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Abstract 

Background Understanding the clustering of infections for persistent malaria transmission is critical to determin‑
ing how and where to target specific interventions. This study aimed to determine the density, blood meal sources 
and malaria transmission risk of anopheline vectors by targeting malaria index cases, their neighboring households 
and control villages in Arjo‑Didessa, southwestern Ethiopia.

Methods An entomological study was conducted concurrently with a reactive case detection (RCD) study 
from November 2019 to October 2021 in Arjo Didessa and the surrounding vicinity, southwestern Ethiopia. Anophe‑
line mosquitoes were collected indoors and outdoors in index case households and their surrounding house‑
holds (neighboring households), as well as in control households, using pyrethrum spray cache (PSC) and U.S. 
Centers for Disease Control and Prevention (CDC) light traps. Adult mosquitoes were morphologically identified, 
and speciation in the Anopheles gambiae complex was done by PCR. Mosquito Plasmodium infections and host 
blood meal sources were detected by circumsporozoite protein enzyme‑linked immunosorbent assay (CSP‑ELISA) 
and cytochrome b‑based blood meal PCR, respectively.

Results Among the 770 anopheline mosquitoes collected, An. gambiae sensu lato (A. gambiae s.l.) was the pre‑
dominant species, accounting for 87.1% (n = 671/770) of the catch, followed by the Anopheles coustani complex 
and Anopheles pharoensis, which accounted for 12.6% (n = 97/770) and 0.26% (n = 2/770) of the catch, respectively. 
From the sub‑samples of An. gambiae s.l.analyzed with PCR, An. arabiensis and Anopheles amharicus were identified. 
The overall mean density of mosquitoes was 1.26 mosquitoes per trap per night using the CDC light traps. Outdoor 
mosquito density was significantly higher than indoor mosquito density in the index and neighboring households 
(P = 0.0001). The human blood index (HBI) and bovine blood index (BBI) of An. arabiensis were 20.8% (n = 34/168) 
and 24.0% (n = 41/168), respectively. The overall Plasmodium sporozoite infection rate of anophelines (An. arabien-
sis and An. coustani complex) was 4.4% (n = 34/770). Sporozoites were detected indoors and outdoors in captured 
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Background
In malaria control and elimination efforts, the use of 
interventions such as long-lasting insecticide-treated 
nets (LLINs), indoor residual spraying (IRS), artemisinin-
based combination therapy (ACT) and rapid diagnos-
tic tests (RDTs) has led to a significant reduction in the 
number of malaria cases and deaths [1]. Despite main-
taining these core malaria vector control interventions, 
however, human and vector behaviorial changes are still 
significant challenges and contribute to ongoing malaria 
transmission, slowing the efforts   of malaria elimination 
in low transmission settings [2, 3].

In Ethiopia, the overall goal is to eliminate malaria 
nationwide by 2030. According to the national malaria 
program, between 2016 and 2019, there was a signifi-
cant decline in malaria morbidity and mortality. During 
the same time frame, there a was 37% decline in annual 
parasite incidence (API) per 1000 population, from 
19/1000 population to 12/1000. This has been achieved 
by expanding testing and treatment services across the 
country, by scaling up key malaria interventions, such as 
LLINs, through mass campaigns targeted at malaria-risk 
populations and by implementing   IRS in areas that are 
epidemic prone [4]. However, the progress faced disrup-
tion due to COVID-19 pandemic in 2020 [5].

Among the strategies of the National Malaria Program, 
interrupting residual malaria transmission is a target 
in low and very low transmission settings by achieving 
effective control of parasite reservoirs in the human host 
and vectors. This strategy includes the use of LLINs, 
targeted IRS and other supplementary vector control 
such as larval source management, as well as early case 
detection and management that can reduce the number 
of mosquitoes that transmit malaria and halt residual 
malaria transmission [6]. Despite good access to and 

usage of vector control interventions, residual malaria 
transmission could still occurs in low transmission set-
tings [3]. Persistent residual malaria transmission can 
also occur due to various reasons, such as vector and 
human behaviors [7], the presence of asymptomatic car-
riers [8] and limitations of vector control impact, as well 
as failure of the implementation of vector control [9].

Since their initial implementation, the primary vector 
control interventions, such as LLINs and IRS, have sig-
nificantly reduced malaria transmission [10]. However, 
the effectiveness of vector control interventions is being 
challenged by the emergence of insecticide resistance 
[11–13]. Current evidence has also shown that primary 
malaria vectors are resistant to pyrethroid [14, 15]. It has 
also been shown that the malaria vectors that have devel-
oped insecticide resistance are a result of selective pres-
sures associated with agricultural pesticides [16].

In addition, indoor vector control may cause changes 
in the biting and resting behaviors of mosquitoes, alter 
species composition and increase the significance of sec-
ondary or local vectors [17, 18]. Regarding behavioral 
modification, the change in mosquito resting and feeding 
habits to outdoor resting and biting is the most challeng-
ing aspect of vector control [19, 20], which has an impact 
on the transmission of residual malaria [7]. Therefore, 
current indoor-based vector control efforts are ineffec-
tive against mosquitoes that bite and rest outdoors and 
can   substantially contribute to residual malaria trans-
mission. However, Govella et  al. [21] reported results 
suggesting that indoor insecticidal intervention could 
tackle both indoor and outdoor mosquitoes.

Malaria transmission can be localized, clustered or 
hotspot as well as heterogeneous over small areas in 
low transmission settings. In malaria control elimina-
tion efforts, the development of a tailored and targeted 

anopheline mosquitoes. Of these CSP‑positive species for Pv-210, Pv-247 and Pf, 41.1% (n = 14/34) were captured 
outdoors. A significantly higher proportion of sporozoite‑infected mosquitoes were caught in index case households 
(5.6%, n = 8/141) compared to control households (1.1%, n = 2/181) (P = 0.02), and in neighboring households (5.3%, 
n = 24/448) compared to control households (P = 0.01).

