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Abstract 

Background Infection with parasitic nematodes (helminths), particularly those of the order Strongylida (such 
as Haemonchus contortus), can cause significant and burdensome diseases in humans and animals. Widespread drug 
(anthelmintic) resistance in livestock parasites, the absence of vaccines against most of these nematodes, and a lack 
of new and effective chemical entities on the commercial market demands the discovery of new anthelmintics. In 
the present study, we searched the Global Health Priority Box (Medicines for Malaria Venture) for new candidates 
for anthelmintic development.

Methods We employed a whole-organism, motility-based phenotypic screening assay to identify compounds 
from the Global Health Priority Box with activity against larvae of the model parasite H. contortus, and the free-living 
comparator nematode Caenorhabditis elegans. Hit compounds were further validated via dose–response assays, 
with lead candidates then assessed for nematocidal activity against H. contortus adult worms, and additionally, 
for cytotoxic and mitotoxic effects on human hepatoma (HepG2) cells.

Results The primary screen against H. contortus and C. elegans revealed or reidentified 16 hit compounds; further 
validation established MMV1794206, otherwise known as ‘flufenerim’, as a significant inhibitor of H. contortus larval 
motility (half-maximal inhibitory concentration  [IC50] = 18 μM) and development  (IC50 = 1.2 μM), H. contortus adult 
female motility (100% after 12 h of incubation) and C. elegans larval motility  (IC50 = 0.22 μM). Further testing on a mam-
malian cell line (human hepatoma HepG2 cells), however, identified flufenerim to be both cytotoxic (half-maximal 
cytotoxic concentration  [CC50] < 0.7 μM) and mitotoxic (half-maximal mitotoxic concentration  [MC50] < 0.7 μM).

Conclusions The in vitro efficacy of MMV1794206 against the most pathogenic stages of H. contortus, as well as the free-
living C. elegans, suggests the potential for development as a broad-spectrum anthelmintic compound; however, the high 
toxicity towards mammalian cells presents a significant hindrance. Further work should seek to establish the protein–drug 
interactions of MMV1794206 in a nematode model, to unravel the mechanism of action, in addition to an advanced struc-
ture–activity relationship investigation to optimise anthelmintic activity and eliminate mammalian cell toxicity.
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Background
Infections and diseases (nematodiases) caused by gas-
trointestinal parasitic nematodes are a significant strain 
on both human and animal health [1–3]. The control of 
soil-transmitted helminths (STHs) was included in the 
World Health Organization (WHO)’s neglected tropi-
cal disease road map for 2021–2030 [3], with the core 
strategic interventions and critical actions focused on 
adequate hygiene, education, preventative chemotherapy 
and the development of more effective medicines in the 
case of emerging drug resistance [3]. In 2019, ~ 909 mil-
lion people were estimated to be infected with intestinal 
nematodes (Ascaris, Trichuris, Ancylostoma and Neca-
tor), accounting for 1.97 million disability-adjusted life 
years [1], disproportionately affecting communities fac-
ing poverty. On the other hand, livestock helminth infec-
tions are ubiquitous, with parasites such as Haemonchus, 
Cooperia, Ostertagia, Teladorsagia and Trichostrongylus 
impacting producers globally [2, 4, 5]. In Australia alone, 
the annual cost due to nematodiases (in sheep and cat-
tle) is estimated at USD 450 million [5]—a significant 
economic burden. Globally, the market for anti-parasitic 
drugs for livestock animals is estimated at USD 2.5 bil-
lion per annum [4], indicative of the impact of parasitic 
worms.

Central to the management of such parasites are 
knowledge and understanding of epidemiology (reviewed 
by [6, 7]), regular monitoring and accurate diagnoses 
of infections [8–10] and implementation of an anthel-
mintic regimen to achieve control. Although vaccina-
tion would be a preferred method to prevent infections 
and disease, vaccines have been challenging to develop 
[11], and only two have been commercialised for use in 
livestock (Bovilis  Huskvac® and  Barbervax® to prevent 
bovine dictyocaulosis and haemonchosis, respectively). 
Thus, anthelmintic treatment remains a key component 
of most control programs. However, unfortunately, drug 
resistance in nematodes of livestock is now widespread 
due to the excessive and/or widespread use of commer-
cially available anthelmintics [2, 12–17]. As monepantel 
(Zolvix™) [18] and derquantel  (Startect®) [19–21] are the 
only new anthelmintic drug classes (for use in livestock) 
introduced into the commercial market since 2000, there 
is an urgent need to discover and develop new anthel-
mintic compounds with novel mechanisms/modes of 
action.

Historically, anthelmintic drug discovery has been 
hindered by a lack of adequate screening/drug develop-
ment technologies, and the economic costs associated 
with the drug discovery process (reviewed by [22, 23]). 
Early drug development campaigns relied on the testing 
of anthelmintic candidates in animal models [24–27]. 

