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Abstract 

Background Accurately determining the age and survival probabilities of adult mosquitoes is crucial for understand-
ing parasite transmission, evaluating the effectiveness of control interventions and assessing disease risk in commu-
nities. This study was aimed at demonstrating the rapid identification of epidemiologically relevant age categories 
of Anopheles funestus, a major Afro-tropical malaria vector, through the innovative combination of infrared spectros-
copy and machine learning, instead of the cumbersome practice of dissecting mosquito ovaries to estimate age 
based on parity status.

Methods Anopheles funestus larvae were collected in rural south-eastern Tanzania and reared in an insectary. 
Emerging adult females were sorted by age (1–16 days old) and preserved using silica gel. Polymerase chain reaction 
(PCR) confirmation was conducted using DNA extracted from mosquito legs to verify the presence of An. funestus 
and to eliminate undesired mosquitoes. Mid-infrared spectra were obtained by scanning the heads and thoraces 
of the mosquitoes using an attenuated total reflection–Fourier transform infrared (ATR–FT-IR) spectrometer. The 
spectra (N = 2084) were divided into two epidemiologically relevant age groups: 1–9 days (young, non-infectious) 
and 10–16 days (old, potentially infectious). The dimensionality of the spectra was reduced using principal com-
ponent analysis, and then a set of machine learning and multi-layer perceptron (MLP) models were trained using 
the spectra to predict the mosquito age categories.

Results The best-performing model, XGBoost, achieved overall accuracy of 87%, with classification accuracy of 89% 
for young and 84% for old An. funestus. When the most important spectral features influencing the model perfor-
mance were selected to train a new model, the overall accuracy increased slightly to 89%. The MLP model, utilizing 
the significant spectral features, achieved higher classification accuracy of 95% and 94% for the young and old An. 
funestus, respectively. After dimensionality reduction, the MLP achieved 93% accuracy for both age categories.

Conclusions This study shows how machine learning can quickly classify epidemiologically relevant age groups 
of An. funestus based on their mid-infrared spectra. Having been previously applied to An. gambiae, An. arabiensis 
and An. coluzzii, this demonstration on An. funestus underscores the potential of this low-cost, reagent-free technique 
for widespread use on all the major Afro-tropical malaria vectors. Future research should demonstrate how such 
machine-derived age classifications in field-collected mosquitoes correlate with malaria in human populations.
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Background
Despite significant investments in malaria control 
and research, there were still an estimated 249 mil-
lion malaria cases and 619,000 deaths in 2021 globally, 
a significant majority of which occurred in sub-Saharan 
Africa [1]. Other than the poor economic conditions 
and weak health systems, the continued high burden of 
malaria in Africa is attributable to key biological threats, 
notably malaria parasite resistance to drugs [2–4], vector 
resistance to insecticides [5, 6], increasing occurrence of 
malaria parasites evading detection by rapid diagnostic 
tests [7–11], and disruptions from major disease out-
breaks such as Ebola and COVID-19 [12–14]. Effective 
vector control, primarily with insecticide-treated nets 
(ITNs) and indoor residual spraying (IRS), has been the 
most important component of malaria control in Africa 
[15]. However, its continued effectiveness requires active 
innovation to address the current threats, and improved 
understanding of the major vector species in different 
settings.

Anopheles funestus is one of the four main malaria vec-
tor species in sub-Saharan Africa, the others being An. 
gambiae, An. arabiensis and An. coluzzii, and it is also 
one of the most widespread [16–19]. Anopheles funestus 
is particularly important in East and Southern Africa, 
where it is becoming the dominant malaria vector. For 
example, in parts of Tanzania, An. funestus is reported 
to be responsible for 86–97% of all new malaria infec-
tions [17, 20–22]. Its dominance is due to multiple fac-
tors, including (i) being highly anthropophilic, and thus 
preferring to bite humans over other vertebrates [17, 23], 
(ii) being highly endophilic, i.e. preferring to bite inside 
human dwellings rather than outside [24], (iii) having sig-
nificantly higher survival rates than other species [25], 
(iv) being resistant to commonly used insecticides [17, 
18, 26] and (v) preferentially breeding in perennial habi-
tats with year-round productivity [27]. Given its impor-
tance and dominance in malaria transmission systems, 
vector surveillance programs in the respective countries 
should be designed with special attention to this vector 
species.

