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Abstract 

Background:  The common bed bug, Cimex lectularius, is an obligatory blood-feeding ectoparasite that requires a 
blood meal to molt and produce eggs. Their frequent biting to obtain blood meals and intimate association with 
humans increase the potential for disease transmission. However, despite more than 100 years of inquiry into bed 
bugs as potential disease vectors, they still have not been conclusively linked to any pathogen or disease. This ecolog-
ical niche is extraordinarily rare, given that nearly every other blood-feeding arthropod is associated with some type 
of human or zoonotic disease. Bed bugs rely on the bacteria Wolbachia as an obligate endosymbiont to biosynthesize 
B vitamins, since they acquire a nutritionally deficient diet, but it is unknown if Wolbachia confers additional benefits 
to its bed bug host. In some insects, Wolbachia induces resistance to viruses such as Dengue, Chikungunya, West 
Nile, Drosophila C and Zika, and primes the insect immune system in other blood-feeding insects. Wolbachia might 
have evolved a similar role in its mutualistic association with the bed bug. In this study, we evaluated the influence of 
Wolbachia on virus replication within C. lectularius.

Methods:  We used feline calicivirus as a model pathogen. We fed 40 bed bugs from an established line of Wolbachia-
cured and a line of Wolbachia-positive C. lectularius a virus-laden blood meal, and quantified the amount of virus over 
five time intervals post-feeding. The antibiotic rifampicin was used to cure bed bugs of Wolbachia.

Results:  There was a significant effect of time post-feeding, as the amount of virus declined by ~90% over 10 days in 
both groups, but no significant difference in virus titer was observed between the Wolbachia-positive and Wolbachia-
cured groups.

Conclusions:  These findings suggest that other mechanisms are involved in virus suppression within bed bugs, inde-
pendent of the influence of Wolbachia, and our conclusions underscore the need for future research.
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Background
The common bed bug, Cimex lectularius, is an obligate 
blood-feeding ectoparasite that has undergone a global 
resurgence in the last two decades (see reviews in [1]). 
Recent discoveries of resistance to diverse classes of 
insecticides [2–5] makes bed bug infestations increas-
ingly difficult to control, but the significant fitness costs 

associated with resistance could be exploited in inte-
grated pest management plans [6]. Highly specialized 
treatments which are cost-prohibitive to most low-
income residents, coupled with insecticide resistance, 
exacerbate the resurgence by often failing to prevent 
reintroductions [7]. The profound resurgence of bed bugs 
in such frequent associations with humans and our dom-
iciles could increase the threat of disease transmission.

Bed bugs, like the related triatomine bugs that transmit 
Trypanosoma cruzi, the etiological agent of Chagas dis-
ease, are hemimetabolous, so each instar and all adults 
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require at least one blood meal to develop and repro-
duce. Such frequent re-feeding contaminates the indoor 
environment with histamine [8] and could contribute 
substantially to their importance as disease vectors. Yet, 
despite being exclusively hematophagous and intimately 
associated with humans, to date bed bugs have not been 
conclusively implicated in vector-borne disease transmis-
sion. Bed bugs can acquire a myriad of blood-borne path-
ogens from their hosts, but in the case of ingested viral 
particles, most viruses do not or are not capable of repli-
cating once inside the bed bug (reviewed in [9–12]). Hep-
atitis B virus (HBV) is a notable exception, however. It has 
been detected > 45 days post-ingestion, after direct injec-
tion into the hemocoel, and HBV is stercorarially shed in 
bed bug feces, suggesting the possibility of mechanical 
transmission [10, 13, 14], if HBV can enter and replicate 
in the hemocoel. Recently, bed bugs have been shown to 
experimentally acquire, maintain, and effectively trans-
mit T. cruzi [15], and Bartonella quintana, the etiological 
agent associated with Trench fever [16], but a survey of 
field-collected bed bugs failed to detect Bartonella [17]. 
However, the latter survey did detect Burkholderia multi-
vorans in bed bugs.

