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Abstract 

Background Wild deer populations utilizing livestock grazing areas risk cross‑species transmission of gastrointes‑
tinal nematode parasites (GINs), including GINs with anthelmintic resistance (AR) traits. Wild deer have been shown 
to carry problematic GIN species such as Haemonchus contortus and Trichostrongylus species in the UK, but the pres‑
ence of livestock GINs in Northern Ireland deer populations is unknown. Also, is it not known whether AR traits exist 
among GINs of deer such as Ostertagia leptospicularis and Spiculopteragia asymmetrica in pastureland where anthel‑
mintics are heavily used.

Methods Adult‑stage GIN samples were retrieved from Northern Irish wild fallow deer abomasa. Individual speci‑
mens were subject to a species‑specific PCR analysis for common sheep and cattle GIN species with ITS‑2 sequence 
analysis to validate species identities. In addition, the beta‑tubulin gene was subject to sequencing to identify benzi‑
midazole (BZ) resistance markers.

Results ITS‑2 sequencing revealed O. leptospicularis and S. asymmetrica, but species‑specific PCR yielded false‑
positive hits for H. contortus, Teladorsagia circimcincta, Trichostrongylus axei, T. colubriformis, T. vitrinus and Ostertagia 
ostertagi. For beta‑tubulin, O. leptospicularis and S. asymmetrica yielded species‑specific sequences at the E198 codon, 
but no resistance markers were identified in either species at positions 167, 198 or 200 of the coding region.

Discussion From this report, no GIN species of significance in livestock were identified among Northern Ireland 
fallow deer. However, false‑positive PCR hits for sheep and cattle‑associated GINs is concerning as the presence 
of deer species in livestock areas could impact both deer and livestock diagnostics and lead to overestimation 
of both GIN burden in deer and the role as of deer as drivers of these pathogens. ITS‑2 sequences from both O. 
leptospicularis and S. asymmetrica show minor sequence variations to geographically distinct isolates. AR has been 
noted among GINs of deer but molecular analyses are lacking for GINs of wildlife. In producing the first beta‑tubulin 
sequences for both O. leptospicularis and S. asymmetrica, we report no BZ resistance in this cohort.
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Background
Across the northern hemisphere, including Great Brit-
ain and Northern Ireland (NI), wild deer populations are 
increasing [1–3], resulting in deer encroachment onto 
livestock pastures and increased contact with livestock 
[4–6]. This raises questions about the impact of deer on 
livestock farming, especially given that deer species are 
susceptible to a number of economically significant live-
stock parasites, principally gastrointestinal nematodes 
(GINs) [5–11].

GIN infections of ruminants are complex, with many 
species capable of infecting a range of hosts across 
livestock and wildlife barriers [5, 7, 11]. For instance, 
pathogenic species of livestock such as Teladorsagia cir-
cimcincta [11] and Haemonchus contortus have been 
reported in natural infections of wild cervid species [8, 
12–14]. Conversely, wildlife GIN species can cause infec-
tions in livestock such as Ostertagia leptospicularis in 
sheep [15–19] and cattle [17].

In the UK and Republic of Ireland alone, GINs cause 
an estimated €280 million in production losses annually, 
with a further €42 million spent on anthelmintic control 
measures [20]. Use of anthelmintics is by far the most 
common GIN control measure utilised in commercial 
livestock settings, but long-term reliance on a few classes 
of compounds has led to the emergence and spread of 
anthelmintic resistance among livestock GIN popula-
tions [21–29]. As such, AR is a major problem within the 
livestock industry and threatens closure of farms in areas 
where no anthelmintic control approaches are effective 
[30–32]. However, there are limited analyses of AR traits 
among GIN species of wild deer.