Whilst effective, these assays are low-throughput, 
high-cost and labour-intensive. Today, anthelmintic 
drug discovery focuses on the use of in vitro methods 
to quantitatively assess test compounds for antipara-
sitic activity. A number of practical, time-efficient and 
relatively low-cost phenotypic (whole-worm) screen-
ing methods have been developed for the discovery of 
novel anthelmintic candidates. Methods vary in the 
species assessed, life cycle stage used, technology used 
for assessment, phenotypic characteristics assessed and 
the throughput potential (reviewed by [23]). Medium- 
to high-throughput assays reported to date utilise heat 
flow- [28, 29], impedance- [30], imaging- [31–33] or 
photometry-based [34–39] techniques to evaluate test 
compounds.

Anthelmintic discovery is being enabled through the 
use of multi-omic tools and resources for key para-
sitic nematodes such as Haemonchus contortus (order 
Strongylida; clade V) [40–44] and its free-living rela-
tive, Caenorhabditis elegans (reviewed by [45, 46]). 
Drug discovery efforts have also been enhanced by the 
development of proteomic-driven target deconvolution 
tools (reviewed by [47, 48]), allowing for the identifica-
tion of novel drug–protein interactions. Thus, early-
stage broad-spectrum nematocidal development may 
be achieved, first, through the discovery of new drug 
candidates via a phenotypic screening platform (uti-
lising one or more model nematode organisms), and 
subsequent target deconvolution using advanced work-
flows, assisted by bioinformation.

In the further pursuit of a new and effective anthel-
mintic entity, together with the Medicines for Malaria 
Venture (MMV; Geneva, Switzerland), we previ-
ously screened a number of small compound collec-
tions, including the Pathogen, Stasis, and Pandemic 
Response Boxes [49–51] for anthelmintic activity 
against H. contortus and/or C. elegans. Here, as part of 
an ongoing collaboration with MMV, we screened the 
recently curated Global Health Priority Box in a whole-
organism, motility-based phenotypic assay [38, 39] for 
anthelmintic activity on the larvae H. contortus and C. 
elegans. This Box contains 240 compounds which are at 
various stages of development and have demonstrated 
activity against drug-resistant Plasmodium (n = 80 enti-
ties), neglected and zoonotic pathogens (n = 80) and 
various vectors (such as species of mosquitoes, ticks 
and mites) (n = 80). Then, we estimated the anthelmin-
tic potency of (hit) compounds, evaluated the toxic-
ity of hit compounds against HepG2 cells and worked 
toward identifying candidates for future medicinal 
chemistry optimisation and mechanism/mode of action 
studies.
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Methods
Preparation of compounds for screening
The Global Health Priority Box compound collection 
from MMV, Geneva, Switzerland, contains 240 chemi-
cal entities, at various stages of development, with activ-
ity against drug-resistant Plasmodium, neglected and 
zoonotic pathogens (such as Leishmania, Mycobacte-
rium and Trypanosoma) and vectors (such as species of 
mosquitoes, ticks and mites) (https:// www. mmv. org/ 
mmv- open/ global- health- prior ity- box/ about- global- 
health- prior ity- box; accessed 18 September 2023). Indi-
vidual compounds were supplied as solid samples; each 
compound was resuspended in 10 μl of (100%) dimethyl 
sulfoxide (DMSO) to give a final concentration of 10 mM. 
Prior to screening, test compounds were each diluted to 
40 μM in sterile lysogeny broth (LB; cf. [38, 52]) contain-
ing 100  IU/ml of penicillin, 100  µg/ml of streptomycin 
and 0.25 µg/ml of amphotericin B  (Fungizone®, Thermo 
Fisher Scientific, Waltham, MA, USA); this supple-
mented LB was designated as LB*.

Production, storage and preparation of H. contortus larvae 
and adults
Haemonchus contortus (Haecon-5 strain; cf. [53]) was 
produced in experimental sheep as described previously 
[54] and in accordance with the institutional animal eth-
ics guidelines (permit no. 23983-2811-4; The University 
of Melbourne, Parkville, Victoria, Australia). Helminth-
free Merino sheep (6  months of age; male) were orally 
inoculated with 7000 third-stage larvae (L3s) of H. con-
tortus. Four weeks after inoculation, faecal samples were 
collected from sheep with patent H. contortus infec-
tion. These samples were incubated at 27  °C and > 90% 
relative humidity for 1  week to yield  larvae [54], which 
were then collected in tap water and allowed to migrate 
through two layers of nylon mesh (pore size: 20  μm; 
Rowe Scientific, Doveton, Victoria, Australia) to remove 
debris. Clean L3s were stored in the dark at 11 °C for up 
to 6 months [54]. Immediately prior to use in assays, H. 
contortus L3s were artificially exsheathed via exposure to 
0.15% (v/v) sodium hypochlorite for 20 min at 38 °C [54], 
achieving an exsheathment rate of 90%. The larvae were 
then immediately washed five times with 50 ml of sterile 
physiological saline solution by centrifugation at 2000×g 
(5 min) and resuspended in LB* at a concentration of 200 
xL3s per 50 µl (for the primary screen) or 300 xL3s per 
50 µl (for the dose–response assays).

