
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Background
Multiple interacting ecological processes underpin sea-
sonal dynamics of mosquitoes, which act as important dis-
ease vectors worldwide [1]. Environmental conditions
affect life history parameters in many ways, including for
example, temperature effects on mortality, development
and biting rates [2–5], photoperiod effects on overwinter-
ing behaviour [6–8] and hydrological effects on larval site
availability and egg-laying [9]. Further, density-dependent
effects of competition for resources in the immature life
stages, and intra- and interspecific predation have been
shown to have profound effects on seasonal abundance
patterns across a range of insect species [2, 10–12]. This
seasonality in vector dynamics, combined with the direct
effects of environmental conditions on pathogen replica-
tion and transmissibility in the host, can lead to pro-
nounced seasonality in human cases of vector-borne
disease in both tropical and temperate climates [13, 14].
This seasonality in disease occurrence is observable in
most mosquito-borne diseases, including malaria, dengue,
chikungunya and West Nile virus (WNV) [13–16].
In recent years environmental change has been impli-

cated in the expansion and increased incidence of a wide
range of vector-borne diseases across Europe and this
trend is expected to continue in the coming decades
[17]. Range expansion of the tick, Ixodes ricinus, to
higher latitudes and altitudes and increased incidence of
Lyme borreliosis across Europe have been partially at-
tributed to warm winters and elevated summer tempera-
tures [17, 18]. Further, the spread of Aedes albopictus
across Europe has been linked to trade, travel, warm
seasonal and annual temperatures, and ample rainfall
[19, 20] and has been linked to outbreaks of dengue in
France and Croatia in 2010 [21, 22] and five outbreaks
of chikungunya in France and Italy between 2007 and
2017 [23–27]. However, we can only fully understand
and make predictions regarding mechanisms linking
these environmental changes to increases in disease inci-
dence and geographical distribution if we develop
models that incorporate both biotic and abiotic drivers
of vector abundance and disease transmission [28]. This
underlying seasonality in vector abundance has been
shown to be a key driver of the seasonality observed in
vector-borne diseases [13, 29, 30].
Mosquito-borne disease is a massive global health bur-

den, with almost 350 million estimated cases of
mosquito-borne disease across the globe in 2017 [31].
Many mosquito-borne diseases exhibit substantial sea-
sonality, which can be at least partly attributed to sea-
sonality in the vector population [13]. The phenology of
mosquito populations is complex and driven by a range
of factors that need to be understood to determine how
mosquito seasonality might drive disease transmission.
Abiotic factors such as temperature, that have

density-independent effects on population dynamics,
may have opposing impacts on particular demographic
rates. For example, high temperatures can have a nega-
tive effect on adult mosquito survival [32, 33] but a posi-
tive effect on immature development [5, 33]. Biological
processes such as intraspecific competition can have
density-dependent effects on vector population dynam-
ics and abundance, with limited access to food or other
resources being shown to prolong development times
and decrease survival [2, 34]. Interspecific interactions,
such as predator-prey interactions or competition be-
tween mosquito species can also have density-dependent
effects on population dynamics and phenology, poten-
tially acting to suppress population sizes even when en-
vironmental conditions are favourable [35, 36]. The
importance of these processes may show geographic
variation dependent on local environmental conditions
including topography, climate, hydrology, habitat and
species compositions of predators and competitors.
Recently, large-scale studies using statistical models to

investigate the relative contributions of density-dependent
and density-independent processes to vector population
dynamics have become more common, with a recent
study by Chaves et al. [37] showing that population
dynamics of Aedes aegypti, exhibited both substantial
density-dependent regulation and sensitivity to
temperature and rainfall. Numerous recent studies of
Culex pipiens in northern Italy have found
density-dependence to be an important determinant of
abundance patters. Jian et al. [38] monitored adults at
more than 20 sites over two years and found significant
density-dependence at the time scale of mean larval devel-
opment using a Gompertz-logistic based model, whilst
Mulatti et al. [39] found that density-dependence contrib-
uted more strongly to vector population growth rates than
any single environmental factor across three years of adult
captures using a similar model structure. However, whilst
these statistical models are useful in identifying the
presence and timescale of density-dependence in adult
capture data, it is not straightforward to extend these
findings to accurately incorporate patterns of intra-
and interspecific density-dependence throughout the
year in mechanistic models.
Failing to quantify these density-dependent processes

in mechanistic vector population models will hamper
our ability to predict vector phenology. However, a
sound understanding of vector phenology is necessary to
accurately predict disease transmission seasons, trans-
mission intensity and disease persistence between years,
as well as the potential outcomes of vector control strat-
egies [40–42]. Understanding the relative importance of
density-dependent and density-independent factors on
mosquito abundance is crucial because different life
stages inhabit different ecological niches and therefore
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may be subject to different control measures [42–44].
For example, White et al. [40] use a stage-structured
mathematical model for Ae. aegypti to show that whilst
high frequency releases of transgenic males will reduce
adult mosquito abundance in many cases, the use of
sterile insect techniques (SIT) alone can lead to popula-
tion increases in some instances. These increases stem
from the dynamics in the aquatic larval stage, which is
not targeted by SIT, and are due to the reduction in nat-
ural larval density-dependent mortality caused by re-
duced egg-laying. Consequently, both the ecological
niche targeted and the seasonal timing of releases
proved to be highly influential. White et al. [41] showed
that density-dependent regulation of anopheline mos-
quito larvae can ensure that persistence of mosquito
populations is robust against control measures targeting
the individual larval, pupal and adult life stages and that
a suite of interventions that target different stages of the
life-cycle is necessary to ensure maximum reductions in
mosquito density.
The treatment of vector seasonality in mosquito-borne

disease models varies considerably, from assumptions of
constant mosquito populations, to detailed seasonal pat-
terns and specific behaviour patterns [15]. In poorly
studied and data-sparse systems, modellers will com-
monly ignore seasonality in favour of studying popula-
tion dynamics at equilibrium using classical R0

methodologies [15, 45]. However, increasing awareness
of climate sensitivities and impacts of environmental
change on insect vectors and vector-borne disease has
led to an increased number of models being developed
such that vector dynamics are climate-forced, using
functions that relate population growth parameters to
environmental variables [15, 46–48] in an attempt to
capture the seasonality in patterns of mosquito-borne
disease. Due to the complexities associated with model-
ling multiple abiotic and biotic population drivers, many
model systems neglect density-dependence, with a re-
cent review paper finding that only 7.5% of 373 disease
models published between 1970–2010 that incorporated
mosquito dynamics explicitly accounted for density-de-
pendence in the aquatic stage [45]. Such processes are
challenging to model, particularly as surveillance usually
focuses on the monitoring of only the adult stage during
the peak transmission season [38, 39, 49] because it is
adult females which transmit disease, adults are com-
paratively easily trapped and surveillance resources are
often constrained [50].
Vector population models are often built using life his-

tory data derived from laboratory studies and can be val-
idated quite crudely, for example by qualitatively
comparing the timing of abundance peaks or first ap-
pearance and disappearance of adults in weekly or
monthly trap catches [48, 51, 52]. This reliance on adult

