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High temperatures and low humidity 
promote the occurrence of microsporidians 
(Microsporidia) in mosquitoes (Culicidae)
Artur Trzebny1*, Olena Nahimova1,2 and Miroslawa Dabert1 

Abstract 

Background In the context of climate change, a growing concern is that vector-pathogen or host-parasite inter-
actions may be correlated with climatic factors, especially increasing temperatures. In the present study, we used 
a mosquito-microsporidian model to determine the impact of environmental factors such as temperature, humidity, 
wind and rainfall on the occurrence rates of opportunistic obligate microparasites (Microsporidia) in hosts from a fam-
ily that includes important disease vectors (Culicidae).

Methods In our study, 3000 adult mosquitoes collected from the field over 3 years were analysed. Mosquitoes 
and microsporidia were identified using PCR and sequencing of the hypervariable V5 region of the small subunit ribo-
somal RNA gene and a shortened fragment of the cytochrome c oxidase subunit I gene, respectively.

Results DNA metabarcoding was used to identify nine mosquito species, all of which were hosts of 12 microsporid-
ian species. The prevalence of microsporidian DNA across all mosquito samples was 34.6%. Microsporidian preva-
lence in mosquitoes was more frequent during warm months (> 19 °C; humidity < 65%), as was the co-occurrence 
of two or three microsporidian species in a single host individual. During warm months, microsporidian occurrence 
was noted 1.6-fold more often than during the cold periods. Among the microsporidians found in the mosqui-
toes, five (representing the genera Enterocytospora, Vairimorpha and Microsporidium) were positively correlated 
with an increase in temperature, whereas one (Hazardia sp.) was significantly correlated with a decrease in tempera-
ture. Threefold more microsporidian co-occurrences were recorded in the warm months than in the cold months.

Conclusions These results suggest that the susceptibility of mosquitoes to parasite occurrence is primarily deter-
mined by environmental conditions, such as, for example, temperatures > 19 °C and humidity not exceeding 62%. 
Collectively, our data provide a better understanding of the effects of the environment on microsporidian-mosquito 
interactions.

Keywords Metabarcoding, Next-generation sequencing, Mosquito vectors, Parasitic infections, Global warming, 
Environmental indicators

Background
Mosquitoes (Culicidae) are among the most important 
disease vectors worldwide. Although the exact number of 
mosquito species relevant to human health is unknown, a 
recent extensive literature survey indicated that approxi-
mately 2.5% of the 3578 mosquito species are known 
vectors for 78 human disease-causing agents and that an 
additional 243 species (6.8%) were identified as potential 
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or likely vectors [1]. However, mosquitoes are vulnerable 
to parasitic infections. Microsporidians (Microsporidia) 
are among the most common mosquito parasites, and 
can cause mortality in mosquito larvae and adults [2].

Microsporidia are obligate intracellular eukaryotic par-
asites distributed worldwide that can infect nearly all ani-
mal phyla [3]. Among the 1700 described microsporidian 
species [4], over 250 belonging to 34 genera have been 
reported in mosquitoes [5]. Microsporidian spores, the 
only developmental stage with the ability to survive out-
side the host cell, can be transmitted horizontally, when 
released in faeces or when an infected host dies [6–8], or 
vertically, by infecting the ovaries and associated repro-
ductive structures of the host [9, 10].

Microsporidian parasitism has several effects on indi-
vidual mosquitoes. Infection during the larval phase 
results in impaired larval development and the subse-
quent failure to develop into adult mosquitoes. Infection 
leads to a reduction in the body size of the host and in the 
levels of lipids, glycogen and sugars. In addition, infected 
females are more likely to die and significantly less likely 
to feed. Moreover, these parasites may manipulate both 
the composition of the microbiome and the immune 
response of mosquitoes [11–15].

However, reports on the effects of microsporid-
ians on mosquito-vectored pathogens are limited. More 
effective melanisation and less successful infection by 
Plasmodium (Apicomplexa) observed in microsporid-
ian-infected mosquitoes compared to uninfected ones 
suggests that microsporidians impede the development 
of apicomplexans by priming the immune system of the 
mosquito [16]. A recent study demonstrated that infec-
tion by a microsporidian, designated Microsporidia MB, 
impairs Plasmodium falciparum transmission in Anophe-
les arabiensis [14] by reducing the establishment of Plas-
modium oocysts in the Anopheles midgut and impeding 
the colonisation of mosquito salivary glands by Plasmo-
dium sporozoites. The widespread distribution of Micro-
sporidia MB among Anopheles mosquitoes makes this 
microsporidian an appealing candidate for controlling 
parasite transmission in West Africa [17].