Conclusions The findings of this study indicated that malaria index cases and their neighboring households had 
higher outdoor mosquito densities and Plasmodium infection rates. The study also highlighted a relatively higher 
outdoor mosquito density, which could increase the potential risk of outdoor malaria transmission and may play 
a role in residual malaria transmission. Thus, it is important to strengthen the implementation of vector control inter‑
ventions, such as targeted indoor residual spraying, long‑lasting insecticidal nets and other supplementary vector 
control measures such as larval source management and community engagement approaches. Furthermore, in low 
transmission settings, such as the Arjo Didessa Sugarcane Plantation, providing health education to local communi‑
ties, enhanced environmental management and entomological surveillance, along with case detection and manage‑
ment by targeting of malaria index cases and their immediate neighboring households, could be important measures 
to control residual malaria transmission and achieve the targeted elimination goals.

Keywords Index case, Reactive case detection, Sporozoite rate, Residual malaria, Ethiopia



Page 3 of 14Abossie et al. Parasites & Vectors           (2024) 17:53  

approach is needed to identify residual malaria trans-
mission foci [22]. In this regard, reactive case detection 
(RCD) is a malaria surveillance approach that has been 
conducted by targeting the index case and neighbor-
ing households to detect residual malaria [23, 24]. Stud-
ies have investigated strategies that improve RCD in the 
detection of residual malaria transmission to achieve 
malaria elimination [25, 26]. Thus, entomological surveil-
lance along with RCD is required to target specific popu-
lations and areas pockets of malaria transmission. This 
is crucial for vector control intervention in conjunction 
with the investigation of foci and management of cases to 
interrupt residual malaria transmission.

The Ministry of Health (MOH) of Ethiopia launched 
a subnational malaria elimination campaign in many 
districts in 2017 [6]. Arjo-Didessa Sugarcane Plantation 
and the surrounding districts are among the districts tar-
geted for malaria elimination. This entomological survey 
was carried out in Arjo Didessa Sugarcane Plantation 
and the surrounding vicinity, in Southwestern Ethiopia. 
According to a retrospective study, between 2008 and 
2017, there was a decrease in malaria positivity [27]. Fur-
thermore, the prevalence of malaria parasites was 2.0% 
in 2019 [28]. LLIN coverage was proportional to the 

national and regional households in 2020 [29]. Therefore, 
this study aimed to determine the density, blood meal 
sources, and malaria transmission risk of anopheline vec-
tors by targeting malaria index cases, their neighboring 
households, and control villages in Arjo-Didessa, South-
western Ethiopia.

Methods
Study areas
The study was carried out in the catchment area of Arjo 
Didessa Sugarcane Plantation and the surrounding vicin-
ity, in southwestern Ethiopia. Arjo-Didessa Sugar Cane 
Plantation area is located in Jimma Arjo district of East 
Wollega Zone and Dabo Hana district of Buno Bedele 
Zone (Fig. 1).

Arjo-Didessa Sugar Cane Plantation is located at 
395  km distance along Addis Ababa-Nekemte route 
or 540  km distance on Addis Ababa-Jimma-Bedelle-
Nekemte route. The study covered eight villages or 
clusters included in Ethiopia project study areas of 
the International Center of Excellence for Malaria 
Research (ICEMR). The study area (8°41′35.5″N and 
36°25′54.9″E) is located at altitudes ranging from 1300 to 
2280 m a.s.l. The districts have two malaria transmission 

Fig. 1 Map of the study area, Jimma Arjo and Dabo Hana districts, Ethiopia
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seasons: peak malaria incidence occurs between Sep-
tember and December following the main rainy season 
of June to September, and low transmission occurs from 
April to May during and after a short rainy season in 
February to March. The remaining months of the year 
are dry months. In the present study, the eight villages 
or clusters targeted for the entomological study were 
divided into two different ecological zones: irrigated clus-
ters (Command 2 [CO2], Command 5 [CO5], Command 
11 [CO11], Abote Didessa [AD] and Kerka [KER] clus-
ters) and non-irrigated clusters (Hundie Gudina [HG], 
Soyoma [HNG] and Sefera Tabiya [SFT] clusters).

Jimma Arjo and Dabo Hana districts are bordered by 
the Didessa River, which flows through the districts in the 
study area. Arjo-Didessa Sugarcane Plantation uses water 
from the river through small canals, drainage and water 
sprinklers for watering the seedlings. The majority of the 
population in the area are farmers who cultivate maize 
(Zea mays) and pepper (genus Capsicum) crops, and the 
remaing population are workers at sugarcane plantations 
and factories. The local population also raises animals, 
such as cattle, sheep, goats, horses, donkeys and chick-
ens. Most of the houses in the village are made of mud 
or wood only, with grass-thatched roofs. Animal pens 
are adjacent to residents’ houses. Factory workers live in 
houses made of brick blocks or iron sheet walls with cor-
rugated iron roofs.

Anopheles arabiensis is considered to be the major vec-
tor in the study area. Among members of the An. gam-
biae complex, Anopheles amharicus co-occurs in the 
study area [14]. Plasmodium vivax is the predominant 
malaria species [30], and a retrospective study showed 
that there has been a remarkable reduction in overall 
malaria infection in 10 years [27]. Another recent study 
also showed no significant difference in malaria preva-
lence in irrigated and non-irrigated clusters of the study 
area. However, the prevalence of malaria significantly 
differs by season and is higher in the wet season, both in 
irrigated and non-irrigated sites [28].

Entomological study
The entomological study was conducted from Novem-
ber 2019 to October 2021 concurrently with the RCD 
study. The household selection was based on the P. vivax 
index cases who were willing to participate in both the 
RCD and entomological studies. Plasmodium vivax index 
cases were recruited from eight passive case detection 
(PCD) clinics in Arjo Didessa, and they were traced back 
to their household level. For a single P. vivax index case 
household, approximately five randomly selected neigh-
boring and five control households, located at a radius of 
1 to 200  m and 201 to 500  m distant from the P. vivax 

index case households, respectively, were included in the 
study according to previous studies elsewhere [14, 23].

The present study included a total of 52 P. vivax index 
case households, 216 neighboring households and 135 
control households. For a single index case, including 
the index case household, U.S. Centers for Disease Con-
trol and Prevention light traps (CDC-LTs; John Hock 
Company, Gainesville, FL, USA) were installed in 11 
households for 3 consecutive months for adult mosquito 
collection. CDC-LTs were set indoors and outdoors in 
the selected RCD households. Traps were set 1.5 m above 
the ground at the foot end of the bed with an LLIN, while 
the outdoor CDC-LTs were hung next to the houses 
approximately 50  cm above the ground. The traps were 
operated from 6:00 p.m. to 6:00 a.m.

