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Abstract 

Background  Malaria is one of the most devastating tropical diseases, resulting in loss of lives each year, especially 
in children under the age of 5 years. Malaria burden, related deaths and stall in the progress against malaria transmis-
sion is evident, particularly in countries that have moderate or high malaria transmission. Hence, mitigating malaria 
spread requires information on the distribution of vectors and the drivers of insecticide resistance (IR). However, 
owing to the impracticality in establishing the critical need for real-world information at every location, modelling 
provides an informed best guess for such information. Therefore, this review examines the various methodologies 
used to model spatial, temporal and spatio-temporal patterns of IR within populations of malaria vectors, incorporat-
ing pest-biology parameters, adopted ecological principles, and the associated modelling challenges.

Methods  The review focused on the period ending March 2023 without imposing restrictions on the initial year 
of publication, and included articles sourced from PubMed, Web of Science, and Scopus. It was also limited to publi-
cations that deal with modelling of IR distribution across spatial and temporal dimensions and excluded articles solely 
focusing on insecticide susceptibility tests or articles not published in English. After rigorous selection, 33 articles met 
the review’s elibility criteria and were subjected to full-text screening.

Results  Results show the popularity of Bayesian geostatistical approaches, and logistic and static models, with lim-
ited adoption of dynamic modelling approaches for spatial and temporal IR modelling. Furthermore, our review 
identifies the availability of surveillance data and scarcity of comprehensive information on the potential drivers of IR 
as major impediments to developing holistic models of IR evolution.

Conclusions  The review notes that incorporating pest-biology parameters, and ecological principles into IR models, 
in tandem with fundamental ecological concepts, potentially offers crucial insights into the evolution of IR. The results 
extend our knowledge of IR models that provide potentially accurate results, which can be translated into policy 
recommendations to combat the challenge of IR in malaria control.
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Background
Global malaria cases have gradually increased, with 
records showing an estimated rise of 232, 247, 245 
and 261  million cases in 2019, 2020, 2021 and 2022, 
respectively [1, 2]. Despite the different control strategies 
for malaria prevention, the estimated number of deaths 
in the same period were 568,000, 619,000, 625,000 and 
710,000 in 2019, 2020, 2021 and 2022, respectively [1, 
2]. Moreover, trends reveal a stall in the progress against 
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malaria transmission in countries that have moderate or 
high malaria transmission, due to intrinsic obstacles [e.g. 
insecticide resistance (IR)] encountered while using the 
available malaria control tools and strategies [3, 4].

In Africa, National Malaria Control Programmes 
(NMCPs) have developed strategic plans on the basis of 
World Health Organization (WHO) recommendations, 
which guide the control and prevention of malaria 
transmission. The strategic plans involve a combination of 
clinical treatment of the disease with vector surveillance 
and control, most often using insecticides [5, 6]. However, 
resistance to these chemical interventions is now 
widespread in vector populations, and in particular the 
anopheline species, which transmit the malaria parasite 
[6]. For example, a numbers of studies (e.g. [3,  4,  6,  7]) 
have reported IR to the commonly used insecticide 
classes (pyrethroids, carbamates, organophosphates and 
organochlorine) in most African countries. Typically, 
resistant mosquitoes survive the exposure to standard 
doses of the insecticides used in indoor residual house 
spraying (IRS) and long-lasting insecticidal nets (LLINs), 
hence threatening the success of the fight against malaria 
transmission [8,  9]. There are four major underlying 
mechanisms of IR that have been widely documented, 
namely, target-site mutation, metabolic, behavioural and 
cuticular (penetration) resistance [10–12].

Target-site resistance is caused by mutations at the site 
of action of an insecticide, thereby reducing or preventing 
the insecticide binding affinity [3, 6, 13, 14]. Conversely, 
metabolic resistance entails increased detoxification 
of insecticides by the vector through overexpression 
or conformational changes of the enzymes that can 
metabolize, sequester and excrete the insecticide [4, 15]. 
Behavioural resistance involves any modification in 
the insect’s behaviour that helps it to avoid exposure 
to insecticides. In malaria vectors, this is commonly 
observed as a change in biting patterns, for example, 
biting earlier and outdoors, thus avoiding any LLINs or 
IRS [4, 16]. Cuticular resistance is seen when the insect’s 
cuticle thickens, reducing uptake of insecticide by 
limiting or preventing the absorption or penetration of 
insecticide [3, 4].