Microbe-microbe interactions with respect to patho-
gen suppression have been studied in various blood-
feeding insects such as the kissing bug Rhodnius 
[18, 19], tsetse fly Glossina [20, 21], and mosquitoes 
(reviewed in [22]), as well as in plant-feeding fruit flies 
and aphids. The insect microbiome can modulate vec-
tor competence of the host for arboviruses (reviewed 
in [21, 23, 24]), and these influences have been most 
often evaluated in associations of the endosymbiont 
Wolbachia with fruit flies and mosquitoes. Wolbachia 
protects Drosophila against virus-induced mortality 
for Drosophila C virus (DCV) and Flock house virus 
(FHV) [25, 26]. Wolbachia also stimulates immune 
gene expression in several mosquito species [27–31], 
and thus increases resistance to, and reduces the vec-
tor competence of Aedes aegypti, Aedes albopictus and 
Culex quinquefasciatus mosquitoes for viruses such as 
Dengue, Chikungunya, West Nile, and Zika [32–38]. 
Dengue, Chikungunya, Zika, West Nile, DCV, and 
FHV are all positive-sense single-stranded RNA viruses 
(+ssRNA), suggesting that the anti-viral effects induced 
by Wolbachia in Drosophila and mosquitoes might be 
limited to RNA viruses [39, 40].

Cimex lectularius harbors Wolbachia as its primary 
endosymbiotic nutritional mutualist that biosynthe-
sizes B vitamins for its nutritionally deficient host [41, 
42] in a co-dependent relationship that has presum-
ably evolved over several million years [43]. Additional 
fitness benefits that the endosymbiont might confer 
upon bed bugs have not been investigated. Similar to 

the effects reported in other arthropods, Wolbachia 
could influence the vector competence of C. lectularius 
through mechanisms involving interactions with the 
host or with ingested pathogens, thus preventing cer-
tain viruses from replicating within the host. This may 
explain in part why bed bugs are not a major disease 
vector for arboviruses. The objective of this study was 
to compare virus titer in Wolbachia-positive and Wol-
bachia-free C. lectularius at several time intervals after 
ingesting a virus-laden blood meal.

Methods
Establishment of Wolbachia‑free C. lectularius colonies
The Winston-Salem (WS) strain of C. lectularius was 
collected in Winston Salem, NC in 2008 and fed defi-
brinated rabbit blood (Hemostat Laboratories, Dixon, 
CA, USA) in an artificial feeding system, as described 
by Sierras & Schal [44]. Ten adult males and 20 
adult females of the WS strain were divided equally 
and placed into two separate 20-ml glass vials with 
screened-caps and a creased section of card stock for 
harborage. These vials were then placed into a plastic 
container (17.8 × 12.7 × 10.2 cm) as additional protec-
tion against environmental bacteria. A semi-sterile 
incubator (Thermo Fisher Scientific, Precision Model 
#3727, Waltham, MA, USA) was dedicated to rearing 
the Wolbachia-free (Wb–) colonies and it was main-
tained at 27 °C and a photoperiod of 12:12 (light:dark, 
L:D). These two colonies were fed weekly on defibri-
nated rabbit blood supplemented with the antibiotic 
rifampicin (10 µg/ml blood) and the Kao and Michayluk 
B Vitamin Solution (10 µl/ml blood) (Sigma-Aldrich, 
St. Louis, MO, USA). Note however that this vitamin 
solution differs substantially from the Lake & Friend 
[45] solution used by Hosokawa et al. [41]. Rearing vial 
(jar) size was increased periodically as colony numbers 
increased. To further mitigate external environmental 
contaminants, vials of blood were put under a portable 
UV light for 5 min immediately prior to feeding, and 
glass water jacketed feeders were washed with deter-
gent and boiled for 5 min after each weekly feeding.

Extraction of genomic DNA from C. lectularius
To verify that antibiotic-treated colonies of C. lectularius 
were free of Wolbachia, a comparison to the WS-Wb+ 
normal strain was conducted. After several filial genera-
tions, six adults were randomly selected from each of the 
two antibiotic-treated and vitamin supplemented colony 
jars (n = 12) and six from the untreated WS strain. Total 
genomic DNA was extracted using the DNeasy Blood 
and Tissue kit (Qiagen, Germantown, MD, USA) with a 
modified purification of total DNA from animal tissues 
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(spin-column) as per manufacturer’s protocol. Individ-
ual bed bugs with heads removed (to minimize interfer-
ence from eye pigments) were homogenized in the 1.5 
ml microcentrifuge tube using a sterile plastic pestle and 
then digested overnight (~ 24 h) in 180 µl of ATL buffer 
solution, 20 µl of proteinase K, and 4 µl of RNase in a 56 
°C water bath. Following initial digestion, samples were 
vortexed for 15 s, 200 µl of AL buffer was added, and then 
incubated in a 70 °C water bath for 10 min. After incuba-
tion, 200 µl of 96% ethanol was added, the mixture was 
then pipetted onto the DNeasy Mini spin column, and 
the DNA was bound, washed, and eluted into 200 µl of 
AE buffer as outlined in the protocol. An additional wash 
with AW2 buffer was included to further remove salts. 
Samples were stored at − 20 °C until polymerase chain 
reaction (PCR) for Wolbachia was conducted.