data means that it is unclear whether models correctly
capture the demographic processes of the immature
stages. For example, the study by White et al. [41] inves-
tigating the effects of density-dependent larval mortality
on control of anopheline mosquitoes, was conducted
using a theoretical model which was parameterised using
only adult capture data from eight villages in Nigeria,
meaning the effects of control measures targeting imma-
ture life stages were not assessed by direct comparison
with empirical evidence relating to the immature stages.
Further, the aforementioned large-scale statistical models
[37–39] investigate the effects of density-dependence on
the adult population using adult capture data without
empirical data on the density-dependent aquatic stages
themselves. By improving understanding of the factors
which drive seasonal abundance and transmission pat-
terns we aim to produce more robust predictions of dis-
ease seasonality allowing better assessment of the likely
effectiveness of proposed control measures.
In this study we focus on Cx. pipiens which has been

widely implicated as a major vector of WNV [1, 53–55]
and is common across much of the UK, prompting con-
cerns that disease outbreaks may occur if the disease
were to be introduced [56]. WNV is the most significant
cause of mosquito-borne disease in temperate regions
including Europe and North America [57–59] and trans-
mission of the virus is highly seasonal, with human cases
typically peaking in late summer and early autumn [60].
This seasonality in temperate climates is believed to stem
from the fact that low temperatures over winter months
create conditions unsuitable for development and survival
of immature mosquitoes, causing a cessation of breeding
activity as adults enter a diapausing state [61], whilst low
temperatures cause conditions unsuitable for replication
of the virus within exposed vectors [4]. Hence, accurate
predictions of WNV occurrence and dynamics will de-
pend on our ability to accurately predict Cx. pipiens sea-
sonal abundance, which we aim to address here.
We present a high temporal resolution dataset of sea-

sonal abundance of all life stages of Cx. pipiens. This
dataset is thoroughly explored using a delay differential
equation (DDE) model developed from that published by
Ewing et al. [62]. This model allows the duration of, and
survival through, each mosquito life stage to vary in re-
sponse to temperature, whilst diapause initiation and
termination are primarily governed by photoperiod.
Ewing et al. [62] predict that Cx. pipiens abundance will
increase in the UK under current climate projections
and that the timing of warm periods may be particularly
influential in shaping abundance patterns. However, the
model used was not validated with data and omitted lar-
val competition for resources, which may be an import-
ant driver of abundance patterns. We further develop
the model by including larval competition for resources
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and by allowing the strength of predation on larvae to
vary through the season. This model is then used to ex-
plore and understand patterns of abundance seen in the
field data. By using the field data in conjunction with the
population model we investigate the relative contribu-
tions of interspecific predation, competition for
resources and abiotic factors to seasonal patterns of im-
mature survival and mosquito abundance. This allows us
to investigate the importance of individual density-
dependent and -independent processes throughout the
year, improving understanding of how processes interact
to shape phenology across the duration of a season. We
also assess the ability of the model to capture abundance
patterns across all four life stages to better understand
the appropriateness of the common approach of validat-
ing models against only adult data.

Methods
Field data collection
Intensive sampling of adult and immature mosquitoes was
carried out from the 2nd of March until the 5th of Octo-
ber, 2015. This start date was one month earlier than start
dates of prior UK studies of adult populations [63–65]
and was chosen to ensure that the start of the Cx. pipiens
season would be captured. Collections were stopped at
the beginning of October, once no eggs or adults had
been observed for five consecutive sampling occasions.
The field study was carried out on the grounds at the
Centre for Ecology & Hydrology (CEH) site in
Wallingford (51°36'9.0144"N, 1°6'45.7344"W) (Fig. 1).

Immature Cx. pipiens were monitored using four 450
l circular water butts placed at the locations shown in
Fig. 1. Although within 20 m of each other, the four
butts varied in biotic and abiotic conditions. Butts
number 1 and 2 were placed in exposed locations with
some shelter provided by a hedge/hedgerow on the
northern side but all other sides open and no overhang-
ing vegetation. These butts received direct sunlight
throughout most of the day. Butt number 3 was more
sheltered with no overhanging vegetation but cover on
the north and west sides and direct sunlight until late
afternoon or early evening depending on the time of
year. Butt number 4 was sheltered under a tree and
only received direct sunlight in the morning. In January
prior to the start of sampling, each butt was filled with
450 l clean water, which was then infused with hay by
suspending 2 kg of hay in a net bag. The hay infusion
was used because adult female Cx. pipiens are known
to favour breeding sites with a high organic matter con-
tent and hay infusions have been shown to be effective
attractants [66–68]. The bags of hay were left in the
butts until the end of March when the water had be-
come visibly organic matter-rich and there was discern-
ible algal growth around the edges of the butts. The
hay bags were then removed for ease of sampling to
avoid the larvae hiding in the hay bags. The organic
content in the water butts were not controlled through-
out the season to allow mosquito seasonal abundance
to be observed under naturally varying conditions. A
HOBO temperature logger, floating on the surface of

Fig. 1 Field site. Red markers show the locations of water butts 1–4. Yellow markers show the locations of adult traps 1–4. The blue marker
shows the location of the meteorological site. Adult traps 2, 3 and 4 are a distances of approximately 80 m, 140 m and 200 m from the water
butts. Imagery ©2018 Google, Map data ©2018 Google
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the water, was set to record surface water temperature
at hourly intervals in each butt, as Cx. pipiens spend
most time at the surface [69].
The number of egg rafts in each butt was counted at

10:00 h on Mondays, Wednesdays and Fridays, allowing
abundance changes to be tracked at a high temporal
resolution (note that in three weeks only two counts
were made due to logistical issues). On each sampling
occasion, after the egg rafts had been counted, a 500 ml
dip was taken from each of the north, south, east and
west edges of each water butt using the standard dipping
procedure (described by Fillinger et al. [43]). No dips
were taken from the middle of the butt as both larvae
and pupae were observed to congregate at the edges.
The dips were transferred into one or more white plastic
trays and all aquatic life stages of the mosquitoes were
counted and recorded. Digital photographs were taken
of the contents of each tray and the samples were then
counted manually on the computer to avoid counting
error due to the movement of live larvae or pupae in the
field. The validity of counting from photos was checked
by comparing direct counts from the tray with counts
from photos on the first two days of sampling and all
counts from the photographs were found to be consist-
ent with direct counts from the field. All specimens were
returned to the water butts after photographing to pre-
vent removal effects from one catch to the next. Twenty
fourth-instar larvae were taken from each water butt
(when abundances were high enough that the number
removed was a small proportion of the total population)
monthly for morphological identification to species level
[70]. Those fourth-instar larvae taken for identification
were examined by microscopy in the laboratory using the
identification keys in Becker et al. [70]. Larvae were killed
prior to examination by submersion in boiling water.
To sample the adult population four CDC Miniature