Monitoring IR within malaria vector populations 
requires comprehensive surveillance to determine where 
it is emerging, to what degree and how it is spreading in 
space and time [11]. Extensive, albeit spatially restricted, 
studies have been carried out to establish the emergence 
and dissemination of IR in contemporary African malaria 
vector populations and its impact on the efficacy of 
control strategies adopted [17,  18]. However, given 
the impracticality of establishing this critically needed 
information at every location, there is a growing reliance 
on modelling to make predictions in situations in which 

data are absent or limited. In addition, several countries 
have established longitudinal monitoring in sentinel sites, 
enabling detection of temporal changes in the prevalence 
of resistance [19]. With increasing need to establish the 
trend of IR, Hancock et al. [11] point out the increasing 
necessity of analysing the spatial–temporal variation of 
IR across multiple countries.

It is therefore imperative to conduct a review of 
the modelling techniques employed thus far, explore 
avenues to bolster models’ robustness and address 
the challenges encountered. Additionally, attaining a 
comprehensive grasp of the drivers that contribute to the 
dissemination of IR among malaria vectors across spatial 
and temporal dimensions is of paramount importance. 
This understanding is critical, as IR driving factors 
significantly contribute to the establishment of a robust 
foundation for the resultant model [11]. Anchored on 
the inception and propagation of IR, it is imperative to 
consider the role played by ecological processes and 
principles. These elements serve as orchestrators of 
crucial cellular processes, physiological activities, insect 
movements and the intricate mechanisms governing 
metabolic detoxification [20,  21]. The balance between 
heat utilization and storage by the insects based on 
internal and external environmental conditions, such as 
temperature, is a potential influencer of insects’ responses 
to stressors [22]. Consequentially, the heightened 
production of enzymes to detoxify insecticides leads to 
depletion of heat reserves in mosquitoes [23].

Given the interrelation of heat and temperature with 
IR among malaria vectors, ecological principles such 
as thermodynamics assume a potentially crucial role 
in modelling IR. Specifically, the second principle of 
thermodynamics, which posits that processes involving 
the transfer or conversion of energy are inherently 
irreversible and tend to result in increased disorder 
(entropy), becomes particularly relevant. It is important 
to note that entropy in the universe is perpetually non-
negative, a fundamental concept that could hold valuable 
insights for understanding and modelling IR dynamics 
[24]. Moreover, the migration of resistant vectors to new 
areas holds the potential to significantly contribute to the 
propagation of IR [25]. Such dissemination signifies an 
irreversible flow, consequently leading to an escalation 
in entropy. Although literature hints at a conceivable 
connection between thermodynamic principles and the 
occurrence/spread of IR, it remains unclear whether such 
considerations are factored into existing models.

Hence, this paper presents a review of the existing 
studies aimed at establishing the distribution patterns of 
IR within field vector populations. This review explored 
the modelling methodologies employed to elucidate the 
spatial and temporal occurrence and propagation of IR 
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in field vector populations. Specifically, we addressed the 
following research inquiries:

1.	 Which modelling techniques are commonly 
employed to elucidate the spatial, temporal and spa-
tio-temporal trends of IR in malaria vectors?

2.	 Which IR driving factors are utilized as inputs to 
inform the development of spatial, temporal and spa-
tio-temporal models?

3.	 What are the limitations encountered in utilizing 
IR spatial, temporal and spatio-temporal modelling 
techniques?

4.	 To what extent have ecological principles, including 
thermodynamics, been incorporated into the study 
of insects and their development of IR?

Through these insights, we anticipate that future 
advancements and refinements in modelling techniques 
can be achieved, thus contributing to the overall 
enhancement of our comprehension of IR distribution 
and dynamics.