AR GIN populations are known to exist amongst 
farmed deer, for instance benzimidazole-resistant H. 
contortus have been reported [14]. Reduced anthel-
mintic efficacy has also been demonstrated in more 
cervid-restricted species, including in O. leptospicu-
laris, Spiculopteragia spiculoptera and S. asymmet-
rica, for which no molecular markers for resistance are 
known [33–38]. Unlike farmed deer, wild cervids are 
not routinely treated with anthelmintics; therefore, car-
riage of resistant genotypes may be seen as indicative of 
interspecies contact with livestock or farmed deer [5, 
7, 38–40]. However, AR traits are also known to occur 
naturally in free living nematodes such as Caenorhab-
ditis elegans [41]. Additionally, wildlife may be exposed 
to low levels of anthelmintics in the environment such 

as in wastewater or on pasture [42, 43]. Therefore, GINs 
of cervids may also have developed resistance traits and 
warrants investigation.

In the face of widespread AR-GINs in livestock farm-
ing systems, approaches to improve diagnostics have 
been made partly to enable sustainable use of anthelmin-
tics and to better our knowledge of GIN infections spati-
otemporally [44, 45]. It is also critical to differentiate GIN 
species to provide an appropriate anthelmintic treatment 
[46]. However, morphological diagnostic approaches 
require expert knowledge and time-consuming methods 
to accurately diagnose specific species [47]. Currently, 
a number of DNA-based diagnostic approaches are in 
use or under development to detect and enumerate the 
presence of different GIN species based on species-spe-
cific markers that can detect individual GIN parasites by 
PCR [48–55], loop-mediated isothermal amplification 
(LAMP) [52, 56] or ITS-2 meta-barcoding [57, 58]. Meth-
ods have also been developed for the detection of deer 
and other wildlife GINs in both wildlife and livestock 
contexts [39, 46, 59, 60]. However, as these emerging 
technologies evolve, DNA databases need to keep pace 
with accurate and comprehensive data to ensure clarity 
of speciation [46]. A lack of knowledge remains pertain-
ing to the accuracy and utility of DNA diagnostic tools in 
the presence of wildlife GIN species.

In NI, deer are the most prominent wild ruminants 
with fallow (Dama dama), red (Cervus elaphus) and 
Japanese sika (Cervus nippon) present, all of which are 
susceptible to GINs of livestock [61, 62]. However, GIN 
infections and AR in wild deer have gone largely under-
investigated at both local and international scales. In this 
study, abomasa samples were obtained from three pop-
ulations of Northern Ireland’s most abundant deer spe-
cies, fallow deer, for nematode speciation and subsequent 
genetic analysis for evidence of resistance to widely used 
benzimidazole (BZ) anthelmintics. In addition, we cross-
validate known PCR diagnostic primer sets against deer-
specific species identified in this study to determine the 
potentiality of wildlife species yielding false-positive PCR 
results for livestock diagnostics.

Methods
Wild fallow deer specimen retrieval and DNA extraction
Seven fallow deer (Dama dama) were culled by trained 
stalkers, in adherence with Northern Ireland legislation, 
across three locations, Co. Antrim (Randalstown Forest), 

Conclusions This work contributes to genetic resources for wildlife species and considers the implications of such 
species when performing livestock GIN diagnostics.
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Co. Down (Tollymore Forest) and Co. Londonderry 
(Ardkill), during the legal open season (November 2019). 
Randalstown Forest is a 172 ha mixed conifer and broad-
leaf woodland situated at the northern edge of Lough 
Neagh. Tollymore Forest is a 630  ha mixed conifer and 
broadleaf woodland at the foot of the Mourne Moun-
tains in the southeast of the country and Ardkill has sev-
eral small forested areas situated in the north west of the 
country. Each of these woodland areas is surrounded by 
cattle and sheep pasture.