Downdraft Blacklight (UV) Traps (Model 912, John W.
Hock company, USA) were run from the 14th of April
until the 2nd of October, by which 5 consecutive zero
collections had been recorded, in the yellow locations in-
dicated in Fig. 1. The traps were baited with dry ice to
attract female adult mosquitoes and were run 4 times a
week overnight from Monday to Thursday throughout
the year (though seven nights were missed due to logis-
tical issues). Adult trapping started later than immature
trapping due to logistical issues with the supply of dry
ice. Trap 1 was hung amongst trees adjacent to the
water butts and traps 2 to 4 were hung in the tree line at
the side of an adjacent field, in which cattle were grazed,
at distances of approximately 80 m, 140 m and 200 m
from the water butts (Fig. 1). The traps were run from
17:00 h each day until 9:00 h the following morning, as
Cx. pipiens biting peaks just after sunset and during sun-
rise [71]. Adults were placed in the freezer immediately

after collection and left for at least one hour before iden-
tification. All mosquitoes caught were identified to spe-
cies level by microscopy in the laboratory using
morphological identification keys [70] and the number
of females of each species was recorded. Males were not
recorded as they are nectar-feeders, do not contribute
directly to disease spread, and are underrepresented in
catches of light traps that use CO2 to simulate host cues.
Minimum and maximum daily ambient air temperature,
cumulative daily rainfall, daily sunlight hours and mean
daily wind speed were recorded throughout the sampling
period at a CEH weather station in the adjacent field.

Modelling to understand the role of developmental
processes and mortality rates in explaining observed
abundance patterns
The model used here is based upon the stage-structured
variable-delay-differential equation (DDE) model pre-
sented in Ewing et al. [62] and was used to predict sea-
sonal abundance of Cx. pipiens under temperature and
photoperiod conditions measured at the field site. This
generic variable DDE framework was originally devel-
oped by Nisbet & Gurney [72] and was applied to a gen-
eral insect population where food availability affected
the duration of the immature stage. The model was ex-
tended by Ewing et al. [62] to incorporate the differential
effects of temperature on the duration and mortality of
each mosquito life stage, such that the total duration of,
and survival through, each life stage varies in response
to changes in temperature. The population was also as-
sumed to undergo density-dependent regulation through
interspecific predation on larvae. Further, the adult dy-
namics are affected by both temperature and photo-
period through their respective effects on egg-laying
rates and diapause behaviour. Here, we further extend
the model, shown in Fig. 2, to include the effect of larval
competition on mortality and to account for potential sea-
sonality in the ratio of predators to prey. Consequently,
both density-dependent and density-independent mortal-
ity will act on the model simultaneously, with the relative
strengths of these processes being dependent on the
temperature, time of year and population size. Any modi-
fications to the Ewing et al. [62] model are discussed in
detail in Additional file 1: Text S1-4, which gives a de-
scription of all functional forms, parameter values, initial
conditions, and history and inoculation values used in
conducting model simulations. The functional forms pre-
sented by Ewing et al. [62] were fitted to data regarding
Cx. pipiens vital rates from the existing literature.
Temperature-dependent mortality, development and
egg-laying rates were derived from laboratory studies,
whilst photoperiod thresholds governing diapause initi-
ation and termination were determined from field studies
monitoring adult populations in overwintering shelters. In
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all model simulations the air temperature measured at the
CEH weather station and the hourly water temperatures
measured in butt 4 were used, as butt 4 maintained a high
abundance of mosquitoes throughout the season. We
solve the system of DDEs in Fortran 90 using the DDE
solver (DDE_SOLVER) written by [73]. The code for the
model described here can be found at [74]. The most sig-
nificant alterations to the Ewing et al. [62] model are the
inclusions of larval competition and seasonally forced pre-
dation on larvae as well as changes to the timing of entry
and exit to diapause and a post-diapause adult female
mortality (see results for rationale).

Larval competition
Competition has been shown to affect mortality of larvae
of a range of mosquito species in numerous laboratory
and field studies [2, 34, 75, 76], with several functional
forms, including linear, exponential, log-linear and quad-
ratic forms, suggested to capture this process [77, 78].
Consequently, a density-dependent larval competition
function was added to the Ewing et al. [62] model. This
function was fitted to data published by Madder et al.
[2] on the effects of competition on larval survival in Cx.
pipiens and the exponential function was found to give
the best fit (Additional file 1: Text S2.3 and Figure S1),
consistent with the findings of Beck-Johnson et al. [79]
for Anopheles mosquitoes. Accepting the exponential
functional form, we also fitted the competition parame-
ters directly using the field data and compared experi-
mental estimates of competition with field data
estimates. We make the simplifying assumption that lar-
val competition only affects mortality rates. Previous
studies have shown that development times, body size of
adults, female fecundity, and adult longevity can all be
impacted by competition in the larval stage [80]. Conse-
quently, incorporating these non-lethal effects of

competition may increase our understanding of how
density-dependent effects combine to shape abundance
patterns. However, existing studies examine these effects
in isolation, making the simultaneous quantification of
effects of competition on, for example, mortality and de-
velopment rates difficult. As this is the first study using
this DDE modelling approach to incorporate the effects
of predation, competition and density-independent ef-
fects on vector seasonal abundance, we decided to focus
solely on the effects of competition on larval mortality,
which has been observed to be the strongest competition
outcome [10, 81].
Our aim was to investigate seasonal fluctuations in the

mosquito population under natural variation in a field
habitat and to understand if these population fluctua-
tions could be captured using relationships from existing
studies. Therefore, we increased the organic resources in
the butts at the start of the season to provide good larval
habitat but did not attempt to control the organic matter
content further afterwards.

Seasonal patterns in predation
Interspecific predation of Cx. pipiens larvae has com-
monly been found to follow a Holling type II pattern in
laboratory studies [82–84], as used by Ewing et al. [62].
However, the ratio of predators to prey, which could not
be estimated from the field data, is likely to be variable
throughout a year dependent on the seasonality of the
wide range of species which may predate on Cx. pipiens
larvae [68, 85]. During the fieldwork a variety of known
mosquito larval predators including backswimmers,
water boatmen and damselfly larvae were observed.
Consequently, the potential effects of seasonality in the
predator to prey ratio were investigated by simulation
using a sinusoidal wave whereby the ratio of predators
to prey was allowed to increase throughout spring before

Fig. 2 A flowchart of the DDE model, where gi(T) represents the development (or growth) rate and δi(T) denotes the temperature-dependent
mortality rate of individuals in stage i (i = E, L, P) at temperature, T. The additional mortality term experienced by larvae, δDD(L(t)), denotes the rate
of mortality due to density-dependent processes, which may be due to either predation or competition for resources. In the model presented by
Ewing et al. [62] density-dependence occurs through a Holling type II predation function (δDD(L(t)) = δπ(L(t))) but other density-dependent
processes could be modelled, so we write this as a general density-dependent term, δDD(L(t)) = δπ(L(t)) + δLC(L(t)), composed of a predation term
and a larval competition term. The egg-laying rate at which adults lay new offspring is given by b(t, T), such that the egg-laying rate depends on
the duration of the temperature-dependent gonotrophic cycle and whether mosquitoes are active or diapausing, which varies with time, t
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peaking in summer. This sinusoidal wave is considered
to represent a group of generalist predators which feed
upon Cx. pipiens larvae. The functional form of the sea-
sonal function is presented in Additional file 1: Text S2.4
and shown in Figure S2. Parameters driving the seasonal-
ity of the predator population could not be derived from
the literature and were therefore fitted to the field data.