Besides evaluating biting densities and Plasmo-
dium infection rates, accurately determining the age 
and survival of An. funestus is crucial for monitoring 
transmission dynamics and assessing the effectiveness 
of vector control interventions such as ITNs and IRS. 
Dissection of mosquito ovaries is still the main ento-
mological technique for estimating the age of vector 

populations [28]. The dissections are usually performed 
under light microscopes to assess the reproductive his-
tory, specifically the parity status, of the mosquitoes. 
This involves observing whether the ovaries contain 
coiled tracheolar skeins (indicating non-parous mos-
quitoes) or stretched-out tracheoles (indicating parous 
mosquitoes). Non-parous mosquitoes are considered 
young in this case, whereas parous mosquitoes are con-
sidered old and may carry the malaria parasites, having 
had multiple blood-feedings [28]. Unfortunately, these 
dissections tend to be laborious and time-consuming, 
especially when dissecting large numbers of mosqui-
toes, and are impractical on a large scale.

Furthermore, the reliability of mosquito dissections 
is limited by their reproductive history. For instance, a 
female mosquito can have more than one blood meal 
but still not oviposit, a scenario known as gonotrophic 
discordance or pre-gravid blood meal [29]. Moreover, 
since the gonotrophic cycles of Anopheles mosquitoes 
can be as short as 2–3  days under optimal climatic 
conditions [30, 31], it is possible for parous mosqui-
toes to be relatively young, and in rare cases for nul-
liparous mosquitoes to be several days old due to the 
scarcity of blood meals (e.g. when ITN coverage and 
usage is high). Therefore, using parity alone to distin-
guish between epidemiologically distinct age categories 
of adult mosquitoes, especially in the context of malaria 
transmission, which requires 10–14 days of incubation 
[32], is not always realistic.

All these concerns suggest the need for alterna-
tive age-grading techniques that are easy to perform 
cheaply at scale and can provide accurate representa-
tions of epidemiologically important mosquito age 
categories and populations. The alternative mosquito 
age-grading methods currently include the analysis of 
cuticular hydrocarbon patterns using gas chromatogra-
phy [33] and gene transcription [34–36]. Near-infrared 
spectroscopy (NIRS) (12,500   cm−1 to 4000   cm−1 fre-
quencies) [37], which involves passing infrared light 
through a mosquito sample to measure the absorb-
ance or reflectance of the organic compound functional 
groups, has also been used to estimate ages for various 
mosquito species of both laboratory-reared and wild-
collected mosquitoes [38–44].

More recently, mid-infrared spectroscopy (MIRS) 
has been used to predict and estimate mosquito age, 
recording the biochemical composition of mosquito 
samples at longer wavelength frequencies [45–47]. In 
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addition, machine learning (ML) techniques, includ-
ing convolutional neural networks, have been utilized 
to differentiate MIRS spectra associated with distinct 
mosquito ages and species in both laboratory and 
wild mosquitoes [46, 47]. The infrared-based systems 
have so far been successful for various applications on 
three of the four main African malaria vectors (i.e. An. 
gambiae sensu stricto, An. arabiensis and An. coluzzii 
[46]), but have yet to be demonstrated for An. funestus. 
The goal of this study was therefore to test whether a 
similar ML-MIRS approach could classify adult female 
An. funestus mosquitoes derived from wild-caught lar-
vae into two epidemiologically relevant age categories: 
young (0–9  days old, too young to have mature Plas-
modium sporozoites in their salivary glands) and old 
(10  days or older, potentially carrying mature Plasmo-
dium sporozoites given the right climatic conditions), 
factoring in a parasite incubation period of 10–14 days.