Adult H. contortus were collected from the abomasa 
of sheep infected for 10 weeks, then washed extensively 
in RPMI 1640 media supplemented with final concen-
trations of 2  mM L-glutamine, 100  IU/ml of penicillin, 
100  µg/ml of streptomycin and 0.25  µg/ml of ampho-
tericin B (Thermo Fisher Scientific, Scoresby, VIC, 

Australia; this supplemented RPMI was designated as 
RPMI*). Using a dissecting microscope, female and male 
worms were separated (38  °C in RPMI*) immediately 
prior to compound testing.

Production, storage and preparation of C. elegans larvae
Caenorhabditis elegans (N2—wild-type Bristol strain) 
was maintained in the laboratory under standard condi-
tions at 20  °C on nematode growth media (NGM) agar 
plates, with Escherichia coli OP50 as a food source (Sti-
ernagle, 2006). Gravid adult worms were collected from 
NGM plates, washed with sterile M9 buffer and then 
treated with a solution containing 0.4% (v/v) sodium 
hypochlorite and 170 mM sodium hydroxide for 4–8 min 
at 22–24 °C (room temperature) to release eggs [55, 56]. 
The eggs were then washed five times with 15 ml of sterile 
M9 buffer (centrifugation at 500×g, 2 min). After wash-
ing, the egg pellet was suspended in 8 ml of M9 buffer in 
a 15 ml tube and gently agitated for 24 h at 22–24 °C to 
produce first-stage larvae (L1s); 45 h prior to screening, 
synchronised C. elegans L1s were inoculated onto NGM 
plates containing 500  µl of E. coli OP50 (~ 3000 larvae 
per plate) and allowed to develop to fourth-stage larvae 
(L4s) at 20 °C. L4s were collected from plates and washed 
twice with sterile M9 buffer by centrifugation (500×g, 
2 min) to remove E. coli OP50, and then resuspended in 
LB* at a concentration of 125 L4s per 50 µl (for the pri-
mary screen) or 100 L4s per 50 µl (for the dose–response 
assays).

Screening for anthelmintic activity against H. contortus 
larvae
An established high-throughput phenotypic screen-
ing assay [38] was used to test the anthelmintic activity 
of compounds on H. contortus xL3s. Compounds were 
assessed for motility inhibition at a concentration of 
20 µM in LB*. Four compounds—monepantel (Zolvix™; 
Elanco, Australia), monepantel/abamectin (Zolvix 
Plus™; Elanco, Australia), moxidectin  (Cydectin®; Vir-
bac, France) and compound MIPS-0018666 (abbrevi-
ated herein as M-666; cf. [57])—were used as positive 
controls (final concentration of 20  µM in LB*). A solu-
tion of LB* + 1% (v/v) DMSO was used as a negative 
control. Test compounds were distributed amongst one 
flat-bottom, 384-well microplate (cat no. 3860; Corning, 
Corning, NY, USA). Eighty xL3s of H. contortus in 20 µl 
of LB* were added to each well to give a final volume of 
40 µl. The plate was then placed in a  CO2 incubator (10% 
[v/v]  CO2, 38  °C, > 90% humidity). At 90  h, worm activ-
ity was captured using a WMicroTracker ONE unit (Phy-
lumtech, Sunchales, Santa Fe, Argentina). Over a period 
of 15 min, disturbance of an infrared beam in individual 
wells was recorded as a worm ‘activity count’. Activity 

https://www.mmv.org/mmv-open/global-health-priority-box/about-global-health-priority-box
https://www.mmv.org/mmv-open/global-health-priority-box/about-global-health-priority-box
https://www.mmv.org/mmv-open/global-health-priority-box/about-global-health-priority-box
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counts were then normalised to the positive and nega-
tive controls using the GraphPad Prism  program (v.9.1.0 
GraphPad Software, San Diego, CA, USA). The screening 
plate was then returned to the incubator (10% [v/v]  CO2, 
38  °C, > 90% humidity) for an additional 72  h. At 168  h, 
worms were fixed with 40  µl of Lugol solution (Sigma-
Aldrich, St. Louis, MO, USA). Compounds were then 
assessed (microscopically) for inhibition of larval devel-
opment and/or induction of a non-wild-type phenotype 
in H. contortus worms. A compound that reduced xL3 
motility by ≥ 70% and/or inhibited larval development 
or induced an abnormal phenotype (relative to the nega-
tive control) was recorded as a ‘hit’ compound. The per-
formance of the assay was monitored using the Z′-factor 
[58] calculated using data for the negative (DMSO) and 
positive (M-666) control compounds on individual plates.