How the DDE model was used to investigate the role of
DI and DD mortality in producing field observations
Predictions from the DDE model were compared with
the field data to assess model performance and investi-
gate the relative roles of density-dependent and
density-independent mortality to mosquito abundance
patterns. The three parameters governing seasonality in
predator numbers could not be estimated from lab or
pre-existing field data, so these were fitted to the field
data using approximate Bayesian computation (ABC) re-
jection sampling [86]. These parameters were the max-
imum number of predators per larva during the season,
rmax, the time at which this peak predator density was
reached, υ, and the parameter which scaled the duration
of this relatively high predator abundance, χ. Uniform
priors were placed on each parameter: rmax~U(0,0.025)
where the upper bound of 0.025 was chosen to coincide
with sufficiently high predator numbers that the popula-
tion regularly crashed, υ~U(0, 60) (days) corresponding
to a predator peak during July or August consistent with
qualitative observations from the field and χ~U(0, 10)
covering a large range of potential predation function
widths. A further ABC fitting procedure was also carried
out where the two parameters determining the shape of
the competition function, c0 and c1, which were taken
from the literature [2], were included alongside the pre-
dation parameters, with priors of c0~U(0,0.01) and
c1~U(0,0.01), to better understand the ability of different
combinations of the predation and competition to cap-
ture the field data. This range of priors includes the spe-
cial cases of no competition (c0 = 0), constant predation
(χ = 0), and no predation (rmax= 0). ABC was used in
this instance as it allows us to simulate posterior distri-
butions for our parameters whilst bypassing evaluation
of the likelihood function which would be very computa-
tionally costly, particularly under fluctuating environ-
mental conditions. Having simulated model results using
parameters drawn from the given priors, the simulated and
observed data were compared using a procedure referred
to as the “egg-to-pupae procedure”, which allows the roles
of density-independent and density-dependent mortality in
producing field observations to be examined directly.
The egg-to-pupae procedure involves simulating the

DDE model using the initial conditions and history
values given in Additional file 1: Text S4 and Table S1 to
obtain time series of the model-predicted immature

stage durations, τ̂iðtÞ, and survivals, ŜiðtÞ, where i = E, L,
P, given the environmental conditions at the field site
and the simulated mosquito densities. We then extrapo-
late forward in time from the egg abundance observed
in the field, OE(t), using the simulated stage duration
and survival values to estimate pupal abundance, P̂ðtÞ ,
for comparison with the field data, via

P tð Þ ¼ OE
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Equation 1 uses half the egg stage duration because it
was not possible to identify the age of each egg raft, so
we averaged across the possible ages by assuming eggs
had completed half their development. Similarly, the age
of observed pupae was unknown, so we again averaged
across possible ages by using half of the stage duration.
The egg and pupal stages were assumed to be affected
only by density-independent mortality, meaning the sur-
vival through half of these stages was the square root of
the survival through the whole stage. This simplifying
assumption was made because these stages do not con-
sume food and so do not compete for resources [68].
They may suffer some density-dependent predation (e.g.
there is evidence for example that responses of Cx. pipiens
pupae to aerial predators are reduced when they are in a
larger group of conspecific pupae) [87] but given the scant
empirical data on predation for these stages and the fact
that they are short and highly temperature dependent in
duration, we focused on the impact of density-dependent
predation in the larval stages in this model.
An alternative approach to estimate P̂ðtÞ is to use the

observed egg abundance as the initial condition for the
DDE model and simulate forward in time. However, this
is not possible due to the repeated measurements of egg
abundance throughout the year meaning the model
would need to be re-initialised with updated initial con-
ditions and historical values at every egg observation
through the year. The egg-to-pupae process described by
Equation 1 allows us to make direct comparisons be-
tween the simulated pupal abundance and the corre-
sponding field observations at all times throughout the
year more directly than is possible by simply comparing
the simulated abundances from the DDE model to the
field observations. Any errors introduced by uncertainty
and variability in model processes, such as egg-laying,
are less influential under the egg-to-pupae procedure
than they would be if comparing the full DDE model
output as they only affect the pupal estimate through
the simulated larval density. The contributing parts of
Equation 1 were obtained as follows:
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(i) Predictions of immature survival were obtained by

solving Equation A3 for ŜiðtÞ under the environmental
conditions measured at the field site and the initial con-
ditions specified in Additional file 1: Text S4. Simula-
tions were run for two years with the initial year
discarded to remove effects of the initial conditions, as
steady cycles were observed from year two onwards
when the model was run over multiple years.
(ii) Predictions of larval stage duration were obtained

by solving Equation A4 for τ̂iðtÞ under the same envir-
onmental and initial conditions. The resulting outputs of
steps i-ii are time series giving immature survival and
stage durations for each immature life stage at all times
through the year. The second year of results from a two
year period were used as in step i.
(iii) These time series of stage duration and survival,

which come entirely from simulation, are combined with
observed egg abundances from the field using Equation
1 to estimate pupal abundance.
(iv) The observed and predicted pupal abundances

were scaled by their maximum value, due to the likely
but as yet unquantified difference between egg and
pupal detectability and the variability in egg raft sizes,
and then smoothed by taking a 7-day moving average.
(v) Predicted pupal abundances, P̂ðtÞ, were then com-

pared against the field observations of pupal abundance,
OP(t), by calculating the Euclidean distance between the
two times series having applied dynamic time warping
(DTW) [88] using the dtw package in R [89]. DTW was
used when comparing time series because this allows the
potential differences in timing between series to be
accounted for, whereas techniques which directly com-
pare values at given time points, such as route mean
squared error, were observed to select parameters that
fail to capture observed peaks over models that predict
these peaks at the wrong time. DTW allowed us to
choose predation parameters that correctly predicted the
sequence and magnitude of peaks even if the stage dura-
tions were over- or under-estimated.
Due to the required scaling of observed and predicted

abundances, it was not possible to assess the exact mag-
nitude of survival estimates; however, relative patterns of
survival across the season could be assessed.
The ABC process was carried out to determine values

for the three predation parameters, rmax, υ and χ. 15,000
simulations were conducted (after which point further
simulations did not qualitatively affect the posterior dis-
tributions) and the 1% of parameter combinations with
the lowest Euclidean distance between observed and
simulated pupal abundances after applying DTW were
taken as the posterior distribution of each of the three
parameters. The warping applied to map the model

predictions using the fitted parameter values to the field
observations is discussed in Additional file 1: Text S5
and shown in Figure S3. Parameter estimates were then
taken as the medians of these posterior distributions,
consistent with the use of a quadratic loss function. This
process was then repeated for a further 60,000 simula-
tions including the three predation parameters and the
two competition shape parameters c0 and c1, and the
0.1% of parameter combinations with the lowest Euclid-
ean distance formed the posterior distribution. A smaller
percentage of parameter combinations was kept in this
case because the increased number of parameters to fit
led to a greater proportion of poor fits to the field data,
so a combination of a larger number of simulations and
a reduced acceptance threshold was necessary to obtain
meaningful posteriors.
We also directly compared the full DDE model to the

observed abundance data by comparing model predic-
tions of abundance to field observations for each life
stage, where both simulated and observed time series for
each life stage were smoothed by taking a centered
7-day simple moving average and scaled by their respect-
ive maximum values. All parameter values used for the
simulations are given in Additional file 1: Table S1.