Several factors influence microsporidian infection and 
host cell development [18]. One basic mode of infec-
tion is to penetrate and remain in the host intestine long 
enough to germinate [19]. Additionally, specific protein–
protein interactions between polar tube proteins or spore 
wall proteins and host cell receptors are required for 
microsporidians to invade host intestinal cells [20–22]. 
In addition, the host strain [23–28], developmental stage 
[27, 29–31] and sex [32–34] affect microsporidian infec-
tions and determine the level of host resistance to these 
pathogens. Moreover, it has been shown that tempera-
ture can affect microsporidia growth by influencing the 

number of spores produced as well as increasing micro-
sporidia infection [35–41].

Owing to climate change, concerns are growing that 
mosquito-pathogen interactions may correlate with cli-
matic factors [42, 43]. The importance of temperature in 
understanding mosquito population dynamics has been 
addressed in studies concerning Plasmodium risk in 
malaria mosquitoes [44–48]. Indeed, climatic parameters 
such as temperature, humidity and rainfall significantly 
influence both mosquito life history traits and pathogen 
development within their bodies [49–54]. For example, it 
has been demonstrated that temperature has a significant 
effect on mosquito host-seeking behaviour, development, 
geographic range, survival and competence to transmit 
pathogens [49, 50, 53–57]. There is also evidence that 
humidity affects mosquito dispersal, longevity, egg-lay-
ing and feeding behaviour [58, 59]. Rainfall can alter the 
availability of suitable larval habitats, affecting egg and 
larval viability [60, 61]. Finally, wind also affects mosquito 
dispersal and migration [62, 63].

Little is known regarding the influence of climatic fac-
tors on the prevalence and development of microsporid-
ians in hosts. The results of a recent study and, to the best 
of our knowledge, the only study involving mosquitoes, 
suggest that a gradual decrease in ambient temperature 
postpones the growth and development of Parathelo-
hania iranica (Microsporidia: Amblyosporidae) in the 
affected anopheline larvae [64]. Therefore, the aim of the 
present study was to analyse the impact of environmental 
factors such as temperature, humidity, wind and rainfall 
on the microsporidian occurrence rates of these impor-
tant disease vectors.

Methods
Mosquito sample and meteorological data
The mosquito samples analysed in this study consisted of 
3000 adult individuals, including 1500 females and 1500 
males, collected from June to October 2019, 2020 and 
2021 from the periphery of a mixed hornbeam-oak forest 
surrounding Rusalka Lake, located in the northwestern 
part of the city of Poznan, western Poland (N 52.426389, 
E 16.877778). Mosquitoes were collected using a U.S. 
Centres for Disease Control and Prevention light trap 
(CDC-LT; Centres for Disease Control and Prevention, 
Atlanta, GA, USA) and a human landing catch, and were 
preserved in 80% ethanol at 4 °C until DNA extraction.

Meteorological data were provided by the Institute of 
Meteorology and Water Management, National Research 
Institute, Warszawa, Poland (available at https:// dane. 
imgw. pl). Measurements were performed 2 m above the 
ground. Average monthly temperature, humidity, wind 
speed and rainfall were calculated based on daily meas-
urements (Additional file  1: Tables S1, S2). Notably, 

https://dane.imgw.pl
https://dane.imgw.pl
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during the study period, the humidity decreased as the 
temperature increased (R = −  0.57; p < 0.001). No other 
significant relationships were found between the envi-
ronmental variables. (Additional file  1: Table  S1; Addi-
tional file 1: Fig. S1).

DNA extraction
To detect potential contamination of mosquito surfaces 
with microsporidians, mosquitoes were washed with 96% 
ethyl alcohol that served as a washing extraction. The 
washing solution was then subjected to DNA extraction. 
The washing solution was first filtered through the 0.22-
µm pore MF-Millipore Membrane Filter (Merck KgaA, 
Darmstadt, Germany), following which the filter was cut 
and placed in 180 μl of ATL lysis buffer (Qiagen, Hilden, 
Germany) and incubated with 0.2  mg of Proteinase K 
(Bio Basic Inc., Markham, ON, Canada) for 48 h at 56 °C. 
Next, 100  μl of the lysate was used for DNA extraction 
using the DNeasy Blood & Tissue Kit (Qiagen) according 
to the manufacturer’s protocol for animal tissues.