Screening for anthelmintic activity against C. elegans
An established assay [39] was employed to test the 
anthelmintic activity of compounds on C. elegans. Test 
compounds and positive and negative controls were pre-
pared in a flat-bottom, 384-well microplate (cf. [39]). Fifty 
L4s of C. elegans in 20 µl of LB* were added to each well 
to give a final volume of 40 µl. The plate was then placed 
in an incubator (Thermo Fisher Scientific, Waltham, MA, 
USA) at 20 °C for 40 h. At 40 h, the worm (in transition 
from L4s to young adults) activity was captured (over a 
period of 15  min) utilising the WMicroTracker ONE 
unit. Activity counts were then normalised to the positive 
and negative controls using the GraphPad Prism soft-
ware program (v.9.1.0). A compound that reduced worm 
motility by ≥ 70% (relative to the negative control) was 
recorded as a hit compound. The Z′ factor was calculated 
in the same manner as described previously [58].

Haemonchus contortus dose–response assay
The dose–response assay for H. contortus followed a well-
established protocol [38]; it was employed to evaluate the 
potency of hit compounds against this nematode. Test 
compounds were assessed individually for an effect on the 
motility of xL3s (10-point, twofold serial dilution in LB*, 
40–0.16 μM). One compound, monepantel (prepared in 
the same manner as the test compounds), was used as a 
positive control. A solution of LB* was used as a negative 
control. The test and positive-control compounds were 
arrayed in triplicate across individual flat-bottom 96-well 
microplates, with six wells on each plate containing the 
negative control. Three hundred xL3s of H. contortus in 
50 μl of LB* were added to each well to give a final vol-
ume of 100 μl. Plates were then placed in a  CO2 incuba-
tor (10% [v/v]  CO2, 38 °C, > 90% humidity). After 168 h of 
incubation, worm activity was captured using a WMicro-
Tracker ONE unit. Over a period of 15 min, disturbance 

of an infrared beam in individual wells was recorded as 
a worm activity count. Raw activity counts for each well 
were normalised to the negative controls. The compound 
concentrations were  log10-transformed and fitted using a 
variable-slope four-parameter equation, using the ordi-
nary least squares fit model, employing GraphPad Prism 
(v.9.1.0). Larval development was established at 168 h of 
incubation with compound, as described previously [54]. 
The development inhibition and phenotypes of larvae 
were examined microscopically [54]. A one-way analy-
sis of variance (ANOVA) with a Tukey multiple com-
parison test or an unpaired t-test was used to establish 
statistically significant differences in larval motility or 
development.

Caenorhabditis elegans dose–response assay
The dose–response assay for C. elegans followed a well-
established protocol [39] and was employed to evaluate 
the potency of hit compounds against this nematode. 
Test and positive-control compounds as well as negative 
controls were prepared in 96-well microplates (cf. [39]). 
One hundred C. elegans in 50  μl of LB* were added to 
each well to give a final volume of 100 μl. Plates were then 
placed in an incubator at 20 °C for 40 h. At 40 h, worm 
activity was captured using a WMicroTracker ONE unit. 
Raw activity counts for each well were normalised to the 
negative controls. The compound concentrations were 
 log10-transformed and fitted using a variable-slope four-
parameter equation, using the ordinary least squares fit 
model, employing GraphPad Prism (v.9.1.0). A one-way 
ANOVA with a Tukey multiple comparison test or an 
unpaired t-test was used to establish statistically signifi-
cant differences in larval motility.

Assessment of the activity of selected compounds on H. 
contortus adults
The activity of two test compounds was assessed on 
adult female specimens of H. contortus in an established 
assay [59]. The compound was added in triplicate to the 
wells of a 24-well plate (Corning, USA) at a concentra-
tion of 40 μM in 500 μl of RPMI*. Two positive-control 
compounds, monepantel and moxidectin, and a negative 
control containing 1% (v/v) DMSO only were included 
in triplicate on the same plate. Three adult females were 
added to each of the triplicate wells containing either the 
test compound or the controls and placed in a  CO2 incu-
bator (10% [v/v]  CO2, 38 °C, > 90% relative humidity) for 
24 h. A video recording (30 s) of each well was taken at 3 
h, 6 h, 12 h and 24 h during the total incubation period to 
assess the reduction in worm motility, which was scored 
as 3 (‘good’), 2 (‘low’), 1 (‘very low’) or 0 (‘no movement’; 
cf. [59]). For each test or control compound, the motil-
ity scores for each of the triplicate wells were calculated, 
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normalised with reference to the negative control (100% 
motility) and recorded as a percentage. A two-way 
ANOVA with a Tukey multiple comparison test was used 
to establish statistically significant differences in worm 
motility.