Results
Species composition of immature and adult mosquito
communities
In the initial immature population peak in April, the
population was spread quite evenly between the four
butts (Fig. 3a-c). After this initial peak in abundance, the
egg population becomes concentrated in butt 4. Conse-
quently, model simulations are compared to data from
butt 4 since this contained a high proportion (76%) of all
eggs laid after the initial population peak. Butt 4 had
cooler surface temperatures (2 °C cooler than butts 1
and 2) due to surface shading and had higher organic
matter content, which Cx. pipiens are known to favour
[68], indicated by a higher abundance of rat-tailed mag-
gots and a lower abundance of mayfly larvae than butts
1–3. Over the course of the sampling, morphological
identification was performed on 300 fourth-instar larvae
from across the 4 water butts, all of which were Cx.
pipiens. Since all final instar larvae identified were Cx.
pipiens, it was assumed that earlier instars were also Cx.
pipiens. Given that Culiseta annulata and Cx. pipiens
favour similar larval habitats [90] it is likely that there
were also some C. annulata larvae present in the butts.
However, as none appeared in the fourth-instar larval
samples and they accounted for only 5.3% of the adult
catch in trap 1 adjacent to the water butts, it is unlikely
that the seasonal abundance patterns of Cx. pipiens will
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be impacted significantly by co-occurrence with such
low populations of C. annulata.
Adult Cx. pipiens were only trapped reliably in one

trap (trap 1) next to the water butts (trap 1 averaged
4.96 mosquitoes per night, traps 2, 3 and 4 averaged

0.36 mosquitoes per night), so model simulations are
compared to catch data from trap 1. Traps 2, 3 and 4
were further from water butt breeding sites than trap 1,
which may account for their lower catch sizes (Fig. 1). A
total of 481 mosquitoes were caught in trap 1 over the

a

b

c

d

Fig. 3 Seasonal abundance of each life stage of Cx. pipiens. a Egg rafts (first recorded on 6th of April and last recorded on 21st of September).
b Larvae (first recorded on 15th of April and last recorded on 5th of October). c Pupae (first recorded on 24th of April and last recorded on 5th of
October). d Adult female Cx. pipiens catch numbers collected by trap 1. In each immature plot the green line shows a centered seven day
moving average of the total catch size across all butts and in the adult plot it shows a seven-day moving average of the catch from trap 1. For all
immature stages there were only two observations per week on the first two weeks in July, on the 6th, 9th, 13th and 16th. Adult collections
could not be taken on the following dates: 30th April, 4th and 5th May, 16th, 20th and 30th July due to problems with the supply of dry ice
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trapping period, comprising 452 Cx. pipiens (94.0%), 26
C. annulata (5.4%), 2 Anopheles maculipennis (0.4%)
and 1 Aedes geniculatus (0.2%).

Culex pipiens seasonal abundance patterns
The seasonal abundance pattern for the egg stage shows
two clear generational peaks in late April and late June
(Fig. 3a). A similar pattern is observed in larvae, with
the abundance peaks occurring a few days after the
peaks in egg abundance (Fig. 3b). The larval data also
shows signs of a small third peak in August. The pupal
data clearly shows three peaks in abundance through the
year, with a third peak in late August/September that is
not obvious in the egg stage (Fig. 3c). The differences in
the relative abundances of the larval and pupal popula-
tions, particularly in autumn where there is almost no
discernible larval peak, indicates that larval survival
must be highly variable throughout the season. This
strongly suggests that density-dependent population
regulation may be driving abundance patterns through-
out the year with the cessation of egg-laying in late July
and August leading to reduction in larval density and a
consequent decrease in larval competition. It is also pos-
sible that the reduction in larval abundance at this time
leads to a reduction in the predator population and a re-
lease in larval mortality due to predation.
The adult data shows less defined generations than the

immature data (Fig. 3d) with a small peak early in the sea-
son upon emergence from diapause, followed by a drop in
numbers (note that despite the missed collections there
were still only two recorded mosquitoes on the five nights
of trapping from 27th April to 7th May) before increasing
again throughout late May and June. The less pronounced
initial peak in adults than immature stages is likely to be
partly explained by the later start date of adult versus im-
mature sampling as the first eggs were observed 6 days be-
fore the first night of adult trapping. High numbers of
adults are sustained throughout July before catch sizes de-
crease again throughout August as they enter diapause.
There is no evidence of a third peak in adults, as observed
in larvae and pupae. This is likely to be because the adult
stage lasts over twice as long as the immature stage on
average [5, 91] and this relatively long adult lifespan leads
to considerable overlap in cohorts of adults arising from
batches of eggs laid by different females, particularly in
the middle to the end of the adult season (i.e. 2nd and 3rd
generation individuals each year). Each of these adult co-
horts develops and survives at different rates depending
on the fluctuating environmental conditions to which they
have been subjected during their lifetimes, causing a blur-
ring of generational peaks in the adult population. Further,
adults emerging from the final pupal peak would be pro-
grammed for diapause, meaning they will not host-seek
and will not be present in traps [92].

We hypothesise that the gap of almost two months be-
tween the early-season and mid-season immature peaks
(Fig. 3a-c) is caused by the death of aged females that
have oviposited in spring after over-wintering, followed
by a slower egg-to-adult development of this first spring
generation. The energetic requirements of over-winter-
ing can weaken adult mosquitoes [93], resulting in adult
females dying immediately after egg-laying. This is sup-
ported by the observation of high numbers of dead adult
female Cx. pipiens floating on the surface of the water
butts in the early part of the season. Predictions of the
stage durations from the DDE model, using observed
water temperatures, suggest that the time required for
development through all life stages in the spring is 40–
70 days. This time delay is congruent with the observed
duration of approximately 50 days between the first and
second egg peaks in the data (Fig. 3a). The time between
egg peaks cannot be explained by the time required for
adults to locate a blood meal and complete a gono-
trophic cycle between egg-laying events, which the DDE
model estimates to take less than 20 days at the ob-
served spring air temperatures. This high mortality of
post-diapause females was added to the DDE model as
an additional seasonal mortality rate and is shown in
Additional file 1: Text S2.1.
The field data showed that the mosquito biting season,

when adults could be caught in host-seeking traps, ended
in late July into early August, as seen in Fig. 4 (data points
and black line). This contrasts prior estimates of the mos-
quito biting season by Ewing et al. [62], which were based
on monitoring of mosquitoes entering and leaving dia-
pause shelters (Fig. 4, red line). Thresholds based on ap-
pearance in diapause shelters resulted in a longer active
mosquito season than observed in the field, with mosquito
activity predicted to end approximately one month later
than observed using host-seeking traps (Fig. 4, red line).
This mismatch in timings likely stems from the fact that
emergent adults feed on nectar before entering diapause
shelters [92, 94] and are therefore not host-seeking or
attracted to traps and will not transmit disease. At the
start of the season any discrepancy was small; however,
diapause exit was brought forward by one week as to
match the observed first week of that mosquitoes were
observed in traps. Consequently, by confronting the DDE
model with the field data we were able to better under-
stand two key elements of the adult dynamics, which were
not captured from the literature alone.