Mosquito total genomic DNA was extracted using a 
modified ammonium hydroxide method [65]. Each mos-
quito was separately homogenised in 200  μl of 0.7  M 
ammonium hydroxide (POCH S.A., Gliwice, Poland) for 
30 s using a Pellet Cordless Motor instrument (DWK Life 
Sciences, Wertheim, Germany) with disposable micro-
pestles (Scientific Specialties Inc., Lodi, CA, USA). Sam-
ples were incubated for 20 min at 99 °C with shaking, and 
then the tubes were opened and further left under the 
same conditions for approximately 5 min to concentrate 
the lysate to approximately 100 μl. The samples were then 
centrifuged for 5 min at 10,000 rpm, and the supernatant 
was collected. Prior to PCR analysis, the DNA extracts 
were normalised with sterile water to a concentration 
of approximately 10 ng/µl. Negative controls from blank 
DNA extractions and PCR reagents were included in 
each PCR and analysed in the same manner as the mos-
quito sample.

The mini-COI marker, covering approximately 370 bp 
from the 5ʹ end of the cytochrome c oxidase subunit I 
(COX1) gene, was amplified using the primer pair bcdF01 
(CAT TTT CHACT AAY CAT AAR GAT ATT GG) [66] and 
bcdR06 (GGDGGRTAHACA GTY CAHCCNGT) [67] 
tailed at the 5ʹ ends with double indexed adapters (for-
ward tail CCA TCT CAT CCC TGC GTG TCT CCG ACT 
CAG -index-GAT; reverse tail CCT CTC TAT GGG CAG 
TCG GTGAT-index) for sequencing using the Ion Tor-
rent system (Life Technologies, Thermo Fisher Scientific, 
Waltham, MA, USA). PCR amplification was performed 
in a reaction volume of 5  µl containing Hot FIREPol 
DNA Polymerase (Solis BioDyne, Tartu, Estonia), each 
tailed primer at 0.25  µM and 1  µl of template DNA. 
The amplification program was set as follows: 12 min at 

95 °C, followed by 35 cycles of 15 s at 95 °C, 30 s at 50 °C 
and 45 s at 72 °C, with a final extension step at 72 °C for 
5 min.

The hypervariable V5 region, covering approximately 
200 bp of the small subunit ribosomal rRNA gene (SSU 
rDNA), was amplified in two technical replicates using 
the microsporidian-specific primer sets CM-V5F (GAT 
TAG ANACCNNNGTA GTT C) and CM-V5R (TAAN-
CAG CAC AMTCC ACT C) [67]. The PCRs were per-
formed in a total volume of 10 µl containing Hot FIREPol 
DNA Polymerase (Solis BioDyne), each tailed primer at 
0.25  µM, and 1  µL of template DNA. The amplification 
program was set as follows: 12 min at 95 °C, followed by 
35 cycles of 15 s at 95 °C, 30 s at 50 °C and 30 s at 72 °C, 
with a final extension step at 72 °C for 5 min.

Library construction and NGS sequencing
For each PCR, 3 µl of DNA solution was electrophoresed 
in a 2% agarose gel to check amplification efficiency. SSU 
rDNA and mini-COI libraries were prepared separately. 
Next, the amplicons were pooled and purified using a 
2% E-Gel SizeSelect II Agarose Gel System (Invitrogen, 
Thermo Fisher Scientific) according to the manufacturer’s 
protocol. The DNA concentration and fragment length 
distribution of the libraries were determined using a 
High-Sensitivity D1000 Screen Tape assay on a 2200 Tape 
Station system (Agilent Technologies, Inc., Santa Clara, 
CA, USA). Clonal template amplifications were per-
formed using the Ion Torrent One Touch System II and 
Ion Torrent OT2 Kit (Life Technologies, Thermo Fisher 
Scientific) according to the manufacturer’s protocol. For 
emulsion PCR, SSU rDNA and mini-COI libraries were 
pooled in a 10:1 ratio. Sequencing was performed using 
the Ion 540 Kit-OT2 and Ion S5 systems on Ion 540 chips 
(Life Technologies, Thermo Fisher Scientific), accord-
ing to the manufacturer’s instructions. Sequencing was 
designed to yield approximately 10,000 and 1000 reads 
per SSU and COI amplicons, respectively.

Read processing and data analysis
Raw sequencing data were prefiltered using the Ion 
Torrent Suite software version 5.18.1 (Life Technolo-
gies, Thermo Fisher Scientific) to remove polyclonal 
and low-quality sequences. Further bioinformatics 
analysis was conducted using the fastq data. Sequence 
reads shorter than 180 bp were removed from the data-
set using Geneious Prime 2023.1.2 (Biomatters, Inc., 
Boston, MA, USA). The FastX-Toolkit [68] was used to 
extract sequences with a minimum of 50% of bases hav-
ing a quality score ≥ 25. Quality-filtered sequences were 
separated into individual combinations of indices using 
the Geneious Prime software. Next, the sequences were 
trimmed at the 5ʹ and 3ʹ ends to exclude the PCR primers. 
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Sequences were denoised to generate amplicon sequenc-
ing variants (ASVs) using the DADA2 denoise-pyro 
method implemented in QIIME2 version 2023.5 [69, 70]. 
The UNCROSS2 algorithm was used to remove ASVs 
detected in control samples from the dataset [71]. ASVs 
were compared to those in GenBank using the Basic 
Local Alignment Search Tool for Nucleotides (BLASTN) 
[72] (access date: September 2023), optimised for highly 
similar sequences (MegaBlast algorithm) [73]. ASVs were 
compared to GenBank using a 97% identity threshold to 
determine mosquito species and 100% identity to identify 
microsporidian species, as described in previous studies 
[5, 67, 74].