Evaluation of the cellular and mitochondrial toxicity using 
HepG2 cells
The cytotoxic and mitotoxic activity of MMV1794206 
on HepG2 human hepatoma cells was evaluated using 
an established protocol [60–63]. The test compounds 
were serially diluted (seven-point, twofold serial dilu-
tion, 40–0.63  µM) in Dulbecco’s modified Eagle 
medium (DMEM; Thermo Fisher Scientific, USA), 
with GlutaMax™ supplemented with 25  mM D-glucose 
(cytotoxicity) or D-galactose (mitotoxicity), 10% heat-
inactivated foetal bovine serum (FBS), 100  IU/ml of 
penicillin, 100  µg/ml of streptomycin and 0.25  µg/ml 
of amphotericin B (denoted as DMEM*). Monepantel 
and moxidectin (prepared in the same manner as the 
test compound) were included as reference compounds. 
Two compounds, doxorubicin (cytotoxic; Sigma-Aldrich, 
USA) and M-666 (mitotoxic; [57]), were used as positive 
controls at a single concentration of 10 µM. A solution of 
DMEM* + 0.25% (v/v) DMSO was used as a negative con-
trol. HepG2 cells were seeded into wells of a 96-well plate 
in 80 µl of DMEM* (at 1 ×  105 cells per well) and allowed 
to adhere for 16  h at 37  °C and 5% (v/v)  CO2 at > 90% 
humidity prior to incubation with individual compounds, 
at a final volume of 100 µl. For the assessment of mito-
chondrial toxicity, cells were starved of serum (DMEM* 
without FBS) for 4  h prior to the incubation with com-
pounds [60, 61]. Following 48 h of incubation with com-
pounds, cell viability was determined by crystal violet 
staining [62]. The absorbance (595  nm) of treated cells 
was normalised using the negative controls (viability: 
100%) to calculate the cell viability. All compounds and 
controls were tested in triplicate. To determine the half-
maximal cytotoxic concentration  (CC50) and half-maxi-
mal mitotoxic concentration  (MC50) values, compound 
concentrations were  log10-transformed, baseline-cor-
rected using a respective positive control (doxorubicin 
or M-666) and fitted using a variable-slope four-param-
eter equation and ordinary least squares fit model using 
GraphPad Prism (v.9.1.0).

Results
A primary screen identifies 16 compounds 
with anthelmintic activity
Sixteen compounds (Table  1; Fig.  1A) were shown to 
significantly inhibit the motility (90  h) and/or devel-
opment (168  h) of exsheathed L3s (xL3s) of H. contor-
tus. MMV1577458, MMV688934, MMV002519 and 

MMV1794206 reduced larval motility by 72–100% 
and development by 100%, and each of these com-
pounds induced an abnormal phenotype (Str or Cur; 
Table  1). Compounds MMV1794214, MMV1577463 
and MMV027339 reduced larval motility by 73–87%, 
but did not inhibit development or induce an abnor-
mal phenotype. Nine compounds (i.e. MMV1577454, 
MMV1633829, MMV1578924, MMV1634081, 
MMV1577467, MMV1633828, MMV672931, 
MMV1633823 and MMV002231) inhibited larval motil-
ity by  < 70% after 90  h, and inhibited development 
by ≥ 90% after 168 h.

Eight of the 16 compounds (Table  1; Fig.  1B) were 
found to have activity against young adults of C. elegans 
(40 h). MMV1577458 and MMV1794206 both inhibited 
motility by 100%, whereas compounds MMV1633828, 
MMV672931, MMV002231, MMV1578924, 
MMV1577454 and MMV1633829 inhibited larval motil-
ity in the range of 85–94%. Throughout the primary 
screens on H. contortus and C. elegans, the Z′-factor 
ranged between 0.76 and 0.92.

Potency and toxicity assessment reveals MMV1794206 
as an anthelmintic candidate
Of the seven compounds that inhibited H. con-
tortus xL3 motility by ≥ 70%, three compounds, 
MMV1577458 (chlorfenapyr), MMV688934 (tolfen-
pyrad) and MMV0002519 (rotenone), had been previ-
ously assessed for motility inhibition on H. contortus 
larvae (cf. [49, 63, 64]). Thus, the remaining four com-
pounds (MMV1794214, MMV1794206, MMV1577463 
and MMV027339) were prioritised for further potency 
assessment on H. contortus larval motility inhibition. 
Following incubation for 90 h (Fig. 2A), MMV1794214 
displayed a half-maximal inhibitory concentration 
 (IC50) of 4.5 ± 1.1  μM (maximum motility inhibition, 
MMI: 70%), whereas compound MMV1794206 had an 
 IC50 of 18 ± 4 μM (MMI: 98%)—both compounds were 
less active than the positive-control compound, monep-
antel (0.33 ± 0.12 μM, MMI: 95%). Of note, compounds 
MMV1577463 and MMV027339 both displayed motil-
ity inhibition  (IC50) > 40 μM. Subsequently, the potency 
of MMV1794214 and MMV1794206 to inhibit larval 
development of H. contortus following 168  h of incu-
bation (Fig. 2B) was assessed. MMV1794214 displayed 
an  IC50 of > 40  μM, whereas compound MMV1794206 
had an  IC50 of 1.2 ± 0.1 μM, compared to that of mone-
pantel, which displayed an  IC50 of 0.26 ± 0.03 μM. Both 
MMV1794214 and MMV1794206 were further evalu-
ated for the inhibition of the motility of adult females 
of H. contortus (at a single concentration of 40  μM; 
Fig. 2C). While MMV1794214 did not markedly reduce 
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Table 1 Results of the primary screen of the Global Health Priority Box and four positive-control compounds (monepantel, 
moxidectin, monepantel/abamectin and M-666) against exsheathed third-stage larvae (xL3s) of Haemonchus contortus and young 
adults of Caenorhabditis elegans 