Methods
Literature search, inclusion and exclusion criteria
To select the articles for review, we followed the 
Preferred Reporting Items for Systematic reviews and 
Meta-Analyses (PRISMA) procedures, which delineate 
different phases of a systematic review that includes 
identification, screening, eligibility and inclusion criteria 
[26]. We conducted literature search in three databases, 
that is, PubMed, Scopus and Web of Science, with the 
search based on various themes, namely: (a) insecticide 
resistance, (b) malaria vectors, (c) modelling and (d) 
ecological principle in IR diffusion and thermodynamics. 
For each theme, we employed specific keywords, 
including “insecticide resistance”, “malaria”, “vector*”, 
“model”, “thermodynamics*”, “ecological principle” and 
“diffusion”. Combining these keywords, we customized 
our search strategy for each database to maximize 
specificity. We did not impose restrictions on the initial 
publication year of the articles, with our search extending 
until March 2023. Table  1 presents a summary of the 
keywords used.

Eligibility criteria
This review was specifically confined to studies that 
addressed spatial, temporal and spatio-temporal 
modelling of IR in malaria vector populations, 
with a particular emphasis on the incorporation of 
thermodynamics, diffusion and ecological principles into 
the models. Therefore, the eligibility criteria involved 
selection of articles that exclusively explored IR in 
malaria vectors, with a specific focus on spatial and 

spatio-temporal IR distribution modelling. We excluded 
articles related to IR tests in malaria vectors and those 
that employed alternative IR modelling approaches 
beyond spatial, temporal and spatio-temporal modelling. 
Additionally, we limited our selection to articles 
published in English. A detailed eligibility criteria is 
presented in Table 2.

Screening and selection of articles
During the search process, the articles were subjected to 
a three-phase screening procedure in accordance with 
the PRISMA flow diagram (see Page et  al. [26]). The 
initial phase involved filtering articles on the basis of 
keywords to identify those relevant to our study. In the 
second phase, we manually screened the selected articles 
by reviewing their titles and abstracts, eliminating those 
that did not meet the eligibility criteria. Subsequently, we 
consolidated articles from each database and conducted a 
comprehensive assessment of the full text for each article 
after removing duplicates.

Risk of bias assessment
We conducted a narrative synthesis of all the articles 
included in the review and presented the results in a 
tabular format. To evaluate biases pertinent to our review, 
we followed the guidelines outlined in the Systematic 
Review Centre for Laboratory Animal Experimentation 
(SYRCLE) guide [27].

Results
Search results
In the databases chosen for the study (i.e. PubMed, 
Scopus and Web of Science databases), we initially 
retrieved a total of 1994, 1979 and 1968 articles, 
respectively. After removing duplicate entries and 
conducting a rigorous screening process, we identified 18 
articles that met our criteria for full review. Additionally, 
we included four (4) articles identified through citation 
searches for further evaluation. When conducting a 
combined search using all keywords we obtained zero 

Table 1  Keywords used in database searches in systematic 
review

* Asterisk used in a search query

Theme Keywords

Insecticide resistance “insecticide resistance”

Malaria vectors “malaria” AND “vector*”

Modelling “model*”

Thermodynamics “Thermodynamics”

Ecological principle “Ecological principle”

Diffusion “Diffusion”
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results, hence we excluded the term ‘thermodynamics’ 
from the combined search. Subsequently, we conducted 
a separate search specifically for ‘thermodynamics’, 
resulting in the retrieval of five articles. Figure  1 
illustrates the search results.

Summary of the reviewed articles
The summary details of the articles  [10–12, 28, 29, 33, 
45, 52–66]   included in the final review are presented 
in Additional file  1: Table  S1. The articles’ summary 
includes the aim, the methodology adopted and findings 
of the studies (Additional file 2).