Indoor resting mosquitoes were collected using pyre-
thrum spray catches (PSCs) following a standard protocol 
[31] using insecticide aerosol  (BAYGON®; S. C. Johnson 
& Son, Racine, WI, USA). PSCs were conducted from 
6:00 a.m. to 8:00 a.m., for 3 consecutive months. When 
collecting mosquitoes using PSCs, prior to spraying with 
the insecticide aerosol, the occupants were requested to 
leave the house; utensils used for food, drinking water 
and clothes were taken out of the houses; doors were 
covered with cloth to prevent mosquitoes from escaping 
during spraying; and the floor of the house was covered 
with white sheets. After closing the doors and windows, 
the insecticide aerosol was sprayed in the room. Ten min-
utes after spraying, the white sheet was removed from 
the house, and knocked-down mosquitoes were then 
collected and preserved individually in 1.5-ml Eppen-
dorf tubes containing silica gel desiccant. The mapping 
of households was done by the Global Positioning System 
(GPS), and the geographical coordinates were recorded.

Laboratory investigations
Morphological identification of mosquitoes
All female mosquitoes collected from households were 
transported to the Arjo ICEMR laboratory, killed by 
freezing and identified to species level morphologically, 
according to Gillies and Coetzee [32]. Blood-feeding sta-
tus was visually assessed for each mosquito, and each 
mosquito was sorted as unfed, fed, half gravid or gravid. 
All female anopheline mosquitoes were individually pre-
served in labeled Eppendorf tubes containing silica gel 
and stored at − 20 ºC, until further processing.

Mosquito processing and DNA extraction
Anopheline mosquitoes were processed at the Tropical 
Infectious Diseases Research Centre (TIDRC) labora-
tory at Jimma University, Sokoru, Ethiopia. Body parts 
of each mosquito, such as head/thorax, abdomen and 
wings/legs, were separated for sporozoite detection, 
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blood meal analysis and molecular mosquito identifica-
tion to confirm species, respectively.

DNA was extracted using a modified Chelex-100 
resin [33]. Briefly, a homogenized sample, 950  µl of 
phosphate-buffered saline (PBS) and 50 µl of 10% sapo-
nin (Sigma-Aldrich, St. Louis, MO, USA) were added to 
an Eppendorf tube and incubated at 4  ºC for > 4  h or 
overnight. Following incubation, the mixture was cen-
trifuged at 14,000 rpm for 10 min at room temperature, 
and the supernatant was discarded. After removing any 
remnants, 1000 µl of PBS was added to the Eppendorf 
tube and the mixture centrifuged at 14,000  rpm for 
5  min. Again, the supernatant was discarded and the 
remaining contents of the tube spun for 30  s. Finally, 
the remaining liquid was removed using a 200-µl pipet. 
After the sample in the tube was air dried for 15 min, 
150 µl of 20% Chelex resin (Sigma-Aldrich) suspension 
and 100  µl of  ddH2O were added to the dried sample 
and incubated at 95 ºC in a water bath for 10 min, with 
mixing by vortex every 2  min. The mixture was then 
centrifuged at 1400  rpm for 1  min, and the extracted 
DNA was transferred into Nunc tubes and preserved at 
− 20 °C until molecular analysis.

Anopheles gambiae complex identification by PCR
Sub-samples of the An. gambiae complex were selected 
for PCR analysis to determine the species as described 
by Scott et al. [34]. A total reaction volume of 25 μl of 
PCR mix containing 0.5  μl of each primer (Universal 
[UN], An. gambiae [GA], An. arabiensis [AR] and An. 
amharicus [QD], 2 μl of genomic DNA extracted from 
a single mosquito, 12.5 μl Green Taq PCR Master Mix 
(2×) (Thermo Fisher Scientific, Waltham, MA, USA) 
and nuclease-free water for amplification. The primer 
sequences were 5′-GTG TGC CCC TTC CTC GAT GT-3′ 
(UN); 5′-CTG GTT TGG TCG GCA CGT TT-3′ (GA); 
5′-AAG TGT CCT TCT CCA TCC TA-3′ (AR); and 5′–
CAG ACC AAG ATG GTT AGT AT-3′ (QD). PCR cycling 
was performed with an initial step at 5 min at 95 °C to 
activate the DNA polymerase; followed by 30 cycles 
of denaturation for 30 s at 94  °C, annealing for 30 s at 
50 °C and extension for 30 s at 72 °C; with a final exten-
sion for 10 min at 72 °C. The species-specific nucleotide 
sequences in the ribosomal DNA were used to identify 
the An. gambiae complex using three deferentially sized 
amplicons. Anopheles gambiae (390 bp), An. arabiensis 
(315 bp) and An. amharicus (150 bp) were the species-
extracted product sizes. A UV trans-illuminator was 
used to visualize the amplified DNA in a 2.0% agarose 
gel stained with ethidium bromide.

Molecular identification of mosquito blood meal source 
by multiplex PCR
All engorged mosquitoes were chosen as specimens to 
detect host DNA using multiplex PCR. A molecular 
analysis was carried out on each mosquito. One universal 
reverse primer and five vertebrate host-specific forward 
primers (human, pig, bovine, goat and dog) were used to 
amplify the cytochrome b gene, which is encoded in the 
mitochondrial genome, to test for the specific host origin 
of the blood meal using conventional PCR. Primers and 
their sequences for the cytochrome  b-based PCR blood 
meal identification assay were: UnRev1025 (5′–GGT 
TGT CCT CCA ATT CAT GTTA–3′), Pig573F (5′–CTC 
GCA GCC GTA CAT CTC –3′), Human741F (5′–GGC 
TTA CTT CTT CAT TCC TCCT–3′) Goat894F (5′–CCT 
AAT CTT AGT ACT TGT ACC CTT CCTC–3′), Cow121F 
(5′–CAT CGG CAC AAA TTT AGT CG–3′) and Dog368F 
(5′–GAA TTG TAC TAT TAT TCG AAC CAT –3′) [35, 36].