Verification of Wolbachia‑free C. lectularius
Conventional PCR was conducted to amplify a specific 
gene target within Wolbachia and measure presence or 
absence of Wolbachia. The Wolbachia-specific prim-
ers INTF2-FWD and INTR2-REV, adopted from Saka-
moto & Rasgon [46], targeted a region of the Wolbachia 
16S gene that produced a 136 bp amplicon. The GoTaq 
Green Master Mix (Promega, Madison, WI, P/N M7122) 
and nuclease-free water were used for all reactions at 
the following concentrations and volumes: 12.5 µl of 2× 
Master Mix, 2.5 µl of 10 µM INTF2-FWD, 2.5 µl of 10 
µM INTR2-REV, 5 µl of template DNA, and PCR-grade 
nuclease-free water was added to achieve a final reaction 
volume of 25 µl. Reactions were performed using an MJ 
Research thermocycler (model PTC 200, Bio-Rad Labo-
ratories, Hercules, CA, USA) with the following protocol: 
95 °C for 2 min (95 °C for 30 s, 60 °C for 30 s, 72 °C for 1 
min) × 36 cycles, and 72 °C for 5 min. A no-template con-
trol was used in the PCR reactions as well. A 2.0% aga-
rose gel was used to separate the 136-bp amplicon using a 
100=bp DNA ladder and GelRed nucleic acid stain (Bio-
tium, Hayward, CA, USA), and visualized with a Chemi-
Doc-It TS2 imaging system (UVP, Upland, CA, USA).

Absolute quantification of Wolbachia in each indi-
vidual bed bug was obtained with a droplet digital PCR 
(ddPCR) system (Model QX200, Bio-Rad Laboratories, 
Hercules, CA, USA) and protocol from Fisher et  al. 
[47]. Bed bug DNA was combined with the Wolbachia-
specific primers, TaqMan probes, and the ddPCR 
Supermix for Probes (Bio-Rad) into PCR-ready sam-
ples. Primers for a ribosomal protein (RPL18) specific 
to C. lectularius were used as the reference gene due to 
its stability [48]; they produced a 137-bp amplicon. We 
used double-quenched TaqMan probes with a 5′ FAM 
fluorophore for Wolbachia, a 5′ HEX fluorophore for 

C. lectularius, and 3′ Iowa Black® FQ quenchers with 
internal ZEN quenchers (Integrated DNA Technolo-
gies, Inc., Coralville, IA, USA) specific to each target. 
Primer and probe sequences are listed in Table 1.

The ddPCR reaction was optimized using extracted 
bed bug DNA from Wb+ and Wb– lines. The bed 
bug/Wolbachia ddPCR assay comprised 22 µl of 1× 
Droplet Supermix (Bio-Rad), 5 µl of genomic DNA iso-
lated from a bed bug, 2 U of MseI restriction enzyme 
(New England Biolabs, Ipswich, MA, USA), 500 nM 
each of forward and reverse primers and 250 nM each 
of FAM- or HEX-labeled TaqMan probes for bed bug 
and Wolbachia sequences, respectively. Then the 22 
µl of PCR mixtures were partitioned into an emulsion 
of ~ 20,000 droplets using a QX200™ AutoDG Drop-
let Digital PCR™ system (Bio-Rad). The PCR was per-
formed on a T100 Thermal Cycler using the following 
protocol: 95 °C for 10 min and (94 °C for 30 s, 56 °C 
for 2 min) × 40 cycles, and 98 °C for 10 min. Post PCR, 
droplets were analyzed on the QX200 Droplet Reader. 
Absolute DNA copy numbers of bed bug and Wol-
bachia sequences in a sample were calculated on the 
Poisson distribution using the Quantasoft software 
version 1.7.4 (Bio-Rad). Previously confirmed Wb+ 
bed bug DNA sample and Wb– bed bug DNA sample 
were included in each experiment as positive and nega-
tive controls. No-template control was also included in 
each experiment to ensure no non-specific amplifica-
tions. To estimate the limit of detection of the ddPCR 
assay, serial dilutions (×5, ×25, ×125, ×625, ×3125, 
×15,625) of a DNA sample in water were prepared and 
repeated three times.