Risk of bias assessment
Selection bias, encompassing sequence generation 
and allocation concealment, did not pertain to this 
systematic review. Furthermore, none of the reviewed 
articles included blinding of participants or investigators, 
excluding blinding (performance and detection bias) 
from the review. Additionally, the risk of bias due to 
attrition was not applicable to our review. Importantly, 
reporting risks were consistently low across all 22 
studies, as they diligently adhered to the pre-specified 
methodology in providing detailed and coherent findings.

Equity analysis
Equity analysis showed that the majority (65.97%) of 
the institutions affiliated with the authors were located 
in countries that are not hyperendemic. The remaining 
institutions (34.03%) were situated in hyperendemic 
countries.

Spatial and spatio‑temporal modelling of insecticide 
resistance in mosquito vectors
The reviewed articles used different mapping and 
modelling techniques to elucidate IR trends in malaria 
vectors. These approaches encompassed mapping 
occurrence of IR with techniques such as geographic 
information system (GIS), Bayesian geostatistical models, 
generalized linear models (GLMs) and generalized 

additive models (GAMs). Species distributions models 
were used to map vectors’ distribution but not IR 
in vectors’ population. Notably, none of the studies 
employed dynamic models to investigate the spatio-
temporal distribution of IR in malaria vectors across both 
space and time. In addition, several modelling approaches 
involved splitting the data into training and test sets. This 
process involves training the model with the training sets 
and subsequently evaluating its performance using the 
test set. Figure  2 provides a summary of the modelling 
techniques employed.

Drivers for the models on spatial and spatial–temporal 
trends of insecticide resistance
The studies employed various factors as drivers for 
informing the spatial modelling of IR in malaria vectors. 
These encompassed, among others, climatic, sociological 
and environmental conditions, as well as the extensive 
use of insecticides in both agricultural and public health 
sectors. Some of the reviewed articles also incorporated 
lagged temporal variables, positing their influence on 
IR patterns. Nevertheless, other studies chose not to lag 
temporal variables, suggesting that such lagged variables 
might not significantly impact IR distribution within the 
model. Biological variables were also considered in some 
studies. Notably, very few studies explored the potential 
influence of vector dispersal and thermodynamics on 
the spread of IR across space and time. Table 3 provides 
a summary of the diverse drivers employed in these 
analyses.

Challenges encountered in modelling insecticide 
resistance among vectors
The reviewed articles underscore multiple challenges 
encountered in modelling IR among the vectors. These 
challenges encompass a spectrum of issues, which 
include the scarcity of observations in field populations in 
certain regions and the lack of data on potential drivers. 
A summary of these challenges is provided in Table 4.

Table 2  Eligibility criteria

Inclusion criteria Exclusion criteria

Insecticide resistance Insecticide resistance Only testing for insecticide resistance

Vectors Malaria vectors and their spatial distribution Other vectors

Modelling Spatial and spatio-temporal modelling Modelling techniques not relating to spatial 
and spatio-temporal modelling of IR in malaria 
vectors

Thermodynamics Thermodynamics in the context of insects Thermodynamics in context not related to insects

Ecological principles Diffusion process Diffusion process related to insecticide resistance

Language English Other languages
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Fig. 1  PRISMA flow chart of the search phases and the number of records retrieved
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Thermodynamics
Following our review, no study investigated the role of 
thermodynamics on IR diffusion over space and time. 
However, a few studies discussed thermodynamics in 
the context of insects, as presented Table 5.

Discussion
This review shows that diverse ranges of field studies 
have focussed on confirming the existence of IR in 
malaria vector populations within specific regions. 
Furthermore, numerous studies have delved into 
susceptibility tests and few on modelling and mapping 
of the spatial distribution of IR among malaria vectors. 
The growing emphasis on mapping and modelling the 
spatial distribution of IR in malaria vector populations 
can be attributed to the escalating demand for effective 
malaria control strategies and the management of IR 
in these vectors [6]. The studies under review have 
employed various methodologies for modelling and 
mapping IR distribution. These approaches encompass 
Bayesian geostatistical models, generalized linear 
models (GLMs)  which generally extends the traditional 
linear regression model  [67], generalized additive 
models (GAMs)  which are extensions of GLMs  [68], 
and geographic information systems (GIS). The outputs 
generated by these models hold considerable significance 
in shaping strategies for IR management and control [11, 
28, 29].