Species-specific primers were used to detect each 
host DNA in the samples. PCR amplification for human, 
bovine, pig, goat and dog samples was carried out in a 
reaction volume of 25 µl containing 12.5 µl of Taq Mas-
ter Mix 2× (Promega, Madison, WI, USA), 0.5  µl of 
each primer (10 µM), 1–2 µl of DNA and nuclease-free 
water. Positive DNA samples of humans, bovines, goats 
and dogs were used as positive controls for each spe-
cific primer, while double-distilled water was used as 
the negative control in each PCR run. The PCR cycling 
conditions for the amplification of DNA were one cycle 
at 95  °C for 5  min; followed by 40 cycles at 95  °C for 
60 s, 56 °C for 60 s and 72 °C for 60 s; with a final cycle 
at 72  °C for 7 min. The PCR yields fragments that indi-
cate the following species: human (334 bp), pig (453 bp), 
goat (132  bp), dog (680, bp) and cow (561  bp). Follow-
ing amplification, the PCR products were separated and 
visualized by electrophoresis in a 2.0% agarose gel with 
ethidium bromide running buffer. The results were com-
pared to a 100-bp DNA ladder by placing the agarose gel 
on a UV transilluminator (UVP, LLC, Upland, CA, USA).

Sporozoite infection
Anopheline mosquito heads and thoraces were analyzed 
by circumsporozoite protein enzyme-linked immuno-
sorbent assay (CSP-ELISA) for the detection of Plasmo-
dium sporozoite parasites, as explained by Ljungstrom 
et  al. [36]. All female An. gambiae complex specimens 
were dissected, and the heads and thoraces were ana-
lyzed for the presence of  CSP of  P. falciparum, P. vivax-
210 and P. vivax-247 CSP  ELISA  kit (Malaria Research 
and Reference Reagent Resource Center [MR4], ATCC, 
Manassas, VA, USA) at the TIDRC laboratory in Sekoru, 
Jimma University. For the detection of Plasmodium 
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infection, the CSP-ELISA was performed on all An. gam-
biae complex samples individually, whereas a pool of five 
samples was run for the Anopheles coustani complex.

Briefly, the head and thorax of an Anopheles mosqui-
toes were ground in a labeled 1.5-ml Eppendorf tube. 
Then, 50  μl of the captured monoclonal antibodies 
(MAbs) of P. falciparum (Pf), P. vivax (Pv-210) and P. 
vivax (Pv-247) was added to labeled 96-well plates run 
in duplicate. The plates were covered with aluminum foil 
and incubated at room temperature for 30  min. After 
incubation, well contents were decanted and the plates 
struck 5 times onto a paper towel, following which 200 μl 
blocking buffer was added again to each well; the wells 
were then covered and the plates incubated for 1 h. The 
well contents were then aspirated and struck 5 times 
onto a paper towel, following which 50 μl of each mos-
quito triturate (including positive and negative control) 
was added; the wells were again covered with aluminum 
foil and the plates incubated for 2 h. The mosquito trit-
urates were then aspirated from each well and washed 
twice with 200  μl PBS-Tween-20 using ELISA-Washer 
(ELx800; BioTek, Winooski, VT, USA). After this step, 
50  μl of peroxidase-linked MAbs of Pf, Pv-210 and Pv-
247 was added; the wells were covered with aluminum 
foil and the plates incubated for 1 h. The plates were then 
washed 3 times with 200  μl of PBS-Tween-20. A sub-
strate solution of 100  μl ABTs A and B was added, and 
the plates were incubated for 30  min. Finally, the plates 
were read after 30 min and 1 h for Pf and Pv, respectively, 
at 405–411 nm absorbance using the ELISA plate reader. 
Specimens were considered positive if the absorbance of 
the individual well was twofold higher than the absorb-
ance of the negative control samples at 405–411 nm.

Data analysis
All data collected were recorded in electronic forms 
using a tablet in which an Open Data Kit (ODK) was 
installed and entered into Microsoft Excel (Microsoft 
Corp., Redmond, WA, USA). Data analysis was done 
using STATA software version 17.0 (Stata Corp. College 
Station, TX, USA), and JMP© Pro version 16.0.0 (SAS 
Institute Inc., Cary, NC, USA). Log transformation was 

done to normalize the data [log 10(x + 1)]. Variations in 
the mean among RCD household types were analyzed 
using a one-way analysis of variance (ANOVA) (P < 0.05). 
The post hoc test was performed using Tukey’s Kramer 
HSD method. Chi-square tests (χ2) and Fisher’s exact 
tests were used to determine whether there was a signifi-
cant difference between more than two proportions and 
between two proportions, respectively. The t-test was 
used to compare the mean difference in mosquito den-
sity between indoor and outdoor locations. The density 
of Anopheles mosquitoes was calculated as the number of 
female Anopheles mosquitoes per trap per night for the 
CDC-LT collection method. The sporozoite rates were 
calculated as the number of mosquitoes testing positive 
for sporozoites divided by the total number of mosqui-
toes tested. The human blood index (HBI) and bovine 
blood index (BBI) were calculated by dividing the num-
ber of mosquitoes that obtained their meals from humans 
and bovines (including mixed blood meal origins) by the 
total number of blood-fed Anopheles mosquitoes ana-
lyzed. In all statistical tests, values were considered to be 
significantly different if P < 0.05.