a Assessed after 90 h of incubation with a single concentration (20 µM) of compound, calculated from two independent assays
b Assessed after 168 h of incubation with a single concentration (20 µM) of compound
c Cur, curved; Str, straight; –, no apparent distinction from wild-type; Coi, coiled
d Assessed after 40 h of incubation with a single concentration (20 µM) of compound, calculated from two independent assays

Compound H. contortus C. elegans

Reduction in larval motility; 
% (SEM)a

Larval development 
inhibition; %b

Abnormal  phenotypeb,c Reduction in young adult 
motility; % (SEM)d

MMV1577458 115 (6) 100 Cur 115 (7)

MMV688934 115 (6) 100 Str 8.28 (16.0)

MMV002519 98.7 (10.7) 100 Str − 10.8 (14.4)

MMV1794214 86.8 (16.8) 0 – 25.6 (0.1)

MMV1577463 82.7 (0.8) 0 – − 6.1 (13.5)

MMV027339 73.6 (15.5) 0 – − 0.9 (16.3)

MMV1794206 72.6 (32.5) 100 Cur 115 (7)

MMV1577454 60.0 (34.9) 100 Str 98.5 (4.1)

MMV1633829 59.8 (3.2) 90 – 98.1 (22.9)

MMV1578924 57.9 (29.8) 90 – 99.3 (7.2)

MMV1634081 57.0 (4.1) 95 Str − 9.8 (2.6)

MMV1577467 51.2 (15.8) 100 Str 21.1 (1.6)

MMV1633828 34.7 (5.1) 100 – 108 (2)

MMV672931 22.0 (16.3) 95 – 104 (12)

MMV1633823 6.98 (35.7) 90 – 68.0 (11.7)

MMV002231 − 27.4 (30.1) 100 Cur 101 (19)

Monepantel 92.2 (5.4) 100 Coi 68.6 (4.4)

Moxidectin 54.7 (13) 100 – 100 (3)

Monepantel/abamectin 107 (5) 100 Coi 92.1 (4.5)

M-666 115 (3) 100 Cur 115 (3)

Fig. 1 Results of the primary screen of the Medicines for Malaria Venture (MMV) Global Health Priority Box (n = 240) against (A) exsheathed 
third-stage larvae (xL3s) of Haemonchus contortus and (B) young adults of Caenorhabditis elegans with reference to four distinct control compounds 
(monepantel, monepantel/abamectin, M-666 and moxidectin) and a negative (LB* + 1% DMSO) control. All test and positive-control compounds 
were tested at 20 μM. Each grey dot represents an individual test compound. Mean ± standard error of the mean (SEM) indicated for positive-control 
compounds (four data points) and negative controls (32 data points for LB* + 1% DMSO). For all screens, the Z′ factor ranged between 0.76 and 0.92
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motility (~ 0%, 0%, 23% and 15% at 3  h, 6  h, 12  h and 
24  h, respectively), MMV1794206 reduced motility 
by ~ 33% (3 h), 89% (6 h), 100% (12 h) and 100% (24 h). 
The monepantel control reduced motility by ~ 0%, 23%, 
66% and 100% at 3 h, 6 h, 12 h and 24 h, respectively.

Eight compounds were found to inhibit C. ele-
gans young adult motility by ≥ 70%, and one of them 
(MMV1794206; Fig. 2D) was prioritised for further val-
idation (the remaining seven were already known nem-
atocides). Following incubation for 40 h, MMV1794206 

exhibited  an  IC50 of 0.22 ± 0.09  μM (MMI: 100%). In 
comparison, the monepantel control displayed an  IC50 
of 0.03 ± 0.01 μM (MMI: 95%).

Given that compound MMV1794206 displayed signif-
icant activity on H. contortus larvae and adult worms as 
well as C. elegans young adults, its toxicity was assessed 
by measuring cell death using crystal violet stain-
ing. This compound was shown to be both cytotoxic 
 (CC50 < 0.7 μM; Fig. 3A) and mitotoxic  (MC50 < 0.7 μM; 
Fig. 3B) against HepG2 (human hepatoma) cells.