Methods
Mosquito collection
Third and fourth instar mosquito larvae were col-
lected from known aquatic habitats of An. funestus in 
five different villages in south-eastern Tanzania, namely 
Tulizamoyo (8.3669°S, 36.7336°E), Kilisa (8.3721°S, 
36.5584°E), Lupiro (8.38333°S, 36.66667°E), Ikwambi 
(7.9833°S, 36.8184°E) and Ruaha (8.9068°S, 36.7185°E). 
The larvae were transported to the vector biology labo-
ratory (VectorSphere) at the Ifakara Health Institute for 
further rearing. The larvae were kept in water from their 
natural breeding habitats and were fed  TetraMin® fish 
food.

Once they pupated, the pupae were separated from 
the larvae and placed in emergence cages. The emergent 
adult mosquitoes were maintained at 26–28 °C, 70–85% 
relative humidity and a 12:12  h light/dark photoperiod, 
on a 10% sugar solution diet.

Mosquito preservation and scanning
Female adults were collected and individually preserved 
according to their age, from 1 to 16 days old. A total of 
2084 mosquitoes were collected. The female mosquitoes 
were killed using chloroform and subsequently stored in 
separate 1.5-ml microcentrifuge tubes containing silica 
gel for desiccation. The heads and thoraces of the individ-
ual female mosquitoes were scanned using an attenuated 
total reflection–Fourier-transform infrared spectrom-
eter (ATR  FT-IR) to obtain mid-infrared spectra with a 
resolution of 2   cm−1 at 4000–400   cm−1 frequencies as 
described previously, complete with background spectral 
calibration [45, 48, 49]. For each sample, 16 sample scans 
were averaged to obtain the primary output spectrum 
[46].

Mosquito identification
Although the field collections had been performed in 
known An. funestus habitats, it was necessary to con-
firm the identity of the mosquitoes and eliminate any 
unwanted species. This was accomplished primarily by 
morphology-based taxonomy using keys of Afro-tropical 
Anopheles [50] but was complemented by polymerase 
chain reaction (PCR) identification to sort between sib-
ling species in the An. funestus group. Wild An. funes-
tus complex DNA was extracted from the two legs of 
adult female mosquitoes. The two legs of an individual 
An. funestus mosquito were placed separately in 1.5-ml 
microcentrifuge tubes, followed by 20  µl of TE (Tris-
EDTA) buffer, and incubated at 95  °C for 15  min. PCR 
was then used to differentiate An. funestus from other 
sibling species, using species-specific primers targeting 
the non-coding internal transcribed spacer (ITS2) region 
using the protocol described by Koekmoer et al. [51]. The 
PCR reaction was performed in a 25 µl volume, consist-
ing of a PCR mixture of 2.5 µl 10× reaction buffer, 25 mM 
 MgCl2, 10 pmol/µl of each primer, 8 mM of each dNTP, 
5 units of thermostable Taq DNA polymerase and 3  µl 
of DNA template. The PCR products were analysed by 
electrophoresis in 2.5% agarose gel stained with classic 
view DNA dye for visualization of DNA bands. Only An. 
funestus mosquitoes were considered for further analysis, 
and any other species were discarded.

Machine learning
Mosquito spectra with low intensity, abnormal back-
ground or atmospheric interferences (with water vapor 
and carbon dioxide) were discarded [45]. The data from 
the remaining spectra (N = 2084) were processed and 
analysed in Python 3.9 using scikit-learn [52] and Tensor-
Flow 2.0 [53, 54]. The data were rescaled using the Stand-
ardScaler algorithm, with a mean of 0 and a standard 
deviation of 1.

Using the StratifiedShuffleSplit algorithm, the data-
set was split into training (n = 1875) and test/unseen 
(n = 209) sets. To train the supervised ML models, An. 
funestus ages were used as training labels. Anopheles 
funestus, ranging from 1 to 16 days old, were divided into 
two epidemiologically relevant age categories, taking into 
consideration the incubation period of malaria parasites 
of 10–14  days [32]. The first group included An. funes-
tus that were between 1 and 9  days old and were con-
sidered young and incapable of transmitting malaria (i.e. 
non-infectious age group). The second group included 
An. funestus that were between 10 and 16  days old and 
were considered old enough to be capable of transmitting 
malaria given the right environmental conditions (i.e. 
potentially infectious).
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Multiple standard ML classifiers, including k-nearest 
neighbours (KNN), logistic regression (LR), support vec-
tor machine (SVM), random forest (RF) and extreme gra-
dient boosting (XGBoost), were compared to determine 
which model predicted the data with the highest classi-
fication accuracy. The best-performing model was fur-
ther optimized by fine-tuning its hyperparameters. The 
top 100 spectral features (wavenumbers) with the most 
influence on the model predictions were identified and 
utilized to reduce the dimensionality of the spectra data, 
followed by retraining of the best ML classifier.