Results
Anopheline mosquito composition and density
A total of 576 trap nights using CDC-LTs and 357 PSCs 
were set for mosquito collection, resulting in the capture 
of 770 anopheline mosquitoes. Of these 770 mosquitoes, 
94.2% (n = 725/770) were captured by CDC-LTs and 5.8% 
(n = 45/770) by PSCs. A significantly higher number of 
anopheline mosquitoes were collected outdoors (69.2%, 
n = 533/770) than indoors (30.8%, n = 237/770). There 
was a statistically significant difference in the mean count 
of Anopheles mosquitoes between outdoors and indoors 
(t-test, t(931) = 8.38, P = 0.0001). In the present study, 
mosquitoes captured in traps in index case households 
accounted for 13.0% of those captured; in neighbor-
ing households, for 54.0%; and in control households, 
for 33.0%. A higher count of Anopheles mosquitoes was 
observed in index households by both CDC-LTs and 
PSCs (1.17 mosquitoes per household). A statistically 
significant difference between groups was determined by 

Table 1 Anopheles mosquitoes caught in reactive case detection households indoors and outdoors by CDC light traps and pyrethrum 
spray collection in Arjo Didessa, southwestern Ethiopia, November 2019–October 2021

Numbers in parentheses are the percentage calculated from the total number of anopheline mosquitoes collected by both methods

CDC-LTs U.S. Centers for Disease and Prevention light traps, HHs household, PSC pyrethrum spray catch, SEM standard error of the mean

Household type PSC indoor, n (%) CDC‑LTs indoor, n (%) CDC LT outdoor, n (%) Total n (%) Mean per HH (± SEM)

Index 15 (1.9) 24 (3.2) 102 (13.2) 141 (18.3) 1.17 ± (0.33)

Neighboring 17 (2.2) 132 (17.2) 299 (38.8) 448 (58.1) 0.9 ± (0.14)

Control 13 (1.7) 36 (4.6) 132 (17.2) 181 (23.6) 0.58 ± (0.13)

Grand total 45 (5.8) 192 (25.0) 533 (69.2) 770 0.82 ± (0.10)
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ANOVA (F(2930) = 4.7, P = 0.009) (Table 1). The pair-wise 
comparison revealed that the Anopheles mosquito count 
was significantly higher in the index case compared 
to control households (t-test, t(930) = 2.5, P = 0.01), and 
neighboring-to-control households (t-test, t (930) = 2.71, 
P = 0.006). However, no statistically significant difference 
was observed between the index and neighboring house-
holds (t-test, t(930) = 0.66, P = 0.050) (Additional file 1: Fig-
ure S1).

The morphological identification revealed that the 
An. gambiae complex was the predominant species in 
the catches, accounting for 87.0% (n = 671/770) of the 
collected mosquitoes, followed by the An. coustani 
complex (12.7%, n = 97/770) andAnopheles pharoensis. 
0.26% (n = 2/770). Among the collected female anophe-
line mosquitoes, 72.0% (n = 552/770) were unfed, 26.9% 
(n = 226/770) blood-fed and 1.3% (n = 10/770) were 
gravid. Of the total An. gambiae s.l., 67.7% (n = 454/671) 
were collected outdoors and 32.3% (n = 217/671) were 
collected indoors; for An. coustani, 79% (n = 77/97) were 
collected outdoors and 21% (n = 20/97) indoors.

In CDC-LT collections, the overall mean density of 
anophelines was 1.26 (95% confidence interval [CI] 
0.9–1.57) mosquitoes per trap per night. Outdoor traps 
caught 1.9 mosquitoes per trap night, as compared to 
0.64 mosquitoes per trap night for indoor traps. The 
density of mosquitoes outdoors and indoors was statisti-
cally significantly different (t-test, t(574) = 4.3, P = 0.0001). 
Comparing the density of mosquitoes in index and neigh-
boring households to control households,  the density of 
anophelines/trap/night in index households was 1.5 (95% 
CI 0.7–2.3) and in neighboring households was 1.3 (95% 
CI 0.9–1.7), which were significantly higher (P = 0.04) 
than the density of anophelines/trap/night in  control 
households, which was 0.98 (95% CI 0.4–1.5). The density 
of An. gambiae s.l. outdoors was statistically significantly 
higher than that indoors (t-test, t(574) = 3.52, P = 0.0004). 
Similarly, An. coustani had a higher density outdoors 
than indoors (t-test, t(574) = 4.3, P = 0.0001]. However, 

there was no statistically significant difference in either 
species by household type (Table 2; Fig. 2).

In PSC collections, the mean mosquito density per 
house per trap was significantly higher (P = 0.001) in 
index households (0.38 per house per trap, 95% CI 
0.201–0.56) than in neighboring households (0.095 per 
house per trap, 95% CI 0.003–0.180) and control house-
holds (0.094 per house per day, 95% CI 0.003–0.191) 
(P = 0.002). There was no statistically significant dif-
ference between neighboring and control households 
(P = 0.9) for all species.

Molecular identification of An. gambiae complex
Among the sub-samples of randomly selected An. gam-
biae complex mosquitoes that were morphologically 
identified (30.0%, n = 191/671), 83.8% (n = 160/191) 
belonged to An. arabiensis, 7.8% (n = 15/191) to An. 
amharicus and the remaining 8.4% (n = 16/191) were 
unamplified (Additional file 2: Figure S2).

Table 2 The abundance of Anopheles mosquitoes caught by CDC light traps, by type of reactive case detection household in Arjo 
Didessa, southwestern Ethiopia, November 2019–October 2021

CDC-LTs U.S. Centers for Disease and Prevention light traps, CI confidence interval, HH household

Anopheline species Household type Total mean (95% CI)

Index HH, mean (95% CI) Neighboring HH, mean 
(95% CI)

Control HH, mean (95% CI)

Anopheles arabiensis 1.4 (0.4–2.3) 1.1 (0.7–1.6) 0.8 (0.4–1.3) 1.09 (0.8–1.4)

An. coustani 0.2 (0.02–0.37) 0.18 (0.1–0.2) 0.18 (0.003–0.2) 0.17(0.1–0.2)

An. pharonesis 0.01 (− 0.005 to 0.02) 0.00 0.005 (− 0.005 to 0.01) 0.003(− 0.001 to 0.008)

Overall 1.5 (0.7–2.3) 1.3 (0.9–1.7) 0.98 (0.4–1.5) 1.26 (0.94–1.57)

Fig. 2 Mean density of collected female anopheline mosquito 
species indoors and outdoors of RCD households by species using 
CDC‑LTs in Arjo Didessa, Ethiopia. CDC‑LTs, U.S. Centers for Disease 
and Prevention light traps; RCD, reactive case detection 
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Molecular identification of mosquito host blood meal 
sources
Blood meal analysis using a cytochrome b-based PCR 
assay was performed on 168 engorged female anophe-
lines, 144 (20.0%) from the CDC-LT collections and 
24 (57.0%) from the PSC collections. The DNA of four 
potential vertebrate hosts (humans, bovines, goats 
and dogs) was amplified and tested for all blood-fed 
mosquitoes.