Virus inoculations and treatments
The experiment evaluated virus titers over time in three 
cohorts of bed bugs: control (Wb+), antibiotic-vitamins 
(Wb–), and Wb– maintained for 90 days on vitamin-sup-
plemented blood without antibiotic. The latter (vitamin-
only) group was removed from antibiotic 90 days prior to 
inoculation with virus.

Table 1  Wolbachia and Cimex lectularius reference gene primer 
and TaqMan probe sequences

Primer/Probe Sequence (5′–3′)

INTF2 AGT​CAT​CAT​GGC​CTT​TAT​GGA​

INTR2 TCA​TGT​ACT​CGA​GTT​GCA​GAGT​

Wolbachia Probe TGG​TGT​CTA​CAA​TGG​GCT​GCA​AGG​

RPL18F GTA​TGA​CGG​AGG​CAG​CTA​GG

RPL18R AAC​ATT​CGA​GCA​AAT​TCG​GTA​

Cimex Probe ATG​AGG​ACG​GTG​TTC​TTG​CCT​GTC​
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Feline calicivirus (FCV) was chosen as the inoculum 
due to its environmental stability and feasibility as a viral 
pathogen. Feline calicivirus is a (+)ssRNA virus that is 
one of the primary causes of respiratory infections in 
felines. Virus was grown in existing Crandell Reese Feline 
Kidney (CrFK) cell line at the North Carolina State Uni-
versity College of Veterinary Medicine Clinical Virology 
Laboratory and stored at − 80 °C in 2 ml aliquots per 
established protocols. The FCV stock was produced by 
first removing the growth medium from confluent CrFK 
monolayers in 75 cm2 cell culture flasks by aspiration and 
then 1 ml of the virus inoculum was added to each flask. 
Flasks were incubated at 37 °C in 5% CO2 atmosphere 
for 90 min to allow for virus adsorption. Each flask then 
received 10 ml of maintenance medium (MEM-2% fetal 
bovine serum), and incubated 16 h at 37 °C in 5% CO2, 
which resulted in virus-induced destruction of ~ 90% of 
the monolayer.

In each feeding, 40 individual bed bugs were chosen 
randomly, placed in 7 ml glass vials with screened-caps, 
and fed as previously described for 15 min on fresh defi-
brinated rabbit blood supplemented with 1 ml FCV (107 
CCID50/ml) per 1 ml of blood. The CCID50 is the 50% cell 
culture infective dose, as defined below. Bed bugs were 
starved 7 days prior to feeding FCV-laden blood. Individ-
uals that did not feed or only partially fed were removed 

and discarded. Vials were kept thereafter at room tem-
perature under a sterile laminar flow hood and 12:12 
(L:D) photoperiod.

Quantification of FCV in C. lectularius
Bed bugs were killed at the following time intervals: 5 
hours (h), 24 h, 4 days (d), 7 d, and 10 d post-feeding. 

Three randomly chosen bed bugs were removed from 
each cohort, sexed, and surface sterilized with 0.05% 
NaClO and 70% ethanol. Surface-sterilized bugs were 
homogenized in 3.5 ml round-bottom polystyrene tubes 
(Sarstedt, Nümbrecht, Germany) in 0.5 ml of Dulbecco’s 
Modified Eagle’s Medium (DMEM) (Caisson Labora-
tories, Smithfield, UT, USA) with sterile plastic pestles 
and the tubes were centrifuged (8000× rpm for 1 min). 
A volume of 220 µl of the supernatant was pipetted into a 
new 3.5 ml tube with 2.2 ml of DMEM, and serial 10-fold 
dilutions (10−1 to 10−6) were performed to obtain virus 
titration. A total of 100 µl of each dilution was placed 
in 4 wells (technical replicates; portrait orientation) of a 
flat-bottomed, 96-well plate, and 100 µl of CrFK cells was 
added to each well. Each plate contained a row of wells 
as a cell control with no virus. Plates were incubated at 
37 °C for 5 d [49–51] and then stained with crystal violet 
(50 µl/well). FCV is a highly lytic virus; after 5 days, only 
wells with uninfected cells show crystal violet staining.