Phylogenetic analyses
To confirm the taxonomic affiliation of the 13 microspo-
ridian rDNA sequences detected in this study, an addi-
tional 78 SSU rDNA sequences representing all known 
microsporidian lineages were used for phylogenetic 
analysis [5, 75]. Sequences were aligned using the L-INS-
i algorithm in MAFFT v. 7.450 [76, 77] as implemented 
using  Geneious  Pro software (Biomatters, Inc.). The 
final alignment consisted of 2888 nucleotide positions. 
The best-fit model of DNA evolution (GTR + I + G) was 
selected using PartitionFinder2  software [78]. Phyloge-
netic trees were constructed using maximum likelihood 
(ML) in  Garli  version 2.0 [79] and Bayesian inference 
(BI) in MrBayes 3.2.6 [80]. Each BI run of the four inde-
pendent chains was performed in 2 × 20,000,000 gen-
erations and trees were sampled every 1000 generations. 
The final consensus tree was generated after discard-
ing a burn-in fraction of 0.25% of the initial trees, and 
the average standard deviation of the split frequencies 
dropped below 0.002. Bootstrap support for the ML tree 
was calculated using 1000 data replicates as implemented 
using  Garli [79]. Trees were edited using  FigTree  1.4.4 
[81] and  CorelDRAW  2021 (Alludo, Ottawa, ON, Can-
ada). Taxonomic names of the microsporidian clades 
were assigned as previously described [75, 82–84].

Statistical analyses
Pearson’s correlation coefficient (r) [85] was calculated 
to determine the correlations between environmental 
factors, such as temperature, humidity, wind and rain-
fall. Spearman’s correlation coefficient (rho [ρ]) [86] was 
calculated to determine correlations between both mos-
quitoes and the same environmental factors. Spearman’s 
and Pearson’s correlation results were visualised using 
Tidyverse v. 1.3.0 [87] and ggplot2 v. 3.35 [88] software 
packages. Comparisons between independent groups 
were conducted using a two-way analysis of variance 
(ANOVA), considering warm/cold months and mosquito 
sex [89, 90]. The ANOVA results were visualised using 

the ggplot2 v. 3.35 package [88]. Indicator species analy-
sis [91] was performed to determine whether microspo-
ridian species were exclusively found during a specific 
season and whether these microsporidian species were 
commonly found in certain treatment groups, as revealed 
by the A and B components of the indicator species anal-
ysis. Indicator species analysis with 9 ×  1010 permutations 
was performed using the multipatt function [91, 92] in 
the indicspecies package version 1.7.9 [91]. McNemar’s 
Chi-squared test [93] was used to assess the relationship 
between mosquito sex, occurrence of microsporidians, 
and microsporidian co-occurrence. An UpSet plot was 
generated using the UpSetR v. 1.4.0 [94] and ggplot2 v. 
3.35 [88] software packages.

Results
Seasonal dynamics of mosquitoes
Using mini-COI data, all mosquitoes were unambigu-
ously assigned to nine species common to Central 
Europe: Aedes vexans (n = 446); Coquillettidia richiar-
dii (221); Culex pipiens (432) and  Cx. territans (27); and 
Ochlerotatus annulipes (718), O. cantans (701), O. com-
munis (107), O. punctor (159) and O. sticticus (199) 
(Fig.  1; Additional file  1: Table  S3). The representative 
sequences are available in GenBank (Additional file  1: 
Table S4).

Ochlerotatus annulipes and O. cantans were most 
abundant (≥ 24%) in months when the average monthly 
temperatures were > 19°C and humidity did not exceed 
62% (Fig.  1; Additional file  1: Tables S3, S5). In addi-
tion, with higher temperature and lower humid-
ity, more individuals of O. annulipes (ρtemp. = 0.83, 
ptemp < 0.001; ρhumid. = — 0.76, phumid = 0.004) and O. 
cantans (ρtemp. = 0.87, ptemp < 0.001; ρhumid. = — 0.84, 
phumid = 0.004) were observed. This relationship was 
observed in both females and males (Additional file  1: 
Table S6).