Nevertheless, the resulting models are often static, 
meaning that once these studies formulate the models, 
they tend to use them without subsequent updates. 
Furthermore, there is a noticeable underutilization 
of dynamic modelling approaches in modelling IR 
distribution. Dynamic modelling approaches offer the 
advantage of adaptability, allowing the model to be 
continuously updated as new data become available. 
This is particularly valuable when modelling phenomena 
are characterized by temporal dynamics. Regardless 
of the specific mechanisms involved, whether they 

Fig. 2  Models used to determine IR trends and distribution of malaria vectors. GIS implies geographic information system (GIS)

Table 3  Summary of potential driver of insecticide resistance in 
malaria vector populations

Drivers of insecticide resistance

1 Rainfall

2 Temperature

3 Relative humidity

4 Precipitation

5 Elevation

6 Vegetation index

7 Wind speed and direction

8 Land-use and land-cover

9 Hydrology

10 Solar radiation

11 Surface wetness

12 Minimum surface wetness

13 Non-food crop area

14 Insecticide coverage

15 Processes leading to pesticides’ 
fate in the environment

16 Distance from water bodies

17 Crops and livestock farming

18 Oil spillage

19 Human population distribution

20 Drainage
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are target-site mutations, metabolic modifications, 
behavioural adaptations or changes in the mosquito 
cuticle, they all contribute to the development of IR 
in mosquito populations. This result underscores the 
potential of dynamic modelling as a holistic approach to 
grasp the evolution of IR. Yet our review of the literature 
indicates a significant lack of dynamic modelling 
applications in studies on vectors, despite their proven 

efficacy in predicting the spread of certain insects, such 
as Tuta absoluta, with notable accuracy [30].

Additionally, a notable observation is that various 
models featured in the reviewed articles primarily focus 
on spatial aspects of IR distribution within vectors 
at discrete timepoints, often neglecting temporal 
trends. Many studies employ data-driven modelling 
approaches; hence, the robustness of these models is 

Table 4  Challenges faced in modelling insecticide resistance in space and time

Challenges encountered

(a) Scarcity of data/few observations

 Scarcity and heterogeneous distribution of IR data in some regions

 In another context, few observations resulted in higher precision errors while using Bayesian geostatistical models to model the distribution of vec-
tors in Mali

(b) Challenges in the estimation of various predictor variables

 There were challenges in the estimation of various predictor variables such as quantities of insecticides used in agriculture and where they are used

(c) Causality among the drivers of insecticide resistance

 Establishing causality among the drivers of insecticide resistance in malaria vector populations could be explored further because the variables 
interact. In addition, causal variables used to develop various models may not have been exhaustive, hence use of additional potential insecticide 
resistance drivers may result in more robust models

(d) Lack of standardization in the diagnostic tools

 Estimating insecticide resistance in un-sampled locations is hampered by a lack of standardization in the diagnostic tools used and by a lack of data 
in several regions for both resistance phenotypes and genotypes

Table 5  Thermodynamics and insects activities

Author Aims Summary of the article

[47] To determine how thermodynamics constrains the evolution 
of growth rates of insect population

Population dynamics of insects were altered by the adaptation 
to temperatures. In addition, diverse physiological and biochemical 
adaptations allow ectotherms to survive and reproduce in different 
temperature regimes

[48] To determine the extent to which thermodynamics of biological 
rates constrains the thermal adaptation of developing ectotherms

Using biophysical Sharpe–School field model, the study explained 
the dependence between temperature and body size in ectotherms, 
and predicted the temperature tolerance limits in developing ecto-
therms and patterns of thermal adaptation among and within the spe-
cies. On the basis of the study findings, the enzyme activity–stability 
trade-off is the most important thermodynamic constraint and limits 
the viable development of majority of ectotherms to a relatively small 
thermal tolerance range

