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Abstract 

Background Swimmer’s itch, an allergic contact dermatitis caused by avian and mammalian blood flukes, is a para-
sitic infection affecting people worldwide. In particular, avian blood flukes of the genus Trichobilharzia are infamous 
for their role in swimmer’s itch cases. These parasites infect waterfowl as a final host, but incidental infections by cer-
cariae in humans are frequently reported. Upon accidental infections of humans, parasite larvae will be recognized 
by the immune system and destroyed, leading to painful itchy skin lesions. However, one species, Trichobilharzia 
regenti, can escape this response in experimental animals and reach the spinal cord, causing neuroinflammation. In 
the last few decades, there has been an increase in case reports across Europe, making it an emerging zoonosis.

Methods Following a reported case of swimmer’s itch in Kampenhout in 2022 (Belgium), the transmission site con-
sisting of a private pond and an adjacent creek was investigated through a malacological and parasitological survey.

Results Six snail species were collected, including the widespread Ampullaceana balthica, a well-known interme-
diate host for Trichobilharzia parasites. Shedding experiments followed by DNA barcoding revealed a single snail 
specimen to be infected with T. regenti, a new species record for Belgium and by extension the Benelux. Moreover, it 
is the most compelling case to date of the link between this neurotropic parasite and cercarial dermatitis. Additionally, 
an Echinostomatidae sp. and Notocotylus sp. were isolated from two other specimens of A. balthica. However, the lack 
of reference DNA sequences for these groups in the online repositories prevented genus- and species-level identifica-
tion, respectively.

Conclusions The presence of T. regenti in Belgium might have severe clinical implications and its finding highlights 
the need for increased vigilance and diagnostic awareness among medical professionals. The lack of species-level 
identification of the other two parasite species showcases the barcoding void for trematodes. Overall, these findings 
demonstrate the need for a Belgian framework to rapidly detect and monitor zoonotic outbreaks of trematode para-
sites within the One Health context.
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Background
Cercarial dermatitis, or swimmer’s itch, is caused by 
mammalian and avian schistosomes (Trematoda: Schis-
tosomatidae) [1]. The most important schistosome spe-
cies belong to the genus Schistosoma, affecting more than 
200 million people worldwide, with the largest burden in 
Sub-Saharan Africa [2]. Nevertheless, cercarial dermatitis 
outbreaks across the world are rarely attributed to Schis-
tosoma spp. [3]. Instead, outbreaks in temperate climate 
regions, such as the USA or Europe, are usually attrib-
uted to species belonging to the closely related Trichobil-
harzia genus [3]. This genus is one of seven genera of bird 
schistosomes described in Europe, which mostly para-
sitize ducks, geese, or swans [4, 5].

Bird schistosomes of the genus Trichobilharzia are 
ubiquitous trematode flatworms that infect pulmonate 
freshwater snails as intermediate host and waterfowl as 
final hosts (Fig.  1). Radix spp. and Lymnaea stagnalis 
Linnaeus, 1758 are most frequently reported as suitable 
intermediate snail hosts for Trichobilharzia species, yet 
a plethora of other snails have been described to trans-
mit avian schistosomes [3, 4]. The many snail hosts, some 
with a high abundance and wide distribution, contribute 

to the near-global geographic range of bird schisto-
somes [1]. Adult Trichobilharzia parasites inhabit either 
the visceral venous system or nasal tissue of waterfowl, 
depending on the species. Firstly, visceral species such as 
Trichobilharzia szidati Neuhaus, 1952 and T. franki Mül-
ler & Kimmig, 1994 are located in the intestinal and other 
veins and produce eggs that enter the freshwater environ-
ment through feces. Upon contact with fresh water, these 
eggs hatch into miracidia and start swimming to localize 
a suitable snail host. Secondly, adults of the nasal spe-
cies, such as Trichobilharzia regenti Horák, Kolářová & 
Dvořák, 1998 are located in the nasal veins and lay eggs 
that hatch into miracidia in the nasal tissue, which can 
leave the final host in search of an intermediate snail host 
when it feeds or drinks. Upon snail infection, the mira-
cidia will further develop and reproduce asexually, after 
which the cercarial stage will leave the snail. Hundreds 
to thousands of cercariae are released on a daily basis [6, 
7], which in turn infect the final bird host, where they 
can develop into adults and start egg production. How-
ever, when encountering a human, the cercariae attach to 
the skin and preferentially attempt to penetrate through 
wrinkles or hair follicles [1]. Cercarial dermatitis arises 