Fig. 2 The potency of four active test compounds (MMV1794214, MMV1794206, MMV1577463 and MMV027339) against exsheathed third-stage 
larvae (xL3s) of Haemonchus contortus,  the potency of two active test compounds (MMV1794214 and MMV1794206) on adult females of H. 
contortus, and the potency of one active test compound (MMV1794206) on young adults of Caenorhabditis elegans, with reference to monepantel 
and/or moxidectin (positive controls). Each curve shows (A) the inhibition of H. contortus larval motility at 90 h, (B) the inhibition of H. contortus 
larval development at 7 days, (C) the in vitro motility inhibition (%) of H. contortus adult females over a period of 24 h (motility scores assessed 
at 3-, 6-, 12- and 24 h time points; cf. Taki et al. [59]) and (D) the reduction of C. elegans motility at 40 h. Data points represent either one (C) or three 
(A, B and D) experiments conducted in triplicate; the mean ± standard deviation (SD, C) or standard error the mean (SEM, A, B and D). Statistical 
significance was evaluated with reference to a negative control (C); **** denotes P ≤ 0.0001
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Discussion
The screening of the Global Health Priority Box, a collec-
tion of 240 molecules with activity against drug-resistant 
malaria, neglected tropical diseases or vector species, 
revealed and/or reidentified several compounds with 
in vitro activity on H. contortus and/or C. elegans.

Compounds with previously identified activity on H. 
contortus—chlorfenapyr (MMV1577458) [64], tolfen-
pyrad (MMV688934) [49] and rotenone (MMV0002519) 
[63]—were all reidentified as hit compounds in this study. 
Two compounds—MMV1577463 and MMV027339—
were initially identified as hits (83 and 72% motility 
reduction, respectively), but upon further potency evalu-
ation were found to display  IC50 values (against H. contor-
tus) of > 40 μM. Of note, two compounds, MMV1794214 
and MMV1794206, were confirmed as inhibitors of H. 
contortus larval motility  (IC50 values of 4.5 and 18  μM, 
respectively), with MMV1794206 also showing a sig-
nificant reduction of larval development and motility of 
adult females of H. contortus in vitro. Although mone-
pantel was more potent at reducing larval motility and 
development, compound MMV1794206 inhibited the 
motility of adult females (100% at 12 h) before monepan-
tel did (66% and 100% at 12 and 24 h, respectively).

Of the eight compounds identified as hits based on 
motility reduction in C. elegans, seven—i.e. chlorfenapyr 
(MMV1577458), moxidectin (MMV1633828), ivermec-
tin (MMV672931), selamectin (MMV002231), milbe-
mectin (a mixture of milbemycin  A3 and milbemycin 
 A4; MMV1578924), abamectin (MMV1577454) and 
eprinomectin (MMV1633829)—had been investigated 
previously for antiparasitic activity and/or are com-
mercially available nematocides. Ivermectin, selamec-
tin, abamectin and eprinomectin are all well-known 
macrocyclic lactones belonging to the chemical family 
of avermectins [65]; moxidectin and milbemectin are 
milbemycin macrocyclic lactones [66]. One compound, 
MMV1794206, was also identified as a hit against C. ele-
gans, and validated as a potent motility inhibitor with an 
 IC50 of ~ 0.22 μM, compared with 0.03 μM for monepan-
tel. However, MMV1794206 was shown to be toxic to a 
human cell line (HepG2 cells), suggesting likely adverse 
effects in mammals administered with this compound.

The potent effect of MMV1794206—herein referred to 
as ‘flufenerim’—against most of the developmental stages 
of H. contortus (see [67]), and the activity on the related 
free-living worm C. elegans, indicates that this compound 
is a potential candidate for nematocide development—
however, the demonstrated cell toxicity to HepG2 cells 
presents a barrier for future development. Structurally, 
flufenerim (Fig.  4)—a 4-aminopyrimidine derivative—is 
primed for a diverse range of structural alterations via a 
concise synthetic route [68]. Thus, a structure–activity 
relationship investigation of flufenerim would be both 
feasible and cost-effective, but would need to focus on 

Fig. 3 Toxicity assessment of MMV1794206, monepantel and moxidectin on human hepatoma (HepG2) cells, with reference to two positive 
controls, doxorubicin (Dox; cytotoxic) and M-666 (mitotoxic). For each compound, the (A) half-maximal cytotoxic concentration  (CC50) and (B) 
half-maximal mitotoxic concentration  (MC50) were established via a cell viability assay after 48 h of incubation. Crystal violet staining was used 
to measure the absorbance (595 nm) of treated cells, which was negative- (blank) and baseline- (100% cell viability) corrected. Data points represent 
triplicates and are presented as a mean ± standard deviation (SD)

Fig. 4 The chemical structure of MMV1794206 (flufenerim)
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both the optimisation of anthelmintic activity and the 
elimination of toxicity to mammalian cells, a significant 
challenge.