When the temperature decreased to < 16 °C and 
humidity reached > 70%, the dominant (≥ 38%) spe-
cies was Cx. pipiens (Fig. 1; Additional file 1: Tables S3, 
S5). Thus, its occurrence was correlated with a decrease 
in temperature (ρtemp. = −  0.89, ptemp < 0.001) and an 
increase in humidity (ρhumid. = 0.76, phumid = 0.005) (Addi-
tional file  1: Table  S6). Moreover, similar relations were 
observed among both C. richiardii females (ρtemp. = − 0.8, 
ptemp = 0.001; ρhumid. = 0.72, phumid = 0.009) and Cx. terri-
tans males (ρtemp. = − 0.83, ptemp = 0.002; ρhumid. = 0.7, phu-

mid = 0.01) (Additional file 1: Table S6).
A slightly higher proportion of female and male A. vex-

ans (ρwind. = 0.56, pwind = 0.04; ρwind. = 0.6, pwind = 0.04) and 
lower proportion of O. punctor females (ρrain = −  0.78, 
prain = 0.03) during higher rainfall (Additional file  1: 
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Table  S6) were observed. Wind did not affect mosquito 
abundance (Additional file 1: Table S6).

Seasonal dynamics of microsporidians
Sequencing of the SSU rRNA gene fragment revealed 
12 microsporidian species: Amblyospora salinaria, A. 
stimuli, Amblyospora sp. 1 (identical to the sequences 
under GenBank acc. no. AY090055), Amblyospora sp. 
2 (identical to MT118722); Hazardia sp. (identical to 
AY090066); Encephalitozoon hellem; Enterocytospora 
artemiae; Microsporidium sp. BLAT1 and Microsporid-
ium sp. PL01; and three species belonging to the genus 
Vairimorpha (previously classified as Nosema [84]): V. 
adaliae, V. ceranae and Vairimorpha sp. CHW−2007a. 
The microsporidians found in the present study belonged 
to three of the five major clades: Amblyosporidia (Haz-
ardia, Amblyospora), Enterocytozoonida (Enterocyto-
spora, Microsporidium BLAT1, Microsporidium PL01) 
and Nosematida (Encephalitozoon, Vairimorpha) (Addi-
tional file 1: Fig S2; Additional file 1: Table S7).

In total, 34.6% (1039/3000) of the mosquitoes tested 
positive for microsporidian DNA, representing all mos-
quito species detected in this study (Additional file  1: 
Tables S8, S9). The number of microsporidian-positive 

mosquitoes significantly correlated with both an 
increase in temperature (Additional file  1: Fig. S3A) 
and a decrease in humidity (Additional file 1: Fig. S3B). 
Overall, for both environmental factors, a linear rela-
tionship was observed with a coefficient adjustment of 
R = 0.9 (p ≤ 0.001) and R = − 0.9 (p ≤ 0.001), respectively. 
This dependence was observed in both females and 
males; however, it was stronger in females (R =  ± 0.9) 
and slightly weaker in males (R =  ± 0.7) (Fig. 2a, b). The 
remaining environmental factors were not significant, 
with values of 0.054 (p = 0.87) and − 0.047 (p = 0.89) for 
wind and rainfall, respectively (Fig.  2c, d;, Additional 
file 1: Fig. S3C, S3D).

Microsporidian occurrence was noted 1.6-fold more 
often during the warm months than during the cold peri-
ods (Fig. 3a; Additional file 1: Table S8). During the cold 
months, both females and males were microsporidian 
positive at similar rates of 28.2% and 23.7%, respectively 
(Fig. 3b; Additional file 1: Table S9). However, a slightly 
higher fraction of microsporidian-positive males (29.8%) 
and more than half of the females (51.9%) were micro-
sporidian positive during warm periods (Additional file 1: 
Tables S10, S11), and this difference was statistically sig-
nificant (Fig. 3b; Additional file 1: Tables S10, S11).
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Because the presence of microsporidian DNA does not 
necessarily indicate an infection, we excluded E. hellem 
and V. ceranae as infection factors (detected in < 1% of all 
individuals analysed: 0.1% and 0.57%, respectively), and 
their ASVs were covered by low numbers of reads (< 50). 
With the exception of E. hellem and V. ceranae, each 
microsporidium species was found in at least five differ-
ent mosquito species (Additional file 1: Fig. S4).