Fig. 1 The Trichobilharzia spp. lifecycle. The lifecycle usually involves pulmonate freshwater snails as intermediate hosts and waterfowl as final 
hosts. Human infections occur when cercariae incidentally penetrate human skin during water-bound activities, potentially causing swimmer’s itch. 
*The eggs of nasal Trichobilharzia, such as Trichobilharzia regenti, already hatch into miracidia in the nasal tissue of the final host, leaving the nasal 
cavity while the host drinks or feeds (dotted line). This is in contrast to the lifecycle of visceral Trichobilharzia, whereby miracidia emerge from eggs 
following contact with water. Created with BioRender.com
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due to an immune response that worsens with repeated 
exposure, effectively blocking further migration into 
the human body [1, 8]. However, upon first exposure of 
immunocompetent or in primary and challenge infec-
tions in immunodeficient murine model systems, some 
schistosomula survive and manage to migrate further 
in the body [9, 10]. The inability to stop these parasites 
from migrating throughout the mouse’s body is especially 
impactful for the neurotropic T. regenti, whereby 10% of 
the infecting larvae may reach the peripheral nervous 
system [9, 10].

Swimmer’s itch is considered an emerging cosmo-
politan condition affecting human health and leading to 
economic losses due to the closing of recreational areas 
[4, 11, 12]. Soldánová et  al. [4] review a broad range of 
ecological factors that can drastically affect swimmer’s 
itch incidence. Increased nutrient concentrations boost 
snail abundance, snail growth, and bird visits, and con-
sequently increase the trematode parasite biomass. In 
addition, higher temperatures, such as summer heat-
waves, are often linked to cercarial dermatitis outbreaks, 
as swimming time, parasite development, and cercarial 
emergence all increase. Coinfections may also affect 
swimmer’s itch incidence as intramolluscan competition 
can drive trematode community composition [4, 13, 14].

The genus Trichobilharzia consists of more than 35 
species [15], and two have been linked to outbreaks of 
cercarial dermatitis across Europe: the visceral T.  szi-
dati and T.  franki [8, 16–18]. Five additional Trichobil-
harzia species have been identified as potential agents of 
cercarial dermatitis in Europe: T. physellae Talbot, 1936 
[19], T.  mergi Kolářová, Skírnisson, Ferté, and Jouet, 
2013 [20], T.  anseri Jouet, Kolářová, Patrelle, Ferté, and 
Skírnisson, 2015 [21], T.  salmanticensis Simon-Vicente 
and Simon-Martin, 1999 [22], and T.  regenti [23]. The 
first scientifically recorded outbreak of swimmer’s itch in 
Belgium occurred in 2012 and was attributed to T. franki 
infections [16]. The present study focuses on a private 
pond located in central Belgium following complaints 
of extremely painful and itchy skin lesions after swim-
ming on the weekend of 17 June 2022. We set out to (1) 
map snail and trematode diversity within the respective 
water systems and (2) ascertain the possible cause of the 
reported swimmer’s itch.

Methods
Snail collection
Snails were collected on 29  June 2022, 11 days after the 
onset of swimmer’s itch symptoms, from two sites in 
the Flemish part of Belgium (pond coordinates: Lat.: 
50.932121, Long.: 4.567706; creek coordinates: Lat.: 
50.931657, Long.: 4.567487; Fig. 2) using a scooping net 
and protective gloves. The sampling was restricted to the 

margins of the pond due to the steep bottom inclination: 
up to two meters from the water’s edge. The content of 
the scooping net, aquatic vegetation, and any substrate 
were inspected for the presence of freshwater snails. Cap-
tured snails were transported alive in containers with 
water from the sites of origin to the Royal Museum for 
Central Africa (RMCA) in Tervuren (Belgium) for fur-
ther analyses.