Moreover, two multi-layer perceptron (MLP) models 
were trained by reducing the dimensionality of the spec-
tra data using different inputs: (1) the top 100 features 
extracted from the best-performing ML classifier, and (2) 
principal components using the scikit-learn library. Both 
MLP models had six fully connected layers, each con-
taining 500 neurons, to enable the model to learn from 
the network’s weights, as demonstrated previously [47]. 
To prevent overfitting, a dropout layer with a rate of 0.5 
was used, and early stopping was implemented when the 
validation loss could no longer improve after 400 itera-
tions [55, 56]. The model performance was evaluated 
using k-fold cross-validation (k = 5) to ensure an unbi-
ased assessment of the standard ML and MLP models, as 
described previously [37].

To assess the ability of the optimized models to iden-
tify all positive instances and avoid false negatives, the 
recall score (i.e. sensitivity or true positive rate) was esti-
mated as the ratio of correctly age-classified An. funestus 
to the total number of An. funestus in the respective age 
category in the dataset. Moreover, to measure the ability 
of the models to avoid false positives, the precision score 
(i.e. the positive predictive value) was estimated as the 
ratio of correctly age-classified An. funestus to the total 

number of predicted positive instances of the respec-
tive age categories. Lastly, we calculated the F1 score, 
which balances both precision and recall scores by giv-
ing equal weight to both measures. This score provides 
a single value that represents the overall performance of 
the model in terms of its ability to correctly classify posi-
tive and negative cases. A higher F1 score signifies better 
model performance, where a maximum value of 1 repre-
sents flawless precision and recall.

Results
Predicting An. funestus age classes using standard ML 
models
In the initial comparison of standard ML models, 
XGBoost emerged as the best classifier with the high-
est prediction accuracy and lowest standard deviation, 
achieving 84% accuracy (Fig.  1A). After optimizing 
the parameters, the XGBoost model was able to clas-
sify spectra that were previously unseen with an overall 
accuracy of 87%. It achieved accuracy of 89% and 84% for 
young (1–9 days old) and old (10–16 days old) An. funes-
tus females, respectively (Fig.  1B). The recall scores (i.e. 
sensitivity or true positive rates) of this model were 0.89 
and 0.84 for the young and old mosquitoes, respectively, 
while its precision scores (i.e. the positive predictive 
value) were 0.87 for both age categories (Table 1). 

From the initial XGBoost model, we identified the 
spectral features that were most important for the pre-
diction. This analysis aimed to reduce the number of 
training features and enhance the accuracy of the model 
during retraining (Fig. 2A). When the XGBoost classifier 
was retrained with the top 100 features, the classification 
accuracy increased to 89%, correctly predicting young 
and old An. funestus females with 92% and 85% accuracy, 
respectively (Fig. 2B).

Fig. 1 Machine learning prediction of An. funestus age classes. A Comparison of standard ML classifiers in predicting An. funestus age classes; KNN 
k-nearest neighbours, LR logistic regression, SVM support vector machine, RF random forest, XGBoost gradient boosting, MLP multilayer perceptron. 
B Confusion matrix for predicting the age class of An. funestus using XGBoost on an unseen dataset, results for the ML trained with all spectral 
features
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Prediction of An. funestus age classes using MLP models
We explored the possibility of improving the accuracy 
by training the MLP classifier using the important wave-
numbers (n = 100) identified in the XGBoost predictions. 
As a result, the MLP achieved an improved accuracy of 
94.5% in the unseen test data (Fig. 3A), correctly distin-
guishing between young and old An. funestus females 
with accuracy of 95% and 94%, respectively (Fig. 3B).