[49] To understand the thermal sense of blood-sucking insects and why 
physics matters in such context

The loss of heat by endotherms to the environment happens 
if the environment is colder. Such energy is absorbed by other ecto-
therms, and this can make them increase their temperature, which 
in turn can activate specialized molecular receptors and generate 
a nervous signal. Insects, therefore, need to deal with the two variants 
of thermal information, which are fluctuations of temperature and heat 
exchange

[50] To understand insect thermodynamics The study pointed out that the accuracy of inferences on how organ-
isms respond to thermal perturbations in their environments 
depends on two parameters, namely, the temperature of an organism 
under prevailing microclimatic conditions, and secondly, the organ-
ism’s performance at that temperature

[51] To understand the thermodynamic properties of insect swarms Insect swarms are well represented as van der Waals gases, 
and the possibility of thermodynamic cycling is attributed 
to the swarms consisting of several overlapping sublayers
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heavily contingent on the quality and quantity of the data 
utilized. Nonetheless, a significant challenge encountered 
in the development of models for IR distribution is the 
scarcity of data, particularly in regions where the status 
of IR distribution remains unknown. In this context, 
a comprehensive comprehension of spatial variations, 
temporal patterns and future analyses necessitates 
robust data coverage across both spatial and temporal 
dimensions, ideally including standardized measures of 
IR [31]. The idea presented in Hancock et  al. [11] that 
tackles the challenge of data scarcity involves creating 
models informed by available data, thereby facilitating 
predictions in regions with insufficient IR data.

The IR datasets utilized in the reviewed studies were 
derived from a mix of sources, including primary data 
collection and secondary data from existing databases, 
such as the vector atlas database (https://​vecto​ratlas.​
icipe.​org/) [32]. These databases, vital for providing 
essential IR data, compile their contents from a range 
of sources, including published reports, peer-reviewed 
scientific journals, governmental and non-governmental 
organizations and research institutions. Such data play 
a crucial role in supporting efforts to combat malaria. 
Nonetheless, collecting these data are challenging. 
Furthermore, inconsistencies in data reporting and a 
lack of standardized methodologies present significant 
obstacles to utilizing these data effectively. Additional 
limitations include the absence of bioassay studies or 
surveillance in various locations and the reluctance 
or failure of data holders to share their findings, 
leading to gaps in data availability. This scarcity of 
data, coupled with the challenges of data collection 
and standardization, hampers the comprehensive 
understanding and management of IR.

In exploring alternative strategies in  situations of 
limited data availability, one promising avenue is the 
utilization of mechanistic modelling approaches. These 
approaches hold considerable potential as they do not 
heavily rely on extensive data inputs compared with data-
driven models. Mechanistic models are premised on an 
understanding of the underlying biological, ecological or 
physical processes driving the phenomenon of interest. 
Mechanistic models often involve the development of 
mathematical equations or simulations that capture the 
fundamental mechanisms governing the system. These 
models can provide valuable insights into the dynamics 
of IR, even when there are a scarcity of empirical data. 
By incorporating knowledge about the biology, behaviour 
and genetics of the vector species, as well as the 
mechanisms of insecticide action, mechanistic models 
can help simulate and predict how IR may evolve and 
spread over time. While data-driven models rely heavily 
on available observations, mechanistic models offer 

an advantage in  situations in which empirical data are 
limited or unavailable. They allow researchers to make 
informed predictions on the basis of a fundamental 
understanding of the underlying processes. However, it 
is important to note that mechanistic models require a 
strong theoretical foundation and a thorough grasp of the 
relevant biological and ecological factors, making them a 
valuable tool in addressing data scarcity challenges in IR 
modelling.