Shedding experiment
Upon arrival at RMCA, all snails were sorted per mor-
photype and per site and placed individually in multi-
well cell culture plates with water from the site of origin. 
A subset of the Lymnaea stagnalis specimens had to 
be pooled in a larger container due to their large size 
and high abundance. Each well was inspected 1-h post-
isolation at 4  pm to ascertain afternoon cercarial shed-
ding. If only one cercaria was found, we attributed it to 
contamination of the source water, but none were found. 
The snails were then kept in the dark at room tempera-
ture until the next day. In the early morning, all plates 
were visually inspected with a stereo microscope to ver-
ify whether nocturnal shedding had taken place. Subse-
quently, bright artificial light exposure started at 7  am 
and blinds were opened to allow natural light to illumi-
nate the room further. All wells were inspected at 8 am, 
10 am, and 12 pm for cercariae. All snails were sacrificed 
at 12  pm. Released cercariae were stored in a separate 
tube with 70% ethanol for optimal preservation. All shed-
ding snails were further stored individually, while unin-
fected snails were pooled per morphotype per site. All 
samples were stored in 70% ethanol at + 4 °C until further 
processing.

Morphological identification of snails and larval 
trematodes (cercariae)
Snails were morphologically identified on the basis of 
external shell characteristics using the Field Guide to 
Slugs and Mussels [24]. Isolated cercariae were morpho-
logically classified to cercarial type level on the basis of 
the identification guide of Frandsen and Christensen [25].

Digitalization
Following the methodology described in Brecko et  al. 
[26], high-resolution photographs were captured for all 
snail morphotypes using the ZereneR stacker software 
(T2019-10-07-1410) in a focus stacking system. Subse-
quently, the resulting images underwent post-process-
ing in Adobe Acrobat Photoshop (version 23.1.1). This 
involved several modifications, such as eliminating the 
support structure on which the snail was mounted, merg-
ing the forward and reverse orientations into a single 
image, and including an appropriate scale bar.
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Cercariae isolated from each snail were poured into 
a watch glass with 70% ethanol and visually inspected 
with a stereomicroscope for different morphotypes. 
Four specimens per morphotype per snail were iso-
lated for DNA extraction, one of which was first placed 
on a microscope glass in sterile milli-Q water with a 
cover glass. The BMS camera (model no.: XFCAM-
1080PHD) and associated BMS_pix3 software (version 
3.7.8942.20170412) were then used to photograph each 
specimen at all focal depths while manually adjust-
ing the specimen’s position. The resulting images were 
stacked with the ZereneR stacker software and post-
edited with Adobe Acrobat Photoshop (version 23.1.1) 

for the removal of background noise and the addition 
of an appropriate scale bar.

DNA extraction and Sanger sequencing
DNA was extracted from the internal organs of the snails 
(excluding the head and foot) with the E.Z.N.A. Mol-
lusc DNA Kit (OMEGA bio-tek, Inc.), according to the 
manufacturer’s guidelines and following Schols et  al. 
[27], with an elution volume of two times 75 µl. DNA was 
extracted from the entire individual cercaria using a lysis 
buffer containing proteinase K following the methodol-
ogy outlined in Zietara et al. [28], resulting in a final vol-
ume of 20 µl. The remaining soft tissue parts (head and 

Fig. 2 Sampling area in Kampenhout (Flemish Brabant province; Belgium). The dots indicate the location of Kampenhout within Belgium, as well 
as the creek and pond sites on the second inset. The top right and bottom right pictures illustrate the creek and pond site, respectively
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foot) of the snail specimens together with their respective 
shells and dried DNA extracts were stored at the Royal 
Belgian Institute of Natural Sciences (collection codes: 
RBINS:IG34767:INV311000).

Two snail and three trematode  genetic markers were 
amplified using specific primer combinations. Part of 
the mitochondrial cytochrome c oxidase subunit I (COI) 
[29] for all snails, and of the rDNA region spanning the 
Internal Transcribed Spacer 2 (ITS2) marker for the 
Stagnicola snails [30, 31], were targeted for species iden-
tification using the primer combinations as displayed in 
Additional file 1: Tables S1, S2. Trematode-specific prim-
ers were used for the amplification of partial regions of 
the COI [32, 33], the 18S ribosomal RNA (18S) [32, 34], 
and the Internal Transcribed Spacer 2 (ITS2) [33] (Addi-
tional file 1: Tables S1, S2).