In this study, 30 (17.8%) blood meal samples had a 
human blood origin, 41 (24.4%) had a bovine blood ori-
gin, 14 (8.4%) had a goat blood origin and six (3.6%) had 
mixed blood meal origins (human, bovine and goat). 
Only one (0.7%) mosquito was detected whose blood 
meal origin was dog. Two mosquitoes (1.2%) were found 
to feed on different types of animals (bovine and goat). 
Anopheles arabiensis showed the widest host range and 
was found to feed on humans, bovines, goats and dogs. 
The blood meal indices for An. arabiensis was 19.0% 
(n = 28) for human blood, 23.1% (n = 34) for bovines, 8.1% 
(n = 12) for goats and 0.7% (n = 1) for dogs. Of the total 
An. amharicus identified, 14.2% (n = 2) had fed on human 
blood, 21.4% (n = 3) had fed on bovine blood and 7.1% 
(n = 1) had blood-fed on goats. Both An. coustani and 
An. pharoensis exclusively feed on animals. Interestingly, 
Anopheles species that only fed on human blood were not 
detected. None of the species identified feed exclusively 
on human blood. The source of the blood meal in about 
44% of the fed mosquitoes could not be identified, sug-
gesting the presence of other sources of blood meal in 
the study households. The HBI and BBI of An. arabiensis 

were 20.8% and 24.4%, respectively, and those of An. 
amharicus were 1.2% and 1.7%, respectively (Table 3).

Most notably, there was no significant difference in 
number of human blood meals between all anopheline 
mosquitoes and An. arabiensis by household type (Chi-
square test, χ2  =  0.3, df = 2, P = 0.8 and χ2 = 0.1, df = 2, 
P = 0.9, respectively). On the other hand, mosquitoes 
that fed on animal blood did show a statistically signifi-
cant difference (Chi-square test, χ2 = 5.6, df = 2, P = 0.05) 
between household types, namely 26.2%, 36.1% and 
16.2% in the index, neighboring and control households, 
respectively. The BBI of An. arabiensis was statistically 
significantly different between the index, neighboring 
and control households (χ2 = 6.1, df = 2, P = 0.04) (Table 3; 
Fig. 3).

Among the blood-fed An. arabiensis, the majority 
(68.0%, n = 100/147) were caught indoors, and 32.0% 
(n = 47/147), were caught outdoors. Human DNA was 
detected in 55.8% (n = 19/34) of An. arabiensis that 
was collected indoors and in 44.2% (n = 15/34) of those 
caught outdoors. All human blood-fed An. amhari-
cus were caught indoors. Out of 54 animal blood-fed 
mosquitoes, 38 (70.4%) and  16 (29.6%)  were An. ara-
biensis  which were caught from indoors and outdoors, 
respectively. The remaining 10 (18.5%) animal blood-fed 
mosquitoes were An. coustani, An. amharicus and An. 
pharoensis, which were caught from outdoors.

Mosquito Plasmodium sporozoite infections
Among the 770 female anophelines tested with CSP-
ELISA, 4.4% (n = 34/770) were positive for Plasmodium 

Table 3 Host blood meal sources of anopheline species with type of reactive case detection households in Arjo Didessa, 
Southwestern Ethiopia, November 2019–October 2021

Values in the table are given as the number (n) of blood meal sources, with the percentage in parentheses

H + B + G Human + bovine + goat, B + G bovine + goat, HH household

Anopheline 
species

HH type Total tested, n Single host Mixed feeding Other sources, 
n (%)

Human, n (%) Bovine, n (%) Goat, n (%) Dog, n (%) H + B + G, n (%) B + G, n (%)

Anopheles 
arabiensis

Total 147 28 (19.0) 34 (23.1) 12 (8.1) 1 (0.7) 6 (4.8) 1 (0.7) 64 (43.5)

Index 40 7 8 3 0 2 0 20

Neighboring 70 14 21 6 0 3 1 25

Control 37 7 5 3 1 1 0 19

An. amharicus Total 14 2 (14.2) 3 (21.4) 1 (7.1) 0 (0.0) 0 (0.0) 0 (0.0) 8 (57.0)

Index 2 1 1 0 0 0 0 0

Neighboring 6 1 1 0 0 0 0 4

Control 6 0 1 1 0 0 0 4

An. coustani Total 5 0 2 1 0 0 1 1

Neighboring 5 0 2 1 0 0 1 1

An. pharoensis Total 2 0 2 0 0 0 0 0

Neighboring 2 0 2 0 0 0 0 0

Grand total 168 30 (17.8) 41 (24.4) 14 (8.4) 1 (0.6) 6 (3.6%) 2 (1.2%) 74 (44.0)
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CSPs. From the total positive sporozoites, 2.3% 
(n = 18/770) were P. vivax and 2.1% (n = 16/770) were 
Plasmodium falciparum infections. More than half 
(53.0%) (n = 18/34) of those were positive for Pv-247 
and Pv-210, while 47.0% (n = 16/34) were positive for 
Pf sporozoites. All sporozoite-positive mosquitoes were 
molecularly identified to the species level, and were found 
to be An. arabiensis. The overall sporozoite (Pf, Pv-210 
and Pv-247) rate for An. arabiensis was 4.8% (n = 32/671). 
Of the CSP-positive mosquitoes, 94.1% (n = 32/34) were 
An. arabiensis, while 2.1% (n = 2/97) were An. coustani, 
which was positive for Pv-247. Interestingly, none of the 
An. amharicus and An. pharoensis samples were found to 
be positive for CSPs (Table 4).

Of these CSP-positive mosquito samples, 58.9% 
(n = 20/34) were captured indoors, and 41.1% (n = 14/34) 
were captured outdoors. The sporozoite rate was 
higher indoors (8.4%, n = 20/237) than outdoors (2.6%, 
n = 14/533), with a statistically significant differ-
ence (Fisher’s exact test, χ2 = 13.2, df = 1, P = 0.0002) 

(Additional file  3: Figure S3). In addition, the sporo-
zoite rate varied according to the site (irrigated vs 
non-irrigated) and season (dry vs wet). However, no sta-
tistically significant difference was observed regarding 
these variables.