In each virus dilution, the percentage of dead (infected) 
cells was visually determined for each well. To measure 
the infectious virus titer, the 50% cell culture infective 
dose (CCID50) endpoint dilution assay was used to quan-
tify the amount of virus required to kill 50% of infected 
CrFK cells as described by Reed & Muench [52], if the 
50% dose fell between two dilutions. The Reed–Muench 
index formula reads as follows:

Sex ratio of male and female C. lectularius chosen
The sex ratio of the three bed bugs randomly cho-
sen per time interval post-feeding of FCV is shown in 
Table 2. Both Wb– and Wb– 90 d groups had close to 1:1 
male:female, but slightly more males were chosen in the 
Wb+ group at 1:0.67 male:female ratio.

(

% infected at dilution immediately above 50%
)

− 50%
(

% infected at dilution immediately above 50%
)

−

(

% infected at dilution immediately below 50%
)

Table 2  Number of males and females in each bed bug group at five sampling time intervals post-feeding

Abbreviations: Wb+, colony containing Wolbachia; Wb–, two colonies cured of Wolbachia with the antibiotic rifampicin; Wb– 90 d, colony cured of Wolbachia with 
antibiotic, then reared for 90 days on blood supplemented with vitamins but no antibiotic; F, female; M, male

Time post-feeding Wb+ Wb– Wb– 90 d

M F M F M F

5 hours 1 2 1 2 0 3

24 hours 1 2 2 1 1 2

4 days 2 1 2 1 2 1

7 days 2 1 1 2 2 1

10 days 3 0 2 1 2 1

Total 9 6 8 7 7 8



Page 5 of 10Fisher et al. Parasites Vectors          (2019) 12:436 

Statistical analysis
Differences in the mean virus titer in CCID50/ml were 
analyzed with a two-sample t-test that assumed unequal 
variances using a 95% confidence interval with SPSS 
Version 19 (IBM Corp., Armonk, NY). A P-value < 0.05 
was considered significantly different. A General Linear 
Model Repeated Measures analysis (Wilks’ Lambda {λ}) 
was also conducted in SPSS to identify any effect of time, 
treatment group, replicate, and interactions between 
these variables on virus titer.

Results
Confirmation of Wolbachia‑free Cimex lectularius colonies
The conventional PCR results confirmed that the bed bug 
colony treated with rifampicin and supplemented with 
B vitamins contained no Wolbachia. As well, the colony 
removed from antibiotics and maintained on vitamin-
supplemented blood contained no Wolbachia (Fig.  1). 
The ddPCR also confirmed the absence of Wolbachia 
[47] Absolute quantification detected 0 copy numbers 
of the 16S Wolbachia target in both bed bug colonies 
treated with antibiotics and those later removed from 
antibiotics for 90 d [47]. The ddPCR was highly sensitive 

for detection of Wolbachia and bed bug DNA. Theoreti-
cal values (1.76 copies of Wolbachia DNA/µl; 1.00 cop-
ies of RPL18 DNA/µl) and measured values (1.40 copies 
of Wolbachia DNA/µl; 1.00 copies of RPL18 DNA/µl) 
matched well with high reproducibility even at extremely 
low concentrations (15,625-fold dilution). No Wol-
bachia or bed bug DNA was detected in the no-template 
controls.

FCV acquisition and titer comparison in bed bug groups
We estimated that adult bed bugs ingested between 
4-6 µl of blood meal (3.92 µl for adult males in Sierras 
& Schal [44]), which corresponds to 104 virus in a sin-
gle feeding. Live virus was detected in relatively large 
amounts in all treatment groups at all time intervals up to 
10 d (Table 3). No significant differences were observed 
in FCV titer among the three treatment groups at any of 
the five sampling intervals, with the exception of in the 
Wb- group compared to the Wb- 90 d at the 4 d interval 
(t(2) = − 4.724, P = 0.0179).