Lastly, in a previous study, we presented evidence that 
employing principal component analysis (PCA) with eight 
components effectively reduces the dimensionality of the 
spectral data [47]. This reduction in dimensionality not 
only preserved a substantial portion of the data variability 
but also mitigated overfitting while enhancing the signal-
to-noise ratio. By utilizing a reduced set of features, we 
trained the MLP model to improve its predictive perfor-
mance [47]. In the present study, when PCA was utilized 
to reduce the dimensionality of the spectra data, the MLP 
classifier achieved an overall accuracy of 93% for both 
young and old An. funestus mosquitoes (Fig. 3C).

Table 1 Precision, recall and F1 score of XGBoost and multi-layer 
perceptron (MLP) models for predicting age categories of An. 
funestus 

XGBoost 1: Trained with all MIRS wavenumbers (n = 1665), XGBoost 2: Trained 
with spectral features extracted based on feature importance summaries 
(n = 100), MLP 1: Trained with spectral features extracted based on feature 
importance summaries (n = 100), MLP 2: Trained with principal component 
analysis (PCA) as a dimensionality reduction technique

Model Age classes (days) Precision Recall F1-score No. of 
test 
samples

XGBoost 1 1–9 0.87 0.89 0.88 113

10–16 0.87 0.84 0.86 96

XGBoost 2 1–9 0.88 0.92 0.90 113

10–16 0.90 0.85 0.88 96

MLP 1 1–9 0.95 0.95 0.95 113

10–16 0.94 0.94 0.94 96

MLP 2 1–9 0.94 0.93 0.93 113

10–16 0.92 0.93 0.92 96

Fig. 2 A Relative importance of XGBoost features that have the most influence in predicting the age classes of An. funestus. B Confusion matrix 
for predicting the age class of An. funestus using XGBoost on an unseen dataset; the results for the ML retrained with important features/
wavenumbers (n = 100) identified by the initial XGBoost model

Fig. 3 A MLP training and validation accuracy for An. funestus age classes as training time increases (epoch; number of iterations over the entire 
dataset during the training process, i.e. seconds/iterations). Confusion matrix for predicting the age class of An. funestus. B The results for the MLP 
trained with important features/wavenumbers (n = 100) identified by XGBoost. C The results for the MLP method trained with eight principal 
components
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Discussion
Anopheles funestus mosquitoes are currently the major 
vector of malaria transmission in Tanzania, accounting 
for over 80% of malaria transmission [17, 20–22]. Anoph-
eles funestus tends to have better survival rates [25], and 
is generally a slow-growing mosquito, which adds to the 
challenge of studying its demographic characteristics and 
how these might influence pathogen transmission. Here, 
we present a rapid age-grading technique that has the 
potential to replace traditional methods such as ovarian 
dissections, which are time-consuming and challenging 
to apply on a large scale. Using 2084 spectral data points, 
we trained ML models that classify the epidemiologically 
relevant age groups of An. funestus mosquitoes reared 
from wild larvae using water from the same habitats, 
but under laboratory conditions. The models correctly 
distinguished between the young An. funestus females 
(1–9 days old) and the older ones (10–16 days old) based 
on the MIR spectra indicative of the varying biochemi-
cal composition of the mosquito cuticles [57]. While this 
was the first demonstration of the effectiveness of this 
technique for predicting the age of An. funestus mosqui-
toes, the approach of combining infrared spectra and ML 
models has been widely demonstrated for predicting dif-
ferent indicators, including age, blood meals, infection 
status and insecticide resistance profiles of other Anoph-
eles species [46–48]. If validated on field-collected adults, 
these findings could be a step towards wider applications 
of this approach for malaria vector surveillance in set-
tings with different vector species.

In settings such as rural south-eastern Tanzania where 
An. funestus is the dominant malaria vector [17, 20], it is 
particularly important that vector surveillance programs 
are expanded to include this vector species. Indeed, the 
successful demonstration of this technique on An. funes-
tus, which is one of the most efficient and also most wide-
spread malaria vectors in Africa [58], expands the utility 
range of this technique for a much broader application 
for malaria vector surveys in different parts of Africa.