The proportion of CSP-positive mosquitoes in 
index, neighboring and control households was 5.7% 
(n = 8/141), 5.3% (n = 24/448) and 1.1% (n = 2/181), 
respectively. There was a significant difference in the pro-
portion of CSP-positive mosquitoes collected from index 
households compared to control households (Chi-square 
test, χ2 = 5.5, df = 1, P = 0.02) and from neighboring 
household compared to control households (Chi-square 
test, χ2 = 5.6, df = 1, P = 0.01). However, there were no sig-
nificant differences in the proportion of CSP mosquitoes 
collected from the index and neighboring households 
(Chi-square test, χ2 = 0.02, df = 1, P = 0.08) (Fig. 4).

Discussion
The results of the present study showed a higher out-
door mosquito density and higher sporozoite-infected 
anopheline vector rate in malaria index cases and neigh-
boring households, compared to control households, 
which could contribute to the ongoing malaria transmis-
sion in the study area. In this study, An. arabiensis was 
the most predominant species, followed by An. coustani. 
Anopheles arabiensis had the higher Plasmodium infec-
tion rate. Also, An. arabiensis showed a wider host range 
and was found to feed on humans, bovines, goats and 
dogs. Remarkably, the study found that An. amharicus 
fed on human blood and An. coustani was infected with 
sporozoites.

The higher outdoor density of mosquitoes in the pre-
sent study may be attributed to long-term indoor-based 
vector control interventions. In addition, this increasing 
outdoor density of mosquitoes might be associated with 
water resource developments [37–39], overwatering of 
seedlings [39], outdoor activities and population move-
ments [40]. Also, it could be a change in vector behav-
ior in response to IRS spraying in districts of the region 

Fig. 3 Host blood meal sources of Anopheles mosquitoes 
in index, neighboring and control households. H + B + G, 
Human + bovine + goat blood meal source; B + G, bovine + goat blood 
meal source

Table 4 The sporozoite infection rate of Anopheles mosquitoes in reactive case detection households, Arjo Didessa, southwestern 
Ethiopia, November 2019–October 2021

CSP Circumsporozoite protein, HHs households, Pf Plasmodium falciparum, Pv-247 Plasmodium vivax-247 CSP, Pv-210 P. vivax-210

Household type Anopheles arabiensis Anopheles coustani Overall, n (%)

Total tested, n Pf, n (%) Pv‑247, n (%) Pv‑210, n (%) Total tested, n Pf, n (%) Pv-247, n (%) Pv‑210, n (%)

Index HHs 124 5 (4.03) 2 (1.61) 1 (0.08) 16 0 (0.00) 0 (0.00) 0 (0.00) 8 (5.71)

Neighboring HHs 388 11 (2.83) 11 (2.83) 2 (0.51) 60 0 (0.00) 0 (0.00) 0 (0.00) 24 (5.35)

Control HHs 159 0 (0.00) 0 (0.00) 0 (0.00) 21 0 (0.00) 2 (9.52) 0 (0.00) 2 (1.11)

Total (n = 770) 671 16 (2.38) 13 (1.93) 3 (0.44) 97 0 (0.00) 2 (2.06) 0 (0.00) 34 (4.41)
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[29]. In comparison, in control households of this study, 
no statistically significant variation in the density of mos-
quitoes was observed from that in the index and neigh-
boring households. This is more likely to be a result of 
the distance between households in the mosquito’s flight 
range to search for the host [41, 42].

Anopheles arabiensis, the primary malaria vector in 
the area, showed higher outdoor density around malaria 
index cases and neighboring households, which could 
increase outdoor blood-feedings at dawn and dusk while 
people are outside working at agricultural tasks [43]. In 
addition, this may be due to the prolonged application of 
insecticidal vector control measures, which cause behav-
ioral changes in mosquitoes [17, 44]. The higher number 
of outdoor mosquitoes may also substantially increase 
and maintain residual malaria transmission [45]. Thus, 
this finding may suggest the necessity of other supple-
mentary vector control interventions targeting outdoor 
mosquitoes, which have changed their biting and resting 
behavior from indoors to outdoors in response to indoor 
interventions [46, 47].

In the present study, animal DNA was detected propor-
tionally higher than human DNA in blood-fed Anopheles 
mosquitoes (34.5% vs 17.8%, respectively). Anopheles 
mosquitoes have a wide range of blood meal sources in 
animals, as indicated by their lower HBI compared to 
their BBI. Consistent with the results of the present study, 
An. arabiensis has been shown in previous studies to be 
opportunistic in terms of blood meal sources [48, 49]. 

This diversified zoophilic and anthropophilic behavior 
could also be associated with indoor-induced vector con-
trol interventions [44]. These diverse mosquito behaviors 
may also be contributing to maintaining residual trans-
mission [45]. However, extrinsic factors, such as the avail-
ability of a host, as well as intrinsic factors, such as sibling 
species of mosquitoes, may influence a vector’s selection 
of a host [50]. In general, this finding of a higher blood-
feeding rate on animals than on humans could represent 
an opportunity to tackle residual malaria transmission by 
introducing animal-based interventions [51, 52].

On the other hand, while overall there was a reduced 
tendency for feeding on human blood, most blood-fed 
mosquitoes were found indoors. A high proportion of 
blood-fed An. arabiensis, 68%, was detected indoors in 
this study. This high proportion of indoor blood-fed mos-
quitoes could be the consequence of the emergence of 
insecticide resistance by An. arabiensis [11]. Our findings 
are supported by those of a previous study in which pyre-
throid resistance was found in An. arabiensis in the study 
area [14]. Thus, it is important to strengthen vector con-
trol interventions such as targeted IRS and LLINs, as well 
as continue monitoring the insecticide resistance status 
in the study area.