Almost all microsporidian species occurred more fre-
quently during the warm months (Fig.  4). We observed 
En. artemiae in mosquitoes during the warm months; 
moreover, six microsporidian species, Amblyospora 
sp.1 and En. artemiae and Microsporidium sp. BLAT1, 
Microsporidium sp. PL01, V. adaliae, and Vairimorpha 
sp. CHW−2007a, were significantly more frequent dur-
ing the warm season (0.001 ≤ p ≤ 0.035) (Additional 
file 1: Table S12). Hazardia sp. was the only species that 

occurred significantly more frequently during the cold 
months (p = 0.001) (Additional file 1: Table S12). Indica-
tor species analysis showed that En. artemiae (A compo-
nent = 1; p = 0.005) can be considered to be an indicator 
of microsporidia in the warm months, whereas Hazardia 
sp. (A component = 0.86; p = 0.005) can be considered to 
be an indicator of microsporidians in the cold months 
(Additional file 1: Table S13).

During warm months, significant differences in 
prevalence were found between microsporidian-pos-
itive females and males for Microsporidium sp. PL01 
(p < 0.001) and Vairimorpha sp. CHW−2007a (p < 0.001), 
with the prevalences being higher in females than in 
males by approximately 2.8- and 2.4-fold, respectively 
(Fig. 4; Additional file 1: Table S12). No variations were 
observed in the abundance of microsporidian-posi-
tive females and males for any microsporidian spe-
cies detected in the mosquitoes during the cold months 
(Fig. 4; Additional file 1: Table S12).

Additionally, among the identified microsporidians, 
mixed temperature- and sex-dependent interactions 
were observed for Microsporidium sp. PL01, and Vairi-
morpha sp. CHW−2007a (FA = 30.91, p < 0.001; FA = 6.84, 
p < 0.001). In both cases, the observed effect size η2 was 
large at the 0.78 and 0.32 levels, respectively (Additional 
file 1: Table S12).

Impact of environmental factors on microsporidian 
occurrence
The primary environmental factor affecting the number 
of microsporidian-positive mosquitoes for each micro-
sporidian species was temperature (Fig.  5; Additional 
file 1: Table S14). Among the 10 microsporidian species 
recorded, five (En. artemiae, V. adaliae, Vairimorpha sp. 
CHW−2007a, Microsporidium sp. BLAT1 and Micro-
sporidium sp. PL01) were positively correlated with an 
increase in temperature (0.656 ≤ ρ ≤ 0.872), and one 
(Hazardia sp.) was statistically significantly correlated 
with a decrease in temperature (ρ = −  0.821) (Fig.  5a; 
Additional file  1: Table  S14). The remaining microspo-
ridian species belonged only to the genus Amblyospora. 
Although these microsporidians showed a positive corre-
lation with an increase in temperature (0.038 ≤ ρ ≤ 0.508), 
this result was not statistically significant (Fig. 5a; Addi-
tional file  1: Table  S14). Owing to the inverse relation-
ship between temperature and humidity, a contrasting 
relationship was noted for humidity as a determinant; 
all microsporidia, except Hazardia sp., were negatively 
correlated with humidity (Fig.  5b; Additional file  1: 
Table S14). Other factors, such as wind and rainfall, had 
no significant effect on the prevalence of microsporidians 
in mosquitoes (−  0.152 ≤ ρ ≤ 0.657; −  0.502 ≤ ρ ≤ 0.563) 
(Figs. 5c, d; Additional file 1: Table S14).
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Fig. 2 Correlation plots between microsporidian DNA-positive 
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The results of this global (combined for females and 
males) relationship were in complete agreement with the 
calculated rho relationship in female mosquitoes, and all 
correlations and statistical significances were in accord-
ance (Additional file  1: Table  S14). The results differed 
slightly for males, with only three microsporidian spe-
cies (En. artemiae, Hazardia sp., V. adaliae) noted, and 
their occurrence was associated with all environmental 
factors examined in the present study (Additional file 1: 
Table S14).

Seasonal potential of microsporidian co‑occurrences
Among the 1023 microsporidian-positive mosquitoes 
identified, the co-occurrence of at least two different 
microsporidian species was identified in 109 samples 
(3.63% of all samples; 10.65% of infected samples). Dur-
ing the warm months, microsporidian co-occurrences 
were observed in 79 individuals (2.63% compared to all 
individuals; 7.72% compared to infected individuals). 
During the cold months, such co-occurrences occurred 

more than twofold more rarely. We recorded 31 mos-
quitoes that were positive for > 1 microsporidian spe-
cies (1.03% compared to all individuals; 3.03% compared 
to infected individuals). The differences in the number 
of observed cases within each month were statistically 
significant within each season (Fig. 6a; Additional file 1: 
Table S15). A trend toward higher rates of microsporid-
ian co-occurrence during the warm months was noted in 
both females (p < 0.05) and males (p < 0.05) (Additional 
file 1: Table S15).