One of the key concerns regarding previous applica-
tions of MIRS-ML-based approaches for entomological 
assessments is that, with the exception of some cases 
[46], these methods have been rarely validated for wild-
caught malaria vectors in field settings. Here, An. funes-
tus mosquitoes were collected as larvae from various 
villages and breeding habitats, to account for genetic 
variation, variation in larval food sources and microbi-
ome, and to maintain some characteristics of the natu-
ral ecosystems. The success of this analysis and the high 
accuracy obtained may therefore be indicative of the 
potential of the approach for predicting key mosquito 
attributes in field settings. However, it is unknown 
whether specific climatic factors could influence 

the prediction and generalizability of the MIRS-ML 
approach. Future studies should therefore test the gen-
eralizability of this approach across different popula-
tions of wild mosquitoes.

This study classified mosquitoes only as young 
(1–9  days old) or old (10–16  days old) and did not 
attempt to classify them at specific chronological ages 
because the sample size was not large enough to test it. 
However, the chosen age classes represent the typical 
epidemiological distinction relevant to the transmission 
of malaria parasites, which, under standard climatic con-
ditions, requires a vector to be at least 10 days old [32]. 
However, it may fail to capture variations in MIR spec-
tra or the small biochemical changes that occur within a 
mosquito cuticle after each ageing day (such as chrono-
logical age from 1 up to 16) [45]. Moreover, it has been 
demonstrated that calibrating ML models based on phys-
iological age (which considers key life cycle processes 
such as blood-feeding and oviposition) may be more use-
ful than simply relying on chronological age classifica-
tions [38, 59]. In our study, mosquitoes were all sugar-fed, 
and therefore physiological age was not assessed. Future 
efforts should assess key differences in these approaches 
and evaluate models trained on biological age and chron-
ological age to determine which ones are most practical 
and most generalizable. An obvious next step is therefore 
to investigate any correlations that might exist between 
the machine-classified age categories and the epidemiol-
ogy of malaria in human populations.

To improve the classification accuracy of our model, 
the XGBoost feature importance was relied upon to 
reduce the number of spectral features from 1665 to 100. 
This dimensionality reduction significantly lowered the 
noise and redundant features in the MIR spectra data. 
The important features were mostly associated with pro-
teins, with the most influential peak (1700   cm−1) being 
the band associated with the amide bond from proteins. 
The region around 3000   cm−1, which is also related to 
proteins, was also found to be important in the model 
prediction. This implies that the model is learning from 
protein-based biological traits that vary depending on the 
age of the mosquito [46]. Moreover, when PCA was used 
to reduce the dimensionality of the spectra from 1665 
features to eight principal components [47], the predic-
tion accuracy matched that of the MLP model trained 
with the top 100 biological features as identified from the 
XGBoost model. This suggests that ML models may per-
form better when trained with fewer features that explain 
more variation in the data, rather than many redundant 
features that introduce noise into the model. Moreover, 
as observed previously, reducing the dimensionality of 
the spectra data reduces the computational resources 
needed to train ML models [47].



Page 7 of 9Mwanga et al. Parasites & Vectors          (2024) 17:143  

Future research should investigate the effects of rearing 
wild An. funestus larvae in the insectary on the predictive 
accuracy of the MIRS-ML approach for mosquito age-
classification, as this could impact the generalizability of 
the findings.

Conclusions
This study demonstrates the classification of adult female 
An. funestus into distinct and epidemiologically relevant 
age categories using a MIRS-ML approach. In conjunc-
tion with prior research conducted on other Anopheles 
mosquitoes, this study suggests that the applicability of 
this approach can be extended to evaluate various ento-
mological attributes in An. funestus. The MIRS-ML 
approach proves to be quick and cost-effective, and has 
the potential to significantly enhance An. funestus sur-
veillance efforts, thereby contributing valuable insights 
to national malaria control programs, particularly in 
resource-constrained settings where this vector is highly 
prevalent. Nonetheless, further research is needed to 
validate the MIRS-ML approach in field conditions, 
using adult An. funestus populations and other vector 
species within malaria-endemic communities, and to 
examine how the machine-classified age categories corre-
late with the epidemiological strata of malaria in human 
populations.
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