Adult nematodes were washed from abomasum tis-
sue, cleaned in  ddH2O and then stored in 70% EtOH at 
− 20 °C. Individual worms were washed thrice in 0.5 ml 
lysis buffer [100  mM KCl, 20  mM Tris pH 8, 2.5  mM 
 MgCl2, 0.9%  IGEPAL® CA-630 (Sigma-Aldrich, St. Louis, 
MO, USA), 0.9% Tween-20 (Sigma-Aldrich) and 0.02% 
gelatin, see nemabiome.ca website for details] and then 
transferred by pipette to an ethanol-cleaned microscope 
slide under a stereomicroscope and bisected in individual 
droplets of lysis buffer by bleach cleaned scalpel to break 
the cuticle. Worm pieces were transferred to individual 
tubes by bleach-cleaned no. 5 forceps with one sample 
taken per worm. DNA lysis was adapted from the Nema-
biome protocol [57] with each sample digested in 100 µl 
lysis buffer and 4  µl proteinase K (0.8  mg/ml final con-
centration, NEB, Ipswich, MA, USA), which was vor-
texed, centrifuged and then digested overnight or at 56 °C 
in a water bath. Proteinase K was inactivated at 95 °C for 
20  min and samples were stored at −  20  °C (20  mg/ml 
solution).

Species‑specific PCR screening
PCR reactions were performed with  GoTaq® G2 Hot 
Start Taq Polymerase (Promega, Madison, WI, USA) at 
recommended concentrations (2.5  mM MgCl2, 0.2  mM 
dNTPs (PCRbio, London, UK) and 0.4  µM of each 
primer). Previously published primers and the recom-
mended annealing temperatures used are listed in Addi-
tional file 2: Table S1 [49, 63–70]. For all reactions, 25 μl 
volumes were used with 1 μl of DNA lysate per reaction 
or nuclease-free water for no template controls. For all 
PCR reactions, a 95  °C/2  min initial denaturation step 
and a final extension at 72  °C for 5 min was performed. 
For Bisset et al. primers [49], touchdown PCR conditions 
were used including: 12 cycles of 95 °C denaturation for 
15 s, 60 °C annealing (with 0.5 °C decline per cycle), 72 °C 
extension for 30 s, followed by 25 cycles of 95 °C for 15 s, 
54 °C for 15 s and 72 °C for 30 s as previously described. 
For other primers, 35 cycles of 95  °C denaturation for 
15 s, 52–58 °C annealing for 15 s and 72 °C extension for 
30  s were used, with as previously described. See Addi-
tional file  2: Table  S1 for specific details. PCR products 
were visualized by precast 1 × concentration SYBRSafe 

(Thermo Fisher, Waltham, MA, USA) on 1.3% agarose gel 
electrophoresis in TAE buffer.

Sanger sequencing
PCR was performed with  Q5® High-Fidelity DNA Pol-
ymerase (New England Biolabs) per manufacturer’s 
instructions. For speciation, ITS-2 NC1-forward (5′-
ATT GCG CCA TCG GGT TCA TTCC-3′) and NC2-
reverse (5′-TTA GTT TCT TTT CCT CCG CT-3′) primers 
were used [67]; 1  μl of DNA lysate was used per 25  μl 
reaction. Cycling conditions included an initial dena-
turation (98  °C/30  s), 35 cycles (98  °C/15  s, 52  °C/30  s, 
72  °C/30  s) and final extension (72  °C/2  min). For 
beta-tubulin sequences, previously designed forward 
(5′-NNNACG CAC TCT TTG GGA GGA GG-3′) and 
reverse (5′-NNNTGT GAG TTT TAG TGT GCG GAAG-
3′) primers were used that span exons 4 and 5 and 
intron 4 of the beta-tubulin isotype 1 gene [71]; 1  μl of 
DNA lysate was used per 25 μl reaction. Cycling condi-
tions included an initial denaturation (98  °C/30  s), 35 
cycles (98 °C/15 s, 55 °C/30 s, 72 °C/35 s) and final exten-
sion (72 °C/2 min). PCR products were assessed by 1.3% 
agarose gel electrophoresis with single bands purified by 
 Wizard® SV Gel and PCR Clean-Up System (Promega) 
and assessed by  NanoDrop® ND-1000 (Thermo Fisher). 
Purified PCR products were sequenced by Eurofins 
TubeSeq service and assessed for quality and base-calling 
using Bioedit 7.2.5 software (University of North Texas).