All amplifications, except for the ITS2 in Stagni-
cola snails, were performed in 20 µL reaction mixtures, 
including 2  µL of DNA template, 2  µL of 10X buffer, 
1.5  mM  MgCl2, 0.2  mM dNTP, 0.4  µM of each primer, 
and 0.03 units/µL of  Platinum™ Taq DNA Polymerase 
(InvitrogenTM, Waltham, MA, USA). The cycling con-
ditions were as displayed in Additional file 1: Tables S1, 
S2. Furthermore, the ITS2 region in Stagnicola sp. speci-
mens was amplified following Schols et  al. [35], using 
the  Qiagen™ Taq DNA polymerase kit and the cycling 
conditions as displayed in Additional file  1: Tables S1, 
S2. Polymerase chain reaction (PCR) products and nega-
tive controls were checked on a 2% agarose gel using a 
UV transilluminator and the  MidoriGreen™ Direct 
(NIPPON Genetics Europe, Dueren, Germany) method. 
Positive amplifications were subsequently purified using 
the ExoSAP-IT™ protocol (following manufacturer’s 
instructions) and sequenced in both directions using 
the  BigDye® chemistry (Macrogen™).

Analyses
Assembled bidirectional nucleotide strands were 
trimmed, corrected, and translated into amino acids to 
check for stop codons (if coding region) using Geneious 
 Prime® 2019.2.3 (Biomatters Ltd., Auckland, New Zea-
land). A consensus sequence was generated for each 
DNA sequence and each specimen. Subsequently, con-
sensus sequences were compared using the BOLD Iden-
tification System, with the Species Level Barcode Records 
option (www. bolds ystems. org), and the Basic Local 
Alignment Search Tool (BLAST) of GenBank (https:// 
blast. ncbi. nlm. nih. gov/ Blast. cgi).

Results
From the 159 snail specimens collected across the sam-
pling area, six different snail species were identified: 
Gyraulus albus O. F. Müller, 1774; Planorbarius corneus 

Linnaeus, 1758; Physella acuta (Draparnaud, 1805); Lym-
naea stagnalis, Ampullaceana balthica (Linnaeus, 1758); 
and Stagnicola fuscus Pfeiffer, 1821 (Fig.  3). The latter 
species was only retrieved from the creek site, together 
with P.  corneus. The other four species occurred in the 
main pond (Table 1).

All morphological snail species identifications were 
validated using COI barcodes, except for S.  fuscus, for 
which the investigation of the ITS2 marker was necessary 
to discriminate pure S.  fuscus from S.  fuscus × S. palus-
tris hybrids [31] (GenBank pairwise identity ranges dis-
played in Table  1). ITS2 sequencing was attempted on 
both COI-barcoded Stagnicola specimens, one of which 
was eventually of sufficient quality for identification. This 
Stagnicola specimen was identified as pure S.  fuscus on 
the basis of the ITS2 marker. All generated snail-specific 
sequences were deposited on GenBank, with accession 
numbers: COI: PP203049- PP203072; ITS2: PP203073.

Three specimens of A. balthica released cercariae dur-
ing the shedding experiment, each one of them releas-
ing one unique cercarial morphotype (Fig.  4). Details 
on the BLAST results are listed for all three markers in 
Table  2. Cercariae of the specimen V_RAD_4 were of 
the brevifurcate-apharyngeate distome type; the DNA 
sequences (18S, ITS, and COI) were 99.9–100% iden-
tical to GenBank reference sequences of Trichobil-
harzia regenti from the Czech Republic [ITS: 99.9% 
(OX235267); 18S: 100% (AY157218)] and France [COI: 
100% (HM439500)] (Fig.  4A, Table  2). Snail specimen 
V_RAD_1 showed an infection with monostome type 
cercariae identified as Notocotylus sp. Diesing, 1839 on 
the basis of all three DNA markers (Fig.  4B, Table  2). 
For V_RAD_3, echinostome type cercariae were col-
lected. The genetic identification results were ambigu-
ous as the nuclear markers 18S and the ITS region seem 
to indicate either an Echinoparyphium recurvatum (von 
Linstow, 1873) Lühe, 1909 or an Echinostoma revolutum 
(Fröhlich, 1802) Looss, 1899 infection, while the COI 
sequence had the highest pairwise identity of 87.8% with 
Echinoparyphium sp., which dropped to 82% for Echi-
nostoma revolutum (Table 2). Consequentially, the iden-
tification of this species can only be ascertained to the 
family level, being the Echinostomatidae (Looss, 1899) 
(Fig.  4C, Table  2). All generated trematode sequences 
were deposited in GenBank, with accession numbers: 
COI: PP232100- PP232102; ITS: PP274989- PP274991; 
18S: PP232103- PP232105.