The co-occurrence of two different microsporidian spe-
cies was the most common pattern during both the warm 
and cold months. Three species in one host individual 
were observed in six females and one male during the 
warm months, and only in one male and two females dur-
ing the cold months (Additional file 1: Table S16). Micro-
sporidium sp. PL01, the most abundant microsporidian 
species found in this study, was the primary co-occurring 
species (63/109 co-occurring individuals, 57.8%). Rela-
tively high numbers of co-occurrences were observed for 
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three Amblyospora spp. (A. salinaria, Amblyospora sp.1 
and Amblyospora sp.2), and Microsporidium sp. BLAT1. 
Each species was observed with another microsporid-
ian species in a minimum of 20 host individuals, whereas 
the remaining microsporidian species co-occurred in 
approximately 12 individuals (range: 13–14) (Fig.  6b; 
Additional file 1: Table S16).

Overall, 37 combinations of microsporidian co-occur-
rence were observed (Fig.  6b). Seventeen combina-
tions were present in at least two individuals, eight of 
which were relatively frequent (in at least 5 individuals) 
(Fig. 6b; Additional file 1: Table S17). Almost all combi-
nations were noted during warm months (33/37; 89.2%), 
whereas 15 combinations were observed during colder 
months. The most common combination in both warm 
and cold months was the co-occurrence of A. salinaria 
and Amblyospora sp.2. Characteristic combinations of 
co-occurrences during the warm months appeared to 
involve Microsporidium sp. PL01, Amblyospora sp.1 
(component A = 0.82; p = 0.005), Microsporidium sp. 
BLAT1 (component A = 0.9; p = 0.005) and En. artemiae 
(component A = 1; p = 0.04) (Additional file 1: Table S17). 
No characteristic combination was observed in mos-
quitoes during the cold months. Because of the low fre-
quency of microsporidian co-occurrences in females 
and males divided into seasons, it was not possible to 

determine the significance of the microsporidian combi-
nations (Additional file 1: Table S15).

Discussion
Seasonal dynamics of mosquitoes in western Poland
All mosquito species collected in this study have been 
reported in Poland previously [95–97]. A significant rela-
tionship was noted between average air temperature and 
dominant mosquito species. During the warmer months 
(> 19 °C), species belonging to the genus Ochlerata-
tus, primarily O. annulipes and O. cantans, dominated, 
whereas during the cooler months (< 16 °C), the most fre-
quently occurring species was Cx. pipiens. This observa-
tion is consistent with previous laboratory [98–100] and 
field [101] studies, which indicated that, in urban areas, 
maximum mosquito abundance varies by mosquito 
species, with the abundance increasing for some mos-
quito species as air temperature increases. Furthermore, 
another previous study [101] showed that Ochlerotatus 
spp. mosquitoes were more common at higher temper-
atures (range: 23.2–25.3 °C than Cx. pipiens (approxi-
mately 22.1 °C), which is consistent with our results.

Although mosquito abundance and distribution are 
strongly influenced by anthropogenic factors, such as 
predation, competition and vector control at the local 
scale [102], abiotic factors, such as climate and landscape, 
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play a dominant role at larger geographic scales [103]. 
As a result, increasing global temperatures are shifting 
mosquito distribution ranges and, thereby, the ranges 
of pathogens associated with these insects [104–107]. 
Persistently higher temperatures in Poland will likely 
affect the longer period of dominance of Ochlerotatus 
and thus increase exposure to pathogenic agents, such 
as the Eastern equine encephalitis [108], Jamestown 
Canyon [109], Snowshoe Hare [110], Tahyna [111] and 
West Nile viruses [108]. Anopheles messeae was not col-
lected  in our study; but the authors of a previous study 
did report sparse numbers of An. messeae in Poznan [5]. 
Variations in regional temperatures can have significant 
implications for the prevalence of malaria worldwide. 
To date, limited information is available on the presence 
of An. messeae in Poland [5, 111]. However, as the aver-
age annual temperature increases, the length of warm 
months throughout the year increase, creating beneficial 
conditions for the potential invasion of An. messeae in 
Europe and the Mediterranean regions [112–114].