Phylogenetic analyses of ITS‑2 sequences
Individual ITS-2 sequences were speciated in Geneious 
 Prime® (2023.1.1 Build 2023-04-03) using the ‘identify 
organism’ tool to BLAST against the nemabiome ITS-2 
database [72]. Sequences and hits with the highest over-
all sequence query coverage and identity are shown in 
Additional file 3: Table S2. A single consensus sequence 
was produced from MUSCLE (PPP) aligned sequences 
and submitted GenBank for O. leptospicularis (Genbank 
accession no. OR284984) and S. asymmetrica (Genbank 
accession no. OR284985).

Phylogenetic trees were produced using previously 
documented protocols for GIN ITS-2 phylogenetics [71] 
using Geneious  Prime®. Briefly, ingroup and outgroup 
taxa were selected and aligned by MUSCLE (PPP) with 
trees produced using Jukes-Cantor model computed with 
10,000 bootstrap replicates and rooted on T. axei. Com-
parison species were selected from known species in wild 
ruminants [11] alongside other representative Haemon-
chidae with random representative sequences from the 
nemabiome ITS-2 database [72]. To compare individual 
samples, the same method was used except consensus 
sequences from ingroup taxa were selected to minimize 
tree size while still comparing sample variance.
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Analysis of beta‑tubulin sequences
Sanger sequencing was performed as described above for 
a sub-set of individual specimens. Individual sequences 
were assessed for the presence of four known markers of 
BZ resistance, F167Y (TTC/TAC), E198A (GAR/GCA) 
or E198L (GAR/TTA) and F200Y (TTC/TAC) [58, 71, 
73, 74]. Aligned and consensus sequences are shown in 
Additional file 4: File S1. Consensus sequences were sub-
mitted to GenBank for O. leptopiscularis (PP077401) and 
S. asymmetrica (PP077402).

Data presentation
Unless otherwise stated, original data were tabulated in 
Microsoft Excel with figure layouts generated in  Adobe® 
Illustrator 2023 (Adobe Inc).

Results
Assessment of gastrointestinal nematodes from fallow 
deer necropsies
To determine whether deer in Northern Ireland harbour 
sheep- or cattle-associated GINs, adult worms were col-
lected from abomasa and subjected to Sanger sequenc-
ing molecular speciation using NC1/NC2 pan-nematode 
primers (Additional file 2: Table S1). In abomasa O. lepto-
spicularis and S. asymmetrica coinfections were iden-
tified in 4/7 of individuals, with more S. asymmetrica 
identified overall (Table  1). No other GIN species were 
identified.

Inter-sample sequence variation was minimal for O. 
leptospicularis (96.43–100% identity, median = 100%) and 
S. asymmetrica (94.62–100% identity, median = 100%) 
and all individual samples clustered when compared to 
other Haemonchidae (Additional file  1: Fig. S1). Con-
sensus sequences for each species yielded mildly distinct 
variations from known isolates (Fig. 1) and may represent 

Ireland-specific variants for both O. leptospicularis and S. 
asymmetrica.

Cross‑validation of sheep and cattle GIN species‑specific 
PCR primers against deer parasites
An array of species-specific primers have previously 
been designed to detect sheep and cattle GIN species. To 
determine whether O. leptospicularis or S. asymmetrica 
yield cross-contamination of sheep and cattle GINs, we 
performed a PCR screen from published primers [49, 66]. 
We found that primers for H. contortus, T. circimcincta, 
T. axei, T. colubriformis and T. vitrinus cross-reacted 
with both O. leptospicularis and S. asymmetrica, while 
a primer set for O. ostertagi cross reacted with O. lepto-
spicularis (Table  2, Additional file  2: Table  S1, Fig.  2). 
Overall, the majority of primer sets worked as expected 
against these wildlife species (Table  2), but false-posi-
tive reactions produced single PCR product bands that 
were indistinguishable in size from positive controls 
(Fig. 2). One of the primer sets tested for T. circimcincta 
(‘TeciFd3’) has previously documented cross-reactivity to 
O. leptospicularis [49].