The drivers used to inform IR models have an 
implication on the robustness of the resulting models 
[11]. Commonly used drivers of IR include climatic, 
environmental, topographic and biological factors [11, 
28, 33, 34]. In addition, the spatial distribution of malaria 
vectors is highly influenced by human population density, 
irrigated natural/crop landscapes, areas with water 
pools and dense scrublands [35]. The vector occurrence 
and abundance also vary considerably in space and 
time, depending on seasonal conditions, presence of 
interventions, and smaller scale heterogeneity such as 
proximity to productive larval sites. The reviewed articles 
note that the list of drivers may not be exhaustive, and 
therefore inclusion of additional drivers can potentially 
result in a more robust model [11]. Hence, this indicates 
the need to explore additional potential drivers of IR in 
malaria vector populations. In addition, the trend shows 
use of a large number of variables to inform IR models. 
This increases possibilities of collinearity among the 
variables.

In modelling, the process of model validation is crucial 
for ensuring the accuracy, reliability and trustworthiness 
of the outputs [36]. Model validation also serves to 
determine whether a model is overfitting; that is, it 
performs well on the training data but fails to generalize 
effectively to unseen data. In the studies reviewed, the 
use of a test set (unseen data) is a common practice for 
model validation. This approach involves setting aside a 
portion of the data as a test set to evaluate the model’s 
performance after it has been trained on the training set. 
Additionally, other model validation techniques, such 
as cross-validation [11], are utilized. Cross-validation 
is a resampling technique used to evaluate a model’s 
performance on a limited data sample [37]. This method 
involves dividing the data sample into a specified 
number of partitions, denoted by the parameter k, to 
systematically validate the model across different subsets 
of the data. On the basis of the findings of this review, 
it is evident that the existing models for IR in vector 
populations are yet to incorporate the principles of 
thermodynamics and diffusion principles. Nevertheless, 
theoretical advancements have recognized that the 
physiological processes of malaria vectors and other 
ectothermic organisms, including the metabolism of 

https://vectoratlas.icipe.org/
https://vectoratlas.icipe.org/
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insecticides, are profoundly influenced by temperature 
and environmental conditions. Moreover, temperature 
fluctuations play a significant role in determining 
the efficacy of insecticides. Specifically, elevated 
temperatures tend to reduce the effectiveness of 
insecticides, as they accelerate the rate of metabolism 
and alter the underlying biochemical processes [33, 38, 
39].

Energy plays a crucial role in various physiological 
processes within an insect, encompassing movement, 
respiration, immunity and metabolism [40]. Insecticides 
exert their effects by disrupting the energy balance within 
the vectors’ nervous systems, ultimately leading to their 
paralysis and demise. In response, insecticide-resistant 
insects employ various mechanisms, such as enhanced 
detoxification of the insecticide or mutations in the target 
site, which reduce the binding affinity for the insecticide. 
These mechanisms involve energy-intensive processes, 
demanding the insect to expend more energy. This 
highlights the relevance of thermodynamic principles in 
the context of understanding the spread of IR over time 
and space. Another thermodynamic concept pertinent 
to IR is entropy. As the prevalence of resistance alleles in 
populations increases, entropy also rises [41]. Strikingly, 
among the reviewed articles, none have incorporated 
thermodynamic principles into the modelling of 
spatial IR distribution. This underscores the potential 
for further exploration in this area, as the integration 
of thermodynamics could yield valuable insights into 
the dynamics of IR within vector populations. Various 
mathematical expressions and probability distributions 
play a crucial role in estimating principles, including 
those related to thermodynamics. The Boltzmann 
distribution, for instance, is utilized in calculating 
entropy [42]. This distribution can also be applied to 
quantify thermodynamic properties, thereby allowing for 
their integration as a covariate in insecticide resistance 
(IR) models. The integration of thermodynamics into 
modelling has been demonstrated in other contexts, 
notably in describing the relationship between insect 
development and temperature [38, 42–44]. Incorporating 
thermodynamic principles into IR models could enhance 
our understanding of the randomness and disorder 
inherent in the evolution of resistance, potentially leading 
to more accurate predictions and insights into resistance 
mechanisms.