Sporozoite-positive An. arabiensis were detected in 
the study households both indoors and outdoors. Sig-
nificantly higher infection rates were found indoors than 
outdoors, suggesting ongoing malaria transmission in 
the study area. In line with the results of other studies 
[53, 54], An. arabiensis was found to be sporozoite-pos-
itive outdoors. This sporozoite infection rate outdoors 
might be attributed to changes in the biting behavior of 
An. arabiensis [9]. Outdoor mosquitoes accounted for 
70% of the Anopheles mosquito population in this study. 
As result, the sporozoite-positive outdoor mosquitoes, 
together with a higher density of outdoor mosquitoes 
and increased insecticide resistance in the study area, 
could sustain residual malaria transmission. The higher 
infection rates outdoors may represent a major threat to 
vector control tools that only target indoor malaria trans-
mission. Thus, supplementary vector control interven-
tions together with the existing vector control measures 
are needed to control outdoor malaria transmission [55].

In comparison to previous studies conducted in Ethio-
pia, the overall sporozoite rates for P. falciparum and P. 
vivax in the present study were higher [56–58]. Impor-
tantly, more sporozoite-carrying mosquitoes were 
captured from the households of the index cases and 
neighbors. In line with this finding, sporozoite infec-
tion rates have been previously shown in index and 
neighboring households in low transmission settings 
[54]. It should be noted that there were 5.6%, 5.2%, and 
1.2% sporozoite infections in the index, neighboring and 

Fig. 4 Anopheles mosquito sporozoite infection rates in reactive case 
detection study households, Arjo Didessa, Southwestern, Ethiopia. 
Pf, Plasmodium falciparum circumsporozoite protein (CSP); Pv‑247, 
Plasmodium vivax‑247 CSP; Pv‑210, P. vivax‑210
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control households, respectively, in the present study. 
Control households had the lowest sporozoite infec-
tion rates, possibly due to their distance from malaria 
index case households. Additionally, our study demon-
strated that An. arabiensis had a relatively higher sporo-
zoite infection rate and may be contributing to ongoing 
malaria transmission in the index cases and their imme-
diate neighboring households.

In the present study, we identified a higher sporozo-
ite rate in index cases and their immediate neighboring 
households compared to those reported in other malaria-
endemic region studies in Ethiopia [59–61]. This result 
may provide evidence of where to target interventions to 
interrupt residual malaria transmission. Moreover, our 
findings provide a plausible reason for why core vector 
control interventions should target small geographical 
areas, such as houses, villages and hotspots, rather than 
the wider community to achieve malaria elimination.

It was remarkable that An. amharicus demonstrated 
the plasticity of feeding on both humans and animals 
in our investigation. In addition, this species has been 
reported to show resistance to pyrethroids in the study 
area [14]. As a result, the propensity of An. amharicus 
to feed on human blood could eventually enable it to be 
a potential vector of malaria [18]. However, despite this 
tendency of An. amharicus to feed on human blood, all 
specimens tested negative for Plasmodium sporozoites in 
this study. Anopheles amharicus accounted for approxi-
mately 8.0% of the total population of the An. gambiae 
complex. Given its propensity to feed on human blood, 
further study is needed to determine its role in malaria 
transmission in the study area.

The current study showed that An. coustani and An. 
pharoensis had an exclusive zoophilic tendency, as 
reported earlier by the authors of previous studies con-
ducted in southwest Ethiopia [53, 57]. Studies have 
implicated An. coustani as a vector for the transmission 
of malaria, which is consistent with our findings [56, 62] 
and in line with the results of a study from Zambia in 
which sporozoite positivity in An. coustani was detected 
in low transmission settings [54]. In addition, An. cous-
tani reared in wild under laboratory conditions dem-
onstrated a susceptibility to P. falciparum and P. vivax 
infections [63]. In our study, An. coustani was found to 
have  higher outdoor  densities and sporozoite positivity. 
In this context, An. coustani plays a large role in outdoor 
malaria transmission [64], and the interruption of resid-
ual malaria in this context may also be more challenging.

In general, to achieve success with elimination efforts, 
studies also have suggested a combination of vector 
control interventions, such as intensifying LLINs, IRS, 
modified outdoor trapping, animal-based interventions, 

improved housing and local larva control, for both indoor 
and outdoor malaria transmission control [17, 55, 65].

In the present study, the presence of a higher out-
door density of An. arabiensis, coupled with sporozoite-
infected mosquitoes outdoors, could be a major threat 
to achieving success in malaria elimination. Therefore, 
routine vector control might not be effective in target-
ing outdoor malaria transmission. In addition, the pres-
ence of indoor malaria vectors with sporozoite positivity, 
which is also responsible for indoor malaria transmission, 
was also detected in this study. This result implies that in 
the study area there could be an emergence of insecticidal 
resistant malaria vectors, a failure in the implementation 
of core indoor vector control interventions and ongoing 
malaria transmission.

In conclusion, the results of this study largely suggest 
that vector control interventions, such as targeted IRS, 
LLINs and other supplementary vector control interven-
tions (e.g. larval source management and community 
engagement) are needed to targeting malaria index cases 
and their neighboring households. Furthermore, imple-
menting environmental management for targeted vector 
control, particularly larval control, will reduce mosquito 
density. Also, case-based surveillance to identify trans-
mission foci, vector surveillance in search of persistent 
vector populations and monitoring of insecticide resist-
ance status are needed to interrupt residual malaria 
transmission and achieve malaria elimination efforts.

This study’s main limitations are that the most 
advanced detection technique (PCR) was not used to 
determine sporozoite rates, and that the characteristics, 
habitat and density of larvae were not investigated.

Conclusions
The findings of this study indicated that malaria index 
cases and their neighboring households had higher out-
door mosquito densities and Plasmodium infection rates. 
The study also highlighted a higher outdoor mosquito 
density, which could increase the potential risk of out-
door malaria transmission and may play a role in residual 
malaria transmission. Thus, it is important to strengthen 
the implementation of vector control interventions, such 
as targeted IRS, LLINs and other supplementary vector 
control, including larval source management and com-
munity engagement approaches. Furthermore, in low 
transmission settings such as the Arjo Didessa Sugarcane 
Plantation, providing health education to local com-
munities, enhancing environmental management and 
implementing entomological surveillance, along with 
case detection and management by targeting malaria 
index cases and their immediate neighboring house-
holds, could be important measures by which to control 
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residual malaria transmission and achieve the targeted 
elimination goals.
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