There was a significant decline in FCV titer over time 
after the blood meal (Wilks’ λ = 0.014, F(2, 4) = 36.48, 
P = 0.0271; ƞ2 = 0.986), with an average of 90.7% decline 
across all three treatments after 10 d, ranging from 96.5% 
decline in the Wb+ group, 92.2% in the Wb– group, and 
83.4% decline in the Wb– 90 d group (Table 3). However, 
there was no effect of treatment (F(2, 4) = 0.359, P = 0.575) 
or replicate on FCV titer (F(2, 8) = 0.127, P = 0.884), and 
there was no effect of time*treatment (Wilks’ λ = 0.072, 
F(2, 4) = 6.48, P = 0.1381, ƞ2 = 0.928), or time*replicate 
(Wilks’ λ = 0.05, F(4, 8) = 1.73, P = 0.3143, ƞ2 = 0.775). No 
infection was observed in any of the cell line controls in 
any of the three bed bug groups at any sampling time 
interval. We observed no mortality in any of the FCV-
infected bed bugs that were left in the vials after feeding 
on FCV-supplemented blood.

Fig. 1  PCR results illustrating absence of Wolbachia in bed bugs. Top 
row: Lanes 4–9: bed bugs treated with the antibiotic and ingested 
blood supplemented with B vitamins; Lanes 10–15: bed bugs 
removed from antibiotics and maintained on blood supplemented 
with B vitamins for 30 days. Bottom row: Lanes 4–11: bed bugs 
removed from antibiotics and maintained on blood supplemented 
with B vitamins only for 60 days

Table 3  FCV titers (log10 CCID50/0.1 ml) in each of the three bed 
bug groups at five sampling time intervals post-feeding

Abbreviations: Wb+, colony containing Wolbachia; Wb–, two colonies cured of 
Wolbachia with the antibiotic rifampicin; Wb– 90 d, colony cured of Wolbachia 
with antibiotic, then reared for 90 days on blood supplemented with vitamins 
but no antibiotic

Treatment Mean (± SE) FCV titers (log10 CCID50/0.1 ml)

5 hours 24 hours 4 days 7 days 10 days

Wb+ 4.67 ± 0.00 4.56 ± 0.06 4.44 ± 0.06 3.06 ± 0.71 3.22 ± 0.49

Wb– 4.89 ± 0.31 4.56 ± 0.11 5.11 ± 0.11 3.50 ± 0.50 3.78 ± 0.22

Wb– 90 d 4.50 ± 0.40 4.45 ± 0.00 4.17 ± 0.17 3.67 ± 0.17 3.72 ± 0.15
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Discussion
In 1887 Elias Metschnikoff was the first to suspect that 
bed bugs could serve as a vector of human pathogens, 
but definitive proof having been elusive, several genera-
tions of researchers remained unconvinced [53]. Even 
today, bed bugs are not considered important vectors of 
any specific pathogen, although they are broadly consid-
ered medically-important due to the clinical manifesta-
tions of bite site reactions and the psychological effects 
that infestations can elicit [12, 54, 55]. Although more 
than 45 pathogens (bacteria, viruses, fungi, protozoans) 
have been detected in bed bugs [10], < 10% are known to 
replicate within the bed bug. Their apparent refractory 
state to human pathogens is remarkable, as nearly every 
other blood-feeding arthropod (mosquitoes, biting flies, 
lice, fleas, ticks) is associated with some type of disease 
or pathogen, and it may reflect the intimate and long evo-
lutionary association of bed bugs with humans. An alter-
native potential human health concern is the histamine 
contamination that is possibly a contributing factor in 
allergic responses [8].

We used feline calicivirus (FCV) as a model pathogen 
in our investigation because it is environmentally stable, 
it represents RNA viruses, and it could be transmitted 
by bed bugs in residential settings. Since FCV is not a 
human pathogen, it served as a useful surrogate for other 
more infectious ssRNA virus without placing laboratory 
workers at risk of infection. Our results showed that FCV 
did not replicate within C. lectularius, but relatively high 
FCV titers were maintained in bed bugs 10 d after they 
were inoculated through a blood meal. The amount of 
FCV decreased dramatically over time in all of our treat-
ment groups, from a 29% decline from 5 to 24 hours after 
the blood meal, to a 91% decline after 10 days. We found 
no evidence from these patterns that FCV could replicate 
within the bed bug. Although we observed a large decline 
in FCV, the overall decline was much smaller than other 
viruses evaluated in bed bugs, such as HIV and Yellow 
fever, where little to no replication was reported to occur 
[56, 57]. Importantly however, the decline in FCV titer 
was independent of the presence or absence of endosym-
biotic Wolbachia (Table 3).