Furthermore, it is noteworthy that a significant gap 
exists in the consideration of migration or dispersal as 
potential drivers influencing the spatial distribution 
of IR in vectors over both space and time. The role of 
migration and dispersal should not be dismissed in this 
context, as the movement of adult mosquitoes has the 
capacity to significantly transform their spatial and 

temporal distribution. Migratory or dispersal events can 
introduce genetic diversity, including resistance alleles 
into previously unaffected regions, impacting the local 
dynamics of IR. Understanding the extent and patterns 
of vector migration and dispersal is crucial, as these 
factors can influence the spread of resistance, particularly 
in areas with varying selective pressures. However, it 
is important to recognize that the incorporation of 
migration and dispersal into models for IR distribution 
is a complex endeavour, requiring data and a nuanced 
understanding of vector behaviour and movement 
patterns. Therefore, this aspect represents a gap for 
further exploration and integration into future research 
efforts aimed at comprehensively modelling IR in vector 
populations [41–45]. Vectors have also been observed 
to disperse for various reasons, including searching 
for food, mates and oviposition and resting sites. These 
dispersal behaviours exert a notable influence on their 
spatial distribution [45, 46].

Another critical issue that is often overlooked when 
developing models to explain the combined spatial 
and temporal evolution of IR is the initial conditions 
in both time and space. In the context of modelling, 
‘initial conditions’ refer to the starting values or states 
of the system under study. These conditions serve as the 
foundation upon which the model begins to simulate 
the dynamic processes over time and across space. The 
importance of accurate initial conditions cannot be 
understated. They significantly influence the trajectory 
and outcomes predicted by the model. Without proper 
initial conditions, the model may not faithfully represent 
the real-world scenario, potentially leading to inaccurate 
or unreliable predictions. For example, when modelling 
IR dynamics in a specific region, it is crucial to know 
the initial prevalence and distribution of resistance 
alleles among the vector population at the beginning of 
the study period. Likewise, the starting environmental 
conditions and selective pressures are equally vital. 
Failure to account for these initial conditions can result 
in models that lack realism and predictive power. 
Therefore, an essential aspect of modelling the spatio-
temporal evolution of IR lies in obtaining accurate and 
representative initial conditions, which often requires 
collecting baseline data and incorporating them into 
the modelling process. By doing so, models can better 
capture the actual dynamics of IR as it unfolds over 
time and space, leading to more reliable and insightful 
predictions.

Conclusions
The reviewed studies have primarily focused on 
“mapping” the spatial trends of IR in malaria vectors to 
gain insights into the spatial and temporal distribution 
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of IR within these vectors. A prevalent observation 
is the predominant use of static models for spatial 
IR modelling, with limited exploration of dynamic 
modelling approaches. Dynamic modelling approaches 
hold significant potential, particularly for capturing the 
temporal dynamics associated with the evolution of IR 
over time, as vectors adapt to the selective pressures 
exerted by insecticides. Additionally, we conclude that 
there is untapped potential to enhance the robustness of 
models employed for spatial and temporal IR modelling 
by incorporating additional IR drivers. Furthermore, 
a notable omission in the reviewed articles is the 
integration of thermodynamic and diffusion principles 
into the modelling framework. This remains an 
unexplored area that holds promise for further 
investigation. In essence, these conclusions underscore 
the need for continued research and innovation in the 
field of spatial and temporal modelling of IR in malaria 
vectors. A more comprehensive and dynamic modelling 
approach, coupled with the inclusion of additional 
drivers and the exploration of thermodynamic 
principles, can contribute to a deeper understanding of 
IR dynamics and lead to more effective strategies for its 
management and control. The practical outcomes of our 
review underscore the essential function of modelling 
in pinpointing locations affected by IR, mapping its 
proliferation and deciphering its evolution over time. 
The insights garnered from these models are pivotal in 
creating a solid base for devising effective intervention 
strategies and formulating recommendations that 
guide decision-making. Therefore, the intelligence 
acquired from modelling efforts plays a critical role 
in shaping actionable recommendations, significantly 
influencing the strategies employed in malaria vector 
control. This underscores the value of modelling not 
just as a theoretical exercise, but also as a practical tool 
with direct implications for public health and policy 
formulation.
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