Beta‑tubulin sequences from O. leptospicularis and S. 
asymmetrica
A total of 30 sequences from O. leptospicularis (n = 15) 
and S. asymmetrica (n = 15) were performed using previ-
ously published primers [75]. All samples tested yielded 
susceptible sequences at positions 167 (TTC), 198 (GAG/
GAA) and 200 (TTC) (Additional file 4: File S1). For all 
O. leptospicularis GAG sequences were found at posi-
tion 198, while for all S. asymmetrica GAA was found at 
position 198. Sequences had high identities across indi-
viduals with 203/226 matching bases for O. leptospicu-
laris (91.11–100% pairwise identity). For S. asymmetrica 
219/230 bases matched (96.52–100% range in pairwise 
identity) (Additional file 1: File S1).

Discussion
Little is known relating to populations of GINs among 
Northern Irish fallow deer and whether these GINs har-
bour AR traits. To elucidate the status of GIN presence 
among wild fallow deer in Northern Ireland, we inves-
tigated deer carcasses from individuals covering three 
counties inhabited by over two-thirds of the total NI 
sheep population (67%) and over half the cattle popula-
tion (53%) [76]. In this study we identified two species 
commonly associated with cervids, O. leptospicularis and 
S. asymmetrica among abomasa of seven deer. Both of 
these species are frequently reported in cervids and occa-
sionally in sheep and cattle, but molecular resources for 
these species are lacking. To add to available resources, 
we provide consensus ITS-2 Sanger sequences from 

Table 1 Tally of gastrointestinal nematodes identified from deer 
necropsies

Deer ID Location Ostertagia 
leptospicularis

Spiculopteragia 
asymmetrica

Total

A.142301 Ardkill 4 5 9

B.140048 Tollymore 0 14 14

C.142323 Randalstown 11 4 15

D.140049 Tollymore 0 14 14

E.142322 Randalstown 0 2 2

F.140032 Randalstown 3 3 6

G.14234 Randalstown 4 11 15

Total 22 53 75

Proportion 
of infected 
deer

4/7 7/7
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a total of 22 O. leptospicularis (OR284984) and 53 S. 
asymmetrica (OR284985), with individual sequences 
presented in Additional file  3: Table  S2. In addition, we 
provide the first reported beta-tubulin sequences for 
both species (PP077401-PP077402) to our knowledge.

In improving genetic resources for these species, we 
note the importance of including wildlife and less com-
mon species in development of molecular diagnostic 
assays, such as for monitoring the presence of livestock 
GINs. Interest in molecular diagnostics (particularly 

PCR based diagnostics) of GINs and other helminths is 
broad and growing. Methods for detection vary and rely 
on standardization with available parasite materials. In 
principle, PCR diagnostics utilise conserved regions of 
parasite genomes, such as the ITS-2 region of rDNA with 
species- or genus-specific primers or probes designed 
at variable sites [49–55]. PCR-based amplification yields 
fluorescence from specific probes in loop-mediated iso-
thermal amplification (LAMP) [52, 56], Q-PCR [54, 68, 
77] and ddPCR [78], size-specific products in endpoint 

Fig. 1 ITS‑2 phylogenetic neighbour‑joining tree from isolated samples compared to parasites of wild ruminants and similar Haemonchidae 
species. Random representative sequences selected from the Nemabiome ITS‑2 database for reference species. Sequences aligned by MUSCLE 
(PPP) and organised by the Jukes‑Cantor distance model (10,000 bootstrap replicates) with Trichostrongylus axei used as an outgroup. Tree displays 
species and accession number used with consensus sequences from in‑study specimens colour coded. Bootstrap values > 70% shown