It is important to note that secondary effects from 
the rifampicin treatment could have affected the inter-
action of the bed bug with FCV. The Wolbachia-cured 
(Wb–) group was treated with antibiotic during weekly 
blood meals before the experiment started. Therefore, 
this group was also expected to suffer from an altered 
gut microbiome, whose possible interactions with and 
effects on FCV are not known. Another Wolbachia-
cured group (Wb– 90 d) was weaned off rifampicin 3 
months before the experiment started. We expected 
this group to be less affected by the antibiotic, and its 

gut microbial community might have recovered dur-
ing the three months, which represented less than two 
generations. This group, however, was not different 
from the other two groups, including the Wolbachia-
containing group (Wb+) which was never exposed to 
rifampicin, suggesting that neither Wolbachia nor the 
gut microbiome influenced the FCV titers.

The absence of a Wolbachia influence on FCV titers 
might be related to minimal interactions between the 
symbiont and the virus. Factors related to the physi-
ological conditions of the midgut, inability of FCV to 
permeate midgut barriers, and host immune responses 
may minimize these interactions. Wolbachia’s intra-
cellular sequestration within the bed bug bacteriome 
might further diminish contact between these two 
microbes.

As blood is ingested, FCV would interact with a wide 
range of bed bug salivary proteins that are secreted 
to counteract the vertebrate host’s hemostasis (plate-
let aggregation, fibrin crosslinking, vasoconstriction, 
local immune responses). The bed bug genome revealed 
expanded families of salivary apyrases, nitric oxide car-
riers, and members of the Ap4a_hydrolase family [58]. 
Bed bug saliva contains substances that decrease ingested 
pathogen virulence and titers [11], but it is not known if 
viruses might be affected by these salivary components.

After the bed bug ingests a blood meal containing FCV, 
the virus must interact with the insect alimentary canal, 
penetrate the hemocoel, and for effective transmission 
with subsequent blood meals the virus needs to replicate 
in the salivary glands or other tissues associated with 
the mouthparts. Alternatively, if the virus survives pas-
sage through the alimentary canal, it can be transmitted 
in feces, though this pathway is considered less efficient. 
Mildly acidic to neutral midgut pH (5–7) is ideal for a 
wide range of microorganisms, but in most insects the 
midgut is alkaline (pH ≥ 8) and typically unfavorable for 
most microorganisms [59, 60]. Adult mosquito midgut 
pH is between 7.2–7.9 immediately prior to blood-meal 
ingestion, and returns to pH 7.3 after digestion [61]. The 
gut pH of the bed bug is not known, but if it is similar 
to the mosquito, it likely is reasonably favorable to FCV. 
Feline calici virus is a non-enveloping, environmentally 
stable virus, able to survive acidic to neutral pH [62]. 
Therefore, FCV likely survives the midgut, although the 
activity of digestive enzymes may hinder FCV. The bed 
bug genome revealed 187 potential digestive enzymes, 
including serine proteases, a large expansion of cathep-
sin D genes, and aspartic proteases that are specifically 
adapted for acidic pH [58].

We did not determine whether FCV was able to cross 
the midgut barrier and enter the bed bug hemocoel. 
Many insects, including blood feeders, form a peritrophic 
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membrane (PM) around the food bolus during or shortly 
after ingestion. The PM is a physical barrier that protects 
the midgut lumen. A pathogen or parasite must pen-
etrate the PM and invade the midgut tissues before it can 
cross into the hemolymph. Although the PM is absent in 
most Hemiptera [61], C. lectularius, R. prolixus, and Tri-
atoma infestans all have a modified PM effectively known 
as a ‘plexiform surface coat’ type PM that is permeable to 
digestive enzymes [63]. The PM is one of many midgut 
effector mechanisms such as lectins, reactive oxygen spe-
cies, nitric oxide, melanization through the prophenolox-
idase cascade, and pattern recognition receptors that 
comprise the humoral immunity protecting the insect 
host against infections [64]. Several pathogens of insects 
escape humoral response and evade the impermeability 
of the PM by invading the tissues before the PM is fully 
developed [61]. The mosquito PM is impermeable to par-
ticles > 148 kDa [65], and most viruses are ~ 2000 kDa 
[66]. To permeate through the PM, viruses and other 
enteric pathogens must secrete proteolytic enzymes that 
degrade membrane proteins [66]. Once crossed into the 
hemolymph, most arboviruses infect all compartments of 
an arthropod vector [64].