Discussion
This study reports on the first record of Trichobilharzia 
regenti in Belgium, while also investigating the local pul-
monate freshwater snail and trematode biodiversity in 
two bodies of water located in Kampenhout (Belgium). 

http://www.boldsystems.org
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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All but one snail species collected in this study are native 
to Belgium. Physella acuta is an invasive snail originat-
ing from North America that has been reported in Bel-
gium since 1869 [36]. It is a globally invasive species 

with records ranging from Argentina and South Africa 
to Australia and the Netherlands [37]. No larval trema-
todes were released from this snail species, which is con-
sistent with the enemy-release hypothesis that describes 

Fig. 3 Different snail species collected at the pond and creek sites in Kampenhout (Flemish Brabant province; Belgium). A Gyraulus albus, B 
Planorbarius corneus, C Physella acuta, D Ampullaceana balthica, E Lymnaea stagnalis, and F Stagnicola fuscus. Scale bar represents 5 mm in each 
picture
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Table 1 Snail species and counts for both sampling sites, as well as the GenBank pairwise identity ranges expressed in percentages 
based on the COI sequences, with an exception for Stagnicola fuscus, for which ITS2 was also used

The number of snails releasing cercariae is listed in between parentheses

Snail species Pond site (N) Creek site (N) Sequenced specimens (N) GenBank pairwise identity (accession numbers)

Ampullaceana balthica 11 (3) 0 11 COI: 100–99.8% (MW801451, KP242705)

Lymnaea stagnalis 108 0 4 COI: 100% (ON653340)

Stagnicola fuscus 0 3 2 (COI); 1 (ITS2) ITS2: 100% (HG931948)

Physella acuta 30 0 2 COI: 100% (OW485645, LC582932)

Planorbarius corneus 2 4 4 COI: 100–99.4% (MT862415, AY227370)

Gyraulus albus 1 0 1 COI: 99.4% (KC495835)

Fig. 4 High-resolution pictures of cercariae released by three Ampullaceana balthica specimens during the shedding experiment. A Trichobilharzia 
regenti, B Notocotylus sp., and C Echinostomatidae sp.

Table 2 Cercariae trematode identification results based on the investigation of the nuclear (18S rDNA and ITS region) and 
mitochondrial (COI) DNA sequences

The table presents the amplicon length (bp), BLAST pairwise identity (%), and best match together with the GenBank accession number per sample and per sequence. 
The last column reports the resulting identification on the basis of the compilation of all BLAST outputs

Trematode sample 18S rDNA ITS region COI mtDNA Species identification 
conclusion

V_RAD_1 1043 bp—100% (AJ287547)—
Notocotylus sp.

1240 bp—97.7% (JQ766940)—
Notocotylus malhamensis

419 bp—99.5% (MH369327)—
Notocotylus sp.

Notocotylus sp. (Fig. 4B)

V_RAD_3 1050 bp—100% (OP627676)—
Echinostoma revolutum

950 bp—100% (OP627676)—
Echinostoma revolutum / 100% 
(AY168931)—Echinoparyphium 
recurvatum

890 bp—87.8% (MH369225)—
Echinoparyphium sp. (82% 
(OR030109)—Echinostoma 
revolutum)

Echinostomatidae sp. (Fig. 4C)

V_RAD_4 1040 bp—100% (AY157218)—
Trichobilharzia regenti

1070 bp—99.9% (OX235267)—
Trichobilharzia regenti

800 bp—100% (HM439500)—
Trichobilharzia regenti

Trichobilharzia regenti (Fig. 4A)
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the observation that many exotic species have a lower 
parasite load outside their native range [37]. In con-
trast, cercariae of three trematode species were released 
from the native A. balthica. The trematode species of the 
family Echinostomatidae infect its final vertebrate  host 
through trophic interactions, i.e., when infected second-
ary intermediate hosts such as snails, fish, or amphib-
ians are consumed by the final host. It has been linked to 
human infections in Africa, Asia, and Europe, although 
most case reports stem from Asia due to the routine 
consumption of raw fish [38]. The second species we 
encountered, Notocotylus sp., belongs to the monostome 
type cercariae, which rapidly encyst to form metacer-
cariae on nearby substrates [39]. The exact lifecycle of 
most Notocotylus sp. is not fully known but final avian 
or rodent hosts become infected upon ingestion of these 
metacercariae during foraging [39]. Finally, the third 
trematode species was identified as T. regenti. At present, 
T. regenti is the second Trichobilharzia species reported 
in Belgium, after the swimmer’s itch outbreak caused by 
T.  franki in 2012 in the Plate Taille Lake (approximately 
90 km south of our sampling location) [16].