Flufenerim has been previously developed as a pesti-
cide against agricultural pests, including aphids (Aphis 
medicaginis and Myzus persicae), a fungus (Pseudop-
eronospora cubensis), moths (Mythimna separata and 
Spodoptera littoralis) and whiteflies (Bemisia tabaci) [68–
70]. The mode of action of flufenerim is unclear. Ghanim 
et  al. [69] showed a decrease in acetylcholine esterase 
(AChE) activity in whiteflies (in vitro and in vivo) follow-
ing treatment with flufenerim, but it was not confirmed 
whether this was a result of a direct or indirect effect; Liu 
et al. [68] reported a similar decrease in AChE activity in 
aphids. Notably, one drug, naphthalophos (an organo-
phosphate), which inhibits nematode AChE activity was 
commercially available (in Australia) for use in livestock 
(as an anthelmintic). Although relatively rare, resistance 
to naphthalophos in parasitic worms has been reported 
[71, 72], yet the use of organophosphates is unwarranted 
due to a relatively narrow safety margin [73]. In contrast, 
although the Insecticide Resistance Action Committee 
(IRAC) has not assigned flufenerim’s mode of action, 
another structurally related acaricide, pyrimidifen, is 
classified as a mitochondrial complex I electron trans-
port inhibitor (METI) [74]. The conserved 5-chloropy-
rimidin-4-amine motif does suggest that pyrimidifen 
and flufenerim share a similar mode of action, namely, as 
METIs. Several METI insecticides have been previously 
identified to display anthelmintic activity—notably, the 
pyrazole compounds tebufenpyrad and tolfenpyrad [75], 
and the rotenoid compound, rotenone [64]. In addition, 
a preliminary study [75] suggested that tolfenpyrad may 
indeed disrupt or interrupt mitochondrial function in H. 
contortus. However, tolfenpyrad was further shown to 
inhibit respiration in rat hepatoma (FAO cell line) cells, 
with the level of inhibition of oxygen consumption in 
FAO cells being positively correlated with compound-
induced murine toxicity [76]. Tolfenpyrad had also been 
previously developed and commercialised as an acaricide 
ear-tag (for use in cattle;  Tolfenpro®), but was recalled 
due to ocular inflammation associated with treatment 
[77]. Thus, in the case of tolfenpyrad and other METI 
parasiticides, concerns of mammalian toxicity associated 
with drug treatment have prevented their development. 
Indeed, given the high toxicity associated with flufen-
erim, it will be critical for future compound optimisation 
and lead development efforts to include rigorous toxicity 
testing.

If flufenerim were to achieve anthelmintic action via 
AChE inhibition, mitochondrial interruption and/or 
another yet unknown pathway, significant laboratory-
based target identification and validation experiments 

would need to be conducted. Importantly, a significant 
delineation in structure between the nematode and 
mammalian protein target(s) would be critical in achiev-
ing selectivity for the parasite. Anthelmintic target iden-
tification and validation (in parasitic species and the 
free-living C. elegans; cf. [45]) has been achieved via 
competition assays [78–81], electrophysiological stud-
ies [82, 83], resistance studies [18, 84–87] and, more 
recently, RNA interference (RNAi) (e.g., [88]). Recent 
technological advances have also paved the way for mass 
spectrometry-based investigations of protein–drug inter-
actions (reviewed by [47, 48]). Methods such as thermal 
proteome profiling (TPP) have been utilised to identify 
protein targets for several therapeutics [89–94]—impor-
tantly, this method has been used to uncover candidate 
drug targets of novel nematocides in H. contortus (see 
[95]). Such an approach could also be applied to flufen-
erim, possibly identifying the drug–protein interactions 
in this and related nematodes, and providing insight into 
the anthelmintic mode of action of this candidate.

Conclusion
To address the global socioeconomic impacts of wide-
spread drug resistance in parasitic nematodes of live-
stock animals, new anthelmintics with novel modes of 
action are needed. Using two model nematodes, H. con-
tortus and C. elegans, we screened a small collection of 
chemical entities, the Global Health Priority Box, for 
nematocidal and nematostatic activity. We identified one 
compound, MMV1794206 (flufenerim), which displayed 
in  vitro anthelmintic activity against key developmental 
stages of the parasitic worm H. contortus, and also inhib-
ited the motility of the related, free-living worm C. ele-
gans. However, MMV1794206 was also shown to be toxic 
to a mammalian cell line (HepG2). Future work should 
focus on the identification and validation of flufenerim–
nematode protein interactions and on undertaking a 
structure–activity relationship investigation to both opti-
mise anthelmintic activity and eliminate mammalian cell 
toxicity.
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