Role of density-independent and density-dependent
mortality factors: which factors best predict abundance
patterns?
The ABC fitting procedure, with the competition param-
eters estimated from Madder et al. [2], resulted in pos-
terior distributions for the three seasonal predation
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parameters shown in Fig. 5. The distributions highlight
that there is a relatively tight range of values for rmax

and χ which were most likely to lead to the observed
field data. The posterior median of rmax corresponds to
a predator-prey ratio of 1:47 when the predator popula-
tion is at its peak. The timing parameter, υ, showed a
credible interval running from early July to mid-August,
although it is most likely that the predator peak oc-
curred in late July. The posterior median of χ means that
the sinusoidal wave governing the predator-prey ratio is
raised to a power of 2.45. When extending the ABC fit-
ting procedure to include the competition parameters,
there was no clear change to the posterior distributions
of the predation parameters. The posterior distributions

of the competition parameters showed little change
when compared to their priors and the median esti-
mates of the competition parameter values were very
similar to those fitted to experimental data from
Madder et al. [2] (Additional file 1: Figure S4 and Text
S6): c0 (experimental) = 0.00319; c0 (ABC) = 0.00446; c1
(experimental) = 0.00469; c1 (ABC) = 0.00490. The fact
that the posterior distributions of the competition pa-
rameters showed little evidence of convergence towards
a particular value indicates that the choice of competi-
tion parameters is less influential on the fit of the
model to the data than the choice of predation parame-
ters (which showed greater convergence), within the
range of the priors chosen.
Using the median posterior values for each of the pre-

dation parameters and the competition estimates from
Madder et al. [2], Fig. 6a shows that the observed and
predicted pupal abundances under the egg-to-pupae
procedure show good agreement both in the number of
peaks captured and in the relative sizes of those peaks.
Figure 6b shows the estimated relative contributions of
the different sources of larval mortality throughout the
year. The vertical dotted lines show the estimated dur-
ation of immature development leading up to the pre-
dicted pupal peak, to show what combination of larval
mortality sources gave rise to the peak predicted by the
model. Observing the fit of the egg-to-pupae procedure
(Fig. 6a in conjunction with Fig. 6b) the model proposes
that the first two pupal peaks appear to be shaped both
by density-independent mortality and by predation, with
competition for resources contributing little to the
overall mortality. Between these two peaks there is a
substantial reduction in estimated density-dependent
mortality in mid-to-late May, with density-independent
mortality dominating. This corresponds to the end of
the initial peak in larvae causing density-independent
mortality to dominate. Similarly, the final peak in the
autumn is driven by a release in predicted density-de-
pendence, with the predator population crashing and

Fig. 4 Biting season thresholds. The adult abundance predicted by
the DDE model is shown under the Ewing et al. [62] autumn
photoperiod threshold (red line) and the updated photoperiod
threshold which brings diapause initiation forward by approximately
one month (black line, Additional file 1: Table S1), with the field
observations as data points
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almost all mortality becoming attributable to the
temperature-dependent, density-independent mortality.
Note that some caution should be used in interpreting
these results because as the discrepancy in timing be-
tween the observed and predicted pupal peaks increases,
the reliability of using the contributions to larval mortal-
ity from the model predictions to make inferences about
the field data may decrease. However, as the relative
sizes of all three pupal peaks are accurately captured, the
mortality patterns proposed by the model certainly show
a viable process by which the observed pupal peaks
could have been generated.
Figure 6a shows that the model is overestimating

the duration of immature development, such that the
peaks are predicted to occur later in the season than
was observed in the field. Further, this discrepancy in
timings increases as the season progresses (first peak
- 5 days late, second peak - 12 days late, third peak -
19 days late). This increase in stage duration could
not be attributed to any steady change across the sea-
son in egg, larval or pupal stage durations, as none

showed steady increases through the year (Additional
file 1: Figure S5 and Text S7). Further, whilst the as-
sumption that the predator-prey ratio followed a si-
nusoidal pattern is slightly restrictive, a more flexible
predation function would not shorten the stage dura-
tions, nor would we expect it to shift the predicted
pupal peaks earlier in the year such that the agree-
ment between predictions and observations would im-
prove. Consequently, the overestimation of the stage
duration is thought to be likely to stem from the fact that
larval development rates are known to be affected by both
intra- and interspecific competition for resources [91, 95,
96]; however, these effects have not been incorporated into
the model and no direct measures of nutritional content
were taken at the water butts.
The full DDE model was also run using the poster-

ior median predation values (Fig. 5), with the results
shown in Fig. 7. Panels a and b show that the general
form of the abundance profile for eggs and larvae is
captured by the model, with two main peaks in both
field observations and model predictions. However, in
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both cases the DDE model overestimates the duration
and size of the peaks, meaning that the initial peak
estimated by the model is predicted to be larger than
was observed in the field. This increased width of the
immature population peaks is believed to stem from
the assumption made that eggs are laid at a constant
rate. In reality, eggs are laid by adults in batches sep-
arated by the length of the gonotrophic cycle and this
pulsed behaviour would likely lead to the stronger
generational peaks observed in the field data with less
overlap between cohorts. This is supported by the ob-
servation in Fig. 6a that the egg-to-pupae procedure
did not overestimate the width of the peaks in this
way because we extrapolated forward directly from
the egg observations made in the field, rather than
relying on the egg abundance predicted by the DDE
model. The inaccuracies in the egg and larval stages
have knock-on effects for the pupal stage, where the
model captures the number of peaks but not the rela-
tive sizes of those peaks. As was observed with the
egg and larval populations, we propose that the

shortcomings observed here stem from errors in the
model-predicted egg-laying rate and the subsequent
egg and larval abundances. These errors are then
propagated through to the pupal stage.
Despite some shortcomings in the DDE model estima-