Page 6 of 10Lyons et al. Parasites & Vectors          (2024) 17:141 

PCR and semi-quantitative PCR [48, 49] or products 
with specific melt curves in high-resolution melt curve 
analyses [48, 55]. Molecular monitoring of GINs can uti-
lize a number of genetic sources such as: (1) adult worms 
from necropsies [55, 79], (2) faecal DNA [48, 79], (3) iso-
lated eggs from faeces [77], (4) cultured larvae [53, 57], 
(5) pasture larvae [80] and (6) environmental DNA [81]. 
However, validation of probe specificity has typically not 
taken wildlife species into consideration, although mul-
tiple studies have been mindful to detect wildlife species 
[39, 46, 59, 60]. In this study, we test O. leptospicularis 
and S. asymmetrica DNA from fallow deer in NI against a 
number of livestock GIN specific primers using endpoint 
PCR with size specific primers.

While the majority of primers tested produced no 
cross-reactivity against either species, we generated false-
positive hits at expected product sizes for H. contortus 
(1/5 primers), O. ostertagi (1/4 primers), T. circimcincta 
(1/5 primers), T. axei (1/3 primers), T. colubriformis (1/3 
primers) and T. vitrinus (2/2 primers). We should note 
that the T. circimcincta primer set (TeciFd3) is known 
to cross-react to O. leptospicularis [49] and so this find-
ing is not surprising. However, cross-reactivity with both 
O. leptospicularis and S. asymmetrica is concerning as 
it raises questions about potential other wildlife species 
that could contaminate molecular diagnostic approaches. 
While closely related species such as O. ostertagi might 
be expected to yield false-positive hits, the variety of spe-
cies detected is concerning since there is potential for O. 
leptospicularis and S. asymmetrica DNA to be present in 
any number of sources.

With deer co-grazing on pasture becoming increasingly 
prominent, deer GINs may be increasingly deposited on 
pastures where the eggs or larvae can contaminate faeces 

collected from grass for faecal egg counts and molecular 
diagnostics, contaminate pasture larvae counts or con-
taminate environmental DNA collections. In addition, 
as O. leptospicularis can cause infections in both cat-
tle and sheep, molecular misidentifications can also be 
made from worms collected at necropsy. PCR diagnos-
tics have previously been performed on adult worms col-
lected from roe deer, but such studies are robust and have 
included additional checks such as ITS-2 sequencing to 
confirm species identity [13]. However, whether PCR 
alone is sufficient to identify livestock parasites remains 
to be determined.

Cervid species such as O. leptospicularis may also pose 
a threat to the performance of cattle [17] and sheep [15, 
19] and are capable of altering intestinal pH [16]. Inter-
estingly, distinct O. leptospicularis populations in cat-
tle have been found and possibly adapt to local hosts 
[10]. Spiculopteragia asymmetrica is also identified in 
some farmed ruminants such as mouflons [59] but may 
have capacity to overspill into more livestock species in 
areas where wildlife are declining or where shared graz-
ing is increasing [5, 82]. Infections of O. leptospicularis 
in livestock may also produce sterile hybrid offspring 
with O. ostertagi [18]. This in turn can result in false-
positive detection of sheep or cattle parasites by PCR 
from pasture larvae or pasture collected faecal samples 
since deer faeces will contaminate the pasture. Further-
more, sterile hybrid infections will also go undetected in 
faecal egg counts as these have reduced or ablated egg 
production [18]. However, both O. leptospicularis and 
S. asymmetrica cross-reacted with the same off-target 
primer sets, with the exception of O. ostertagi which did 
not yield a false-positive hit for S. asymmetrica. As such, 
it is probable that primers can be effectively designed 

Table 2 False‑positive PCR hits from species‑specific primer sets

*Primers shown in Additional file 2: Table S1 and representative result gel images shown in Fig. 2. **Single PCR products indistinguishable in size compared to positive 
controls

Host Target species Primers tested* Ostertagia leptospicularis hits?** Spiculopteragia 
asymmetrica 
hits?**

Cattle Cooperia onchophora 2

Cattle Ostertagia ostertagi 4 1

Sheep Chabertia ovina 2

Sheep Cooperia curticei 3

Sheep Haemonchus contortus 5 1 1

Sheep Oesophagostomum venulosum 3

Sheep Teladorsagia circumcincta 5 1 1

Sheep Trichostrongylus axei 3 1 1

Sheep Trichostrongylus colubriformis 3 1 1

Sheep Trichostrongylus vitrinus 2 2 2

na Pan‑nematode (+ control) 2 2 2
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even in the presence of off-target species from wildlife 
contamination.