Trichobilharzia regenti has already been described 
from snails and birds in several European countries (See 
[11, 23, 40–46]), and has been suggested as a potential 
cause of swimmer’s itch. However, until now, T.  regenti 
always co-occurred with other agents of swimmer’s itch 
in the studied transmission sites. As a result, it was dif-
ficult to determine which of the Trichobilharzia species 
was responsible for the reported dermatitis. Since we 
only found T. regenti in our study, it more strongly sup-
ports T.  regenti as a causative agent of swimmer’s itch. 
Trichobilharzia regenti may potentially be the most dan-
gerous cause of swimmer’s itch in Europe, especially for 
immunocompromised people [10, 47]. As one of the 
nasal avian schistosomes, T.  regenti feeds on nervous 
tissue while migrating through the central nervous sys-
tem, frequently causing leg paralysis in avian and murine 
models [48, 49]. Experimental infections in mice show 
that  the immune response in the skin can halt 90% of 
the schistosomula, but the remaining 10% can reach the 
spinal cord [9, 50]. Thus far no human neuropathogenic 
cases linked to T.  regenti infections have been reported, 
but a better understanding among medical professionals 
about this possibility is desirable [47].

Improved public awareness and a centralized contact 
point to report such cases could aid in the identifica-
tion of transmission sites. Suspected transmission areas 
could then be investigated through targeted malacologi-
cal and parasitological surveys. The use of an integrative 
taxonomic approach would lead to improved resolution 
at the species level [51] and thus more precise diagno-
sis and possibly also better control measures [52]. At the 

same time, this integrative taxonomic approach would 
map biodiversity and feed the incomplete reference 
sequence database of trematodes, a grossly neglected 
group in barcoding databases [53–55]. Given the paucity 
of information for trematodes, it is not surprising that 
our results showcase the troublesome barcoding efforts 
for Belgian representatives, especially since there is little 
to no monitoring of trematode diversity in the country. 
Such a barcoding gap is problematic as it inhibits fast 
and accurate epidemiological studies due to incomplete 
disease transmission patterns [53]. To do so, a parasite’s 
lifecycle should be fully known, linking intermediate snail 
hosts to final hosts, a piece of the puzzle still lacking for 
several Trichobilharzia species [3, 55]. Since cercarial 
traits frequently do not provide taxonomic information 
beyond the family level, molecular tools are imperative to 
identify both the snail intermediate host and the parasite 
infecting them [3, 55]. Ideally, this includes the study of 
adult parasites from the final bird species. Natural history 
collections could provide a more sustainable alternative, 
although curated helminth samples have frequently been 
stored in formaldehyde, a medium complicating DNA 
sequencing [27, 56, 57]. There are also protocols and 
even commercial kits for environmental DNA detection 
of Trichobilharzia spp. in water bodies [58–61], which 
could complement or replace the rather time-consuming 
malacological and parasitological surveys.

Historic and current reports underline the effect of 
human environmental changes on trematodiasis out-
breaks [27, 62–65]. We argue that the sudden appear-
ance of T.  regenti in the study area may be attributable 
to global change and local environmental change. Global 
change affects snail–trematode interactions [66], bird 
migration patterns [67], the introduction of invasive 
species [68], and snail ranges [69], all potentially influ-
encing swimmer’s itch epidemiology. As thoroughly dis-
cussed by Soldánová et al. [4] and Mas-Coma et al. [12], 
climate change can drive the emergence and severity of 
trematode transmission foci since increased water tem-
peratures result in increased parasite development and 
cercarial emergence while also increasing human water 
contact frequency and duration. Water contact intensity 
has already been linked to increased cercarial dermatitis 
incidence in the Netherlands [58] and beyond, including 
the USA [70] and Switzerland [71].

Conclusions
With the projected future temperature increase, swim-
mer’s itch incidence will most likely also continue to 
increase [3, 4, 11, 12, 72]. We suggest that an improved 
patient reporting system combined with transmission site 
localization and monitoring efforts, such as in the Neth-
erlands [36, 73] and Canada [74], will prove invaluable 
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assets to prepare for potential snail-borne parasite out-
breaks in Belgium.
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