tion of immature abundances, the adult abundance pat-
terns are well captured by the DDE model for the
majority of the year, with only the size of the initial peak
overestimated by a factor of 5 by the DDE model. The
ability of the model to capture the adult dynamics well,
despite the model being parameterised from the litera-
ture data, much of which is concerned with capturing
immature vital rates, lends support for this general mod-
elling approach despite its limitations. It is also note-
worthy that, even if seasonality in the ratio of predators
to prey is removed, a strongly seasonal abundance pat-
tern remains (Additional file 1: Figure S6 and Text S8)
and is driven by a range of factors, such as photoperiod
effects on diapause behavior, temperature impacts of de-
velopment and mortality and age-dependent mortality of
post-diapause females.
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Discussion
By collecting seasonal abundance data for all stages of
the mosquito life-cycle at a high temporal resolution and
integrating this with a mathematical population model,
we were able to investigate the relative contributions of
density-independent and density-dependent processes to
mosquito seasonality at a field site in southern England.
In the studied field system, the model predicted that
density-independent mortality and interspecific preda-
tion were both important determinants of abundance
patterns with varying roles throughout the year (Fig. 6b).
Conversely, larval competition was not estimated to be
particularly influential in shaping patterns of immature
survival in the permanent field habitat examined (Fig.
6b), with the choice of competition parameters observed
to have less influence on our ability to capture seasonal
abundance patterns than the choice of predation param-
eters (Additional file 1: Figure S4). This is likely to be
due to the very high organic matter content in the water
butts stemming from the hay infusion (Fig. 6a) [2, 11,
34]. Combining the field data with the DDE model also
allowed us to better understand patterns of adult mortal-
ity, which was observed to be very high after egg-laying
of the first spring generation. Further, when the model
was tuned with diapause timings from Ewing et al. [62]
we observed that timings deduced from Cx. pipiens ap-
pearance in overwintering shelters [6] led to an overesti-
mation of the mosquito biting season (Fig. 4) because
mosquitoes feed on nectar between adult emergence of
the last generation and appearance in shelters [92].
Whilst patterns of immature survival and development
were captured quite well, as shown by the egg-to-pupae
procedure, we observed that the fit of the full DDE
model to the data was quite poor in parts of the season
across the immature stages. However, despite inaccur-
acies in the DDE model estimation of the patterns of im-
mature abundance, the pattern of adult abundance was
captured well after overestimating the size of the initial
peak (Fig. 7). This highlights the importance of validat-
ing mosquito population models used to assess control
strategies on data from relevant life stages. Using stand-
ard approaches of comparing only adult abundance pre-
dictions to adult data [48, 51, 52] does not guarantee
that larval abundances are correctly predicted by a given
model. Policy makers evaluating larval control strategies
may therefore have unjustified confidence in recom-
mended control programs as the discrepancy between
immature predictions and observation cannot necessar-
ily be inferred from adult data alone.
Integrating the DDE model with data from all mos-

quito life stages allowed more informative conclusions
to be drawn regarding the precise processes that were
captured well by the model versus those which were not.
The egg-to-pupae procedure shown in Fig. 6a suggests

that the model accurately captures the patterns of imma-
ture survival, as the relative sizes of all three pupal peaks
are accurately reproduced. Were the model to be vali-
dated against only adult data, it would not be possible to
carry out the egg-to-pupae procedure to confirm if these
processes are parameterised correctly and to explore the
relative contributions of density-dependence and
density-independence throughout the season. The
egg-to-pupae procedure, and indeed the immature field
data alone, aid our ability to identify particular features
of the mosquito phenology and to attribute those to bio-
logical phenomena. Whilst validation against adult field
data can be valuable, particularly since it is adults which
transmit disease, it is important to consider that adult
data are likely to be noisier than immature data due to
the wide range of factors influencing adult capture prob-
ability. Specifically, weather conditions will affect adult
flight activity and therefore capture probability on a
given night [97], adults will only appear in traps when
they are host-seeking [63] and not during other phases
of the gonotrophic cycle, trap height has been shown to
affect catch sizes of Cx. pipiens [63], and adult Cx.
pipiens will disperse at distances of up to 3 km [98] such
that sample populations are not closed. Conversely, im-
mature mosquitoes are confined to a particular site and
the capture probability of each life stage is likely to re-
main relatively constant across the year. This allows sea-
sonal abundance patterns to be observed more directly
in immature life stages than in adult life stages, as ob-
served in the field data (Fig. 3).
Using the egg-to-pupae procedure we estimated that

mortality due to intraspecific competition was relatively
unimportant when compared to density-independent
mortality and mortality from predation at our field site
(Fig. 6b) and that the choice of competition parameters
had less impact on our ability to reproduce abundance
patterns (Additional file 1: Figure S4). It is probable that
the proposed relative lack of importance of competition
in this case stems from the fact that we monitored large,
permanent habitats that were observed to be colonised
by predators early in the season. Given the size of the
habitats, which were infused with hay for months prior
to spring oviposition, it is likely that resource availability
was high, which would explain the observed low mortal-
ity levels due to competition. Further, once predators
have colonised a site, those predators may regulate
abundance, such that larval competition will have little
impact on survival. We suggest that competition is likely
to be more influential in small, transient, predator-free
larval development sites, which may appear after periods
of heavy rainfall. This idea is supported by the findings
of Washburn et al. [99] who find that mosquito larvae in
permanent ground pools are typically limited by natural
enemies, whereas those in transient containers tend to
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be limited by resource availability. Were exact predator
numbers to have been recorded and organic matter con-
tent to have been quantified then it would certainly have
been more straightforward to determine the dominant
drivers of immature mortality, however this was not pos-
sible within the mesocosms used in the field set up,
which were designed to monitor natural fluctuations in
Cx. pipiens seasonal abundance as closely as possible.
Whilst competition for resources was not predicted to

have a profound impact on larval survival at the field
site, it is probable that it affects the larval stage duration.
Intra- and interspecific competition for food and
co-occurrence with predators have all been shown to in-
crease the larval development time in a range of mos-
quito species, including Cx. pipiens [34, 76, 80, 96].
However, the development rate relationships in the
model depend only on temperature due to the difficulty
in quantifying the effect of food availability and/or
predator presence on development rates. Figure 6a
shows that the model is overestimating the duration of
immature development, as the peaks in predicted pupal
abundance from the DDE model occur after those ob-
served in the field. This mismatch in timings is relatively
small in the early part of the season (5 days difference
between the spring peaks) and steadily increases through
the year (approximately 19 days difference between the
autumn peaks). The mismatch could not be explained by
stage duration predictions from the DDE model, which
did not show an increasing or decreasing trend through
the year (Additional file 1: Figure S5). The inclusion of
variable food availability, or predator co-occurrence, on
larval stage durations in dynamic population models re-
mains a relatively unexplored area due to the practical
difficulties of measuring and quantifying this effect in
field situations but one which may prove fruitful in un-
derstanding this mismatch in development times. One
model that includes effects of variable nutrition levels,
and that future models could built upon is Skeeter
Buster, which is a spatially explicit modelling tool for
studying Ae. aegypti populations [100] and which incor-
porates temporally and spatially variable food availability.
However, in addition to modelling food depletion by con-
sumption, Skeeter Buster requires the external food input,
a daily decay factor and the conversion of dead immatures
to nutritional resources to be defined for each larval habi-
tat within a given study area, which will both increase
complexity and reduce generality of the model.
The effect of temperature on larval mortality and de-

velopment rates of various mosquito species, including
Cx. pipiens have been well studied in laboratory settings
[2, 3, 5, 34, 101]. We have shown that when a DDE
model was parameterised only from these existing la-
boratory studies, it was able to accurately capture pat-
terns of immature survival (Fig. 6a). Further, the