If FCV crossed the PM into the hemolymph, the next 
host defense would be a systemic immune response by C. 
lectularius by way of hemocytes, activation of proteases, 
production of antimicrobial peptides, or immune signal 
transduction pathway activation (Toll, imd, JAK-STAT) 
by the fat body that could lower FCV titer. The genome 
of C. lectularius has revealed members of all these path-
ways, as well as the RNA interference pathway [58] and 
transcriptomic analysis that supports the expression of 
the entire suite of putative immune defense pathways 
[67]. It is generally thought that the combination of 
blood-feeding and traumatic insemination have selected 
for a highly adapted immune response in the bed bug. For 
example, the female paragenital system has an overabun-
dance of hemocytes [55], and bed bug hemolymph and 
ejaculate are suspected to contain substances or “neutral-
izing factors” that decrease ingested pathogen virulence 
and titers [11]. We did not determine whether FCV was 
present in the bed bug hemolymph. We might speculate, 
however, that significant declines in the FCV titer over 10 
days would suggest that FCV was attacked either in the 
digestive tract or in the hemolymph of the bed bug, but 
apparently independently of the presence of Wolbachia.

Wolbachia has been shown to play important roles 
in mediating host-microbe interactions. In Drosophila, 
higher Wolbachia densities correlate with greater anti-
viral protection [68, 69], and as a model for studying 
Blue tongue virus (BTV) replication within blood-feed-
ing Culicoides midges, BTV replicated significantly in 
all cell lines examined from BTV-infected Drosophila 

melanogaster reared without Wolbachia [70]. Wolbachia 
also mediates immunocompetence in isopods [71]. In 
some mosquito-Wolbachia-virus interactions, Wolbachia 
primes the mosquito innate immune system [28, 31, 36], 
but there is evidence that in several mosquito species 
where Wolbachia naturally occurs, the presence of Wol-
bachia has little to no influence on resistance to or sup-
pression of viruses [72, 73].

The localization of Wolbachia within the host is rele-
vant to its involvement in pathogen suppression. In many 
insects, Wolbachia is systemically distributed either 
throughout the body or in specialized but highly diffuse 
tissues (e.g. fat body, integument). In C. lectularius on 
the other hand, Wolbachia resides exclusively in a bacte-
riome of both sexes, in association with the gonads [41] 
and would likely not encounter the virus to initiate a 
symbiont-mediated immune response. While Wolbachia 
could respond to immune challenges by remotely sign-
aling to the fat body and hemocytes, its location in the 
gonad-associated bacteriome would make such a sign-
aling pathway less likely than in mosquitoes, flies and 
isopods.

Bed bugs do not appear to be competent vectors for 
ssRNA human viruses associated with disease in humans, 
and their status as a medically important vector of dis-
ease remains uncertain. However, bed bugs could be 
more important vectors of dsDNA viruses such as hep-
atitis B virus (HBV). Moreover, C. lectularius and other 
cimicids conceivably may have a greater significance 
from a veterinary medicine perspective. Other species of 
cimicids may be epidemiologically important in diseases 
of birds and bats yet to be investigated [74]. The swal-
low bug Oeciacus vicarius can vector several arboviruses 
[75], and can experimentally transmit Fort Morgan virus 
to uninfected birds [76]. Commercial poultry operations 
are likely to have heavy infestations of ectoparasites [77], 
and the role of bed bugs as primary or bridge vectors 
of avian diseases is essentially unknown. Interestingly, 
despite an interest over the past 100 years in the poten-
tial of bed bugs to serve as vectors of human pathogens, 
including HIV, HBV, Ebola, Yellow Fever, Polio, Rabies, 
Plasmodium, Leishmania, Yersinia, and numerous bacte-
rial species, immune responses by bed bugs when chal-
lenged with a pathogen remain poorly understood.

Conclusions
To our knowledge, this is the first study to evaluate the 
influence of Wolbachia on virus titer in Cimex lectular-
ius. Our results indicate that Wolbachia does not play 
a role in ssRNA virus suppression in bed bugs, in con-
trast to its involvement in several other hematophagous 
insects. These results offer further supporting evidence 
that bed bugs are likely not competent vectors of ssRNA 
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viruses, adding feline calicivirus to the list of viruses 
examined thus far. Our conclusions underscore the need 
for future research to include (i) quantification of virus 
titers in various body compartments, particularly the 
hemolymph and salivary glands; (ii) hemocoel injections 
of virus for titer comparison in Wolbachia-free and nor-
mal bed bugs; and (iii) investigation of the ability of the 
bed bug to transmit the virus upon re-feeding.
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