Beyond ITS-2 markers we also provide the first beta-
tubulin sequences for both O. leptospicularis and S. 
asymmetrica. Monitoring resistance markers in wildlife 
is crucial to determine the extent of overlap between 
anthropogenic and wild habitats and has been applied 
for species with wild and farmed populations such as 
bison [75]. A number of single-nucleotide polymorphism 
(SNP) sites that confer resistance to BZ are known for 
other GIN species [83], but have yet to be identified in 

wildlife restricted species. Here we find that beta-tubulin 
sequences vary in intronic areas but predicted protein 
coding regions match with predicted and known other 
nematode protein sequences. No AR SNPs were detected 
for any samples indicating that despite the small sample 
size collected, there is no evidence for AR among these 
species in wild cervids in Northern Ireland currently. 
While we did not find any evidence of BZ resistance in 
our sample cohort, we demonstrate that effective moni-
toring of BZ resistance sites by sequencing is possible 
as has been reported for livestock species [71]. These 

Fig. 2 Species‑specific PCR screen with false‑positive hits against Ostertagia leptospicularis and Spiculopteragia asymmetrica specimen pools. Primer 
sets shown as outlined in Additional file 2: Table S1 and results summarised in Table 2, with target species and expected PCR product sizes (in 
brackets) tested against O = O. leptospicularis, S = S. asymmetrica, (+) = positive control DNA, and (−) = negative no template control. Ladder = 100 bp 
with double‑intensity 500‑bp band
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sequences also provide a means to develop PCR moni-
toring for BZ SNPs as previously developed for livestock 
species [31].

Despite the lack of resistance markers present in the 
current study, monitoring for AR among wildlife is criti-
cal to determine potential toxicological impacts of live-
stock–wildlife interfaces. For instance, widespread use 
of anthelmintics has led to ecological contamination 
in a wide variety of substrates including water [84, 85], 
soil [42, 86] and plants [42, 86]. However, most com-
mon anthelmintics such as BZ, macrocyclic lactones 
and levamisole are photolabile and will degrade in sun-
shine, and they may not pose a significant direct effect in 
sunny summer conditions [87]. Nevertheless, build-up of 
anthelmintic residues on pasture can lead to auto-dosing 
of untreated animals [42]. In this case, sheep dosed with 
albendazole were allowed to excrete on fodder plants. 
Later feeding of fodder plants from contaminated pasture 
led to albendazole detected in untreated sheep [42]. As 
such, it is entirely possible for wildlife species to be simi-
larly impacted if co-grazing in dirty pasture.

Overall, this dataset provides a baseline to monitor BZ 
resistance markers in O. leptospicularis and S. asymmet-
rica as well as details of ITS-2 sequences for improved 
species-specific molecular diagnostics of livestock GINs.

Conclusions
We provide a case report of abomasal worms from seven 
fallow deer culled in regions with relatively high sheep 
ownership. Individual adult worms were isolated and 
speciated, revealing O. leptospicularis and S. asymmet-
rica. To our surprise, both species yielded cross-reactiv-
ity to a number of livestock GIN species using previously 
published species-specific PCR primers, a result that 
highlights the need to consider wildlife species when 
designing molecular diagnostics. Since coinfections of 
livestock and wildlife are diverse and often overlap, it is 
critical to build upon molecular resources for wildlife 
species which are a neglected part of the ecology of para-
site dispersal in shared environments.
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