estimates of the larval competition parameters from fit-
ting the model to field data showed good agreement
with the estimates from experimental work (Additional
file 1: Figure S4). The main areas in which the model
fails to capture dynamics are: immature stage duration,
overwintering and adult egg-laying. The steadily increas-
ing mismatch in immature stage durations has been dis-
cussed in detail in the previous paragraph. The majority
of adults which enter diapause do so without taking a
blood meal, having emerged from pupae in the autumn
programmed for diapause [92]. Conversely, older, parous
individuals rarely overwinter [92]. This process is not
captured in the DDE model, which assumes an equal
temperature-dependent mortality rate for all adults re-
gardless of age. This appears to cause an overestimation
of the size of the diapausing population and a conse-
quent overestimation of the size of the spring population
(Fig. 7d). If the adult stage were split into sub-stages this
would allow a separate diapausing class to be included
with a separate mortality, thus adjusting for the reduced
number of adults which overwinter.
The DDE model also predicts the summer peak in the

egg and larval populations to be longer than was ob-
served in the field data (Fig. 7a, b). Egg-laying and larval
abundance in the field data show strong generational
peaks and a decreased egg population in mid-to-late July
and early August (Fig. 7a, b), whilst the model predicts
high egg and larval abundance throughout all of July.
This discrepancy between the observed and predicted egg
and larval numbers stems from the fact that the model as-
sumes egg-laying is spread out over the length of the
gonotrophic cycle, whilst in reality eggs should be laid in
pulses at the end of each gonotrophic cycle [68, 102]. This
pulsed egg-laying behaviour could be achieved by splitting
the adult stage into multiple sub-stages to reflect whether
they are egg-laying or undergoing a gonotrophic cycle, as
in [46–48]. However, splitting the adult stage to account
for various gonotrophic cycles becomes problematic when
the model is further extended to explicitly incorporate dis-
ease transmission, due to the requirement to track both
the gonotrophic cycle and the extrinsic incubation period
(EIP) simultaneously. Tracking both processes at once
within this modelling framework would require the rela-
tionship between biting rates and progression of the EIP
under variable temperatures to be well understood. Such
work has been carried out for some mosquito-borne dis-
eases such as malaria and dengue [103, 104]; however,
these relationships are not well studied for WNV.
We have shown that the DDE model, which was con-

structed almost entirely from data available in the litera-
ture, overestimates the relative size of the adult
population upon diapause emergence but captures the
observed adult seasonality in the middle and end of the
active season well. This highlights the need for an
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improved understanding of how to quantify over-winter-
ing mortality and diapause fitness costs, which will con-
strain vector seasonality and are vital for understanding
disease persistence between years [105]. There are some
notable shortcomings in the estimation of immature
abundances, which emphasize the importance of validat-
ing models across all life stages of the species of interest
if we are to understand the role of abiotic versus biotic
processes in driving population dynamics and develop
models that can make reliable inferences about the im-
pacts of control measures targeted at a particular life
stage. The DDE model shows that the inclusion of
density-dependent mortality in the larval stage is crucial
in both regulating population size and driving abun-
dance patterns. Density-dependence has also been
shown to have profound impacts on mosquito control
measures as ill-timed interventions can lead to releases
in density-dependence and consequent increases in mos-
quito abundance [41]. Consequently, greater attention
should be given to modelling of density-dependent larval
processes, which are largely neglected in vector and dis-
ease models at present [45]. By incorporating the range
of density-dependent and density-independent pro-
cesses in models and by appropriately validating these
models using data across the life stages of the species
of interest we can improve confidence in the applica-
tion of these models to assess vector control or predict
disease dynamics.
The seasonal abundance data were collected over one

season, which is a shorter time than would be desired to
provide robust evidence confirming the presence, absence
or relative importance of particular ecological processes.
However, the substantial challenges and resources re-
quired to collect datasets of sufficient duration to prove
ecological processes in the field are substantial, as is clear
from the lack of availability of high resolution multi-stage
datasets currently available for vector species. Existing
long-term studies only monitor single life stages at lower
temporal resolutions, which means that complex seasonal
dynamics can be missed and the underlying causes of
these seasonal patterns are poorly understood [106, 107].
Consequently, we feel that collecting and analysing a data-
set with such high temporal resolution across the life
stages has provided valuable insights into the mosquito
ecology and will provide useful guidelines and information
to help shape further, more long-term studies. Further
studies of this nature are needed to confirm the findings
presented in this study and to provide a more robust un-
derstanding of how patterns of density-dependent and
density-independent processes interact to shape seasonal
abundance. In this study, parameters estimating the sea-
sonal variation in the ratio of predators to prey were esti-
mated based on a single year of data from a single
location, contributing to uncertainty in the model. With a

more extensive dataset over multiple years and locations it
would be possible to assess how the importance of these
density-dependent and density-independent processes,
both during the active season and over the diapause sea-
son, may vary temporally and geographically over the Cx.
pipiens range and in different landscape contexts, with
knock-on consequences for mosquito-borne disease trans-
mission and persistence between years [108].

Conclusions
By challenging a novel mathematical model with high
temporal resolution field data monitoring all life stages of
Cx. pipiens our model predicted that density-independent
mortality and interspecific predation on larvae interacted
to shape patterns of mosquito seasonal abundance in a
permanent aquatic habitat. We propose that competition
for resources is likely to become a more influential driver
of mosquito survival where periods of high rainfall create
transient habitats. Combining a rich field dataset with a
vector population model also improved our understanding
of the initiation and termination of the mosquito biting
season, which will have implications for the timing and
length of potential disease transmission seasons. Finally,
we highlight that challenging vector population models
with data from all life stages is important if reliable infer-
ences are to be made, especially in the context of model-
ling mosquito control measures, which often target
individual life stages.
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Additional file 1: Text S1-S8. A summary of the DDE model
framework, followed by a detailed discussion of where the model departs
from Ewing et al. [62]. Information regarding parameter values and the
method for solving the DDEs are also given, along with details of the
dynamic time warping applied to compare model predictions with field
data, details of the ABC fitting not shown in the main text, model output
of immature stage duration and a description of predicted dynamics
under the constant predation scenario. Figure S1. Predator seasonal
forcing: the seasonal forcing function, r(t), is shown, highlighting how
changes to ν and χ affect the ratio of predators to larvae throughout the
season. Figure S2. Larval Competition: the exponential function fit to the
Madder et al. [3] data is shown (R2 = 0.96). Table S1. Parameter values
used to run the DDE model simulations. Figure S3. Mappings applied by
the DTW mapping algorithm. a The indices of the field observations on
the x-axis and the model predictions on the y-axis; the red line shows
the relationship if no time warping were applied. b The points on each
time series mapped onto their corresponding points on the other. Figure
S4. Prior and posteriors from ABC fitting: the priors and posterior distribu-
tions for the ABC fitting run with all three predation parameters, rmax, ν
and χ, and both competition parameters c0 and c1. Figure S5. Immature
stage durations based on the hourly temperature data from butt 4. Fig-
ure S6. Model results under constant predation: the field data (black line)
from butt 4 is shown against the full DDE model predictions (red line)
with the ratio of predators to prey held constant by setting χ = 0. The
scaled abundances presented are 7-day moving averages of the field and
model-predicted abundances. (PDF 299 kb)

Additional file 2: Counts of each life stage, along with data on larval
identification and the temperatures in the water butts. (XLSX 270 kb)
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Additional file 3: Text S9. A full description of the data collection
procedure is given along with a detailed description of the data
presented in Additional file 2. (PDF 709 kb)
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