Microsporidian occurrence across mosquitoes
It must be noted that the presence of microsporidian 
DNA does not necessarily result from an infection. It is 
possible that the detected DNA represents the genetic 
material of ingested spores, which subsequently move 
through the digestive tract and never germinate, thus 
not infecting the host cells [115, 116]. Therefore, in 
our analyses, we excluded E. hellem and V. ceranae as 
infecting factors because they were noted in only < 1% 
of all analysed individuals (0.1% and 0.57%, respec-
tively) and their ASVs were covered by low numbers 
of reads. However, there is no empirical basis for the 
exclusion of Amblyospora spp., En. artemiae, Hazardia 
spp., Vairimorpha spp., Microsporidium sp. BLAT1 
and Microsporidium sp. PL01 because their preva-
lence was ≥ 1.5% of all analysed individuals. The num-
ber of reads for these species ranged from 50 to 51,000, 
indicating the level of microsporidian infection in the 
mosquitoes tested, with infection found in at least five 
mosquito species.
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Molecular and histopathological studies have con-
firmed that at least 150 species of the genus Amblyos-
pora infect mosquitoes [3, 5, 117]. Therefore, there is no 
empirical basis to exclude Amblyospora spp. identified 
in this study from infecting mosquitoes. Similarly, histo-
pathological data shows that Hazardia sp. is a mosquito-
infecting microsporidium [117, 118]. In our previous 
study conducted near the city of Poznan, Poland, we 
observed the presence of Hazardia sp. in Cx. pipiens 
females and males as well as in O. cantans and O. sticti-
cus females [5]. Natural infections of H. milleri were 
observed in Culex quinquefasiatus larvae collected in 
Texas and Louisiana and from Culex fatigans collected in 
Bangkok, Thailand [117, 118]. Therefore, our results con-
firm that microsporidians belonging to the genus Haz-
ardia are associated with mosquito hosts and can be used 
as indicator species during the cool months.

Crustaceans belonging to order Decapoda and class 
Branchiopoda, including Artemia spp. and Palaemonetes 

sinensis, are the most common hosts of En. artemiae 
[119–122]. In our previous studies using next-generation 
sequencing (NGS), we detected the presence of En. arte-
miae DNA from various mosquito species [5, 67]. Con-
firmed infections in various crustaceans have indicated 
that En. artemiae are generalist parasites. Our results 
suggested that mosquitoes may also be the hosts of En. 
artemiae, but a histological analysis is required to con-
firm the actual infection. Our data also suggested that 
En. artemie may have low parasite fitness toward mosqui-
toes. Taken together, En. artemie in mosquitoes are mod-
erately virulent and highly infectious parasites with high 
spore production.

Microsporidium sp. BLAT1 has previously been 
detected only in crustaceans from Lake Baikal, Rus-
sia (Qiu et  al., GenBank: FJ756034). In our study, we 
identified this microsporidium in eight mosquito spe-
cies belonging to the genera Coquillettidia, Culex and 
Ochlerotatus. Similarly, among the 10 mosquito species 
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representing the same three genera, Microsporidium sp. 
PL01 was detected using molecular methods. The pres-
ence of Microsporidium sp. BLAT1, and Microsporidium 
sp. PL01 DNA from different mosquito species during 
different years of mosquito collection strongly suggests 
that these microsporidians infect mosquitoes.

In the present study, we identified three Vairimor-
pha species: V. adaliae, V. ceranae and Vairimorpha 
sp. CHW−2007a. We excluded V. ceranae from further 
analysis as it was likely introduced into the mosquitoes 
through accidental environmental spore inoculation. 
The other two Vairimorpha species were identified using 
molecular methods in both our previous and current 
studies, with mosquitoes considered to be hosts for these 
microsporidia [5, 67]. Thus, V. adaliae and Vairimor-
pha sp. CHW−2007a cannot be excluded from infecting 
mosquitoes and being mosquito pathogens. However, 
histological and/or quantitative analyses are required to 
confirm infection.

Temperature effect on microsporidian occurrence
In the present study, we showed for the first time that 
temperature has a significant impact on the occurrence of 
microsporidia in mosquitoes. To date, studies that con-
sider temperature as a factor affecting microsporidians 
are limited. In one of the first studies in this area, Yan and 
Larsson [123] reported that the increased prevalence of 
Plistophora asperospor and Pleistophora crangon in a nat-
ural population of Holopedium gibberum in summer was 
not related to exposure of the parasite to warmer temper-
atures. These authors stated that the seasonal pattern of 
parasite prevalence may have been a consequence of host 
and parasite population dynamics and their interaction, 
or the result of food stress. Subsequent studies on the 
effect of temperature on microsporidians included hon-
eybees (Apis mellifera) [124, 125], crustaceans (Artemia 
franciscana, A. parthenogenetica) [126], flies (Simulium 
pertinax) [127, 128] and mosquitoes [64] as microspo-
ridian hosts. In contrast to the study of Yan and Larson 
[123], the results of these subsequent studies consistently 
indicated that the occurrence of microsporidians in their 
hosts is strongly correlated with temperature.

In the present study, we found that the prevalence of 
microsporidians in mosquitoes was nearly twofold higher 
during the warm months than during the cold months. 
Temperature and humidity appeared to be the primary 
environmental factors influencing the results. Both of 
these variables were inversely correlated and equally 
correlated with the number of microsporidian-positive 
mosquitoes. We found that as the temperature increased, 
the number of mosquitoes positive for microsporidians 
increased and then decreased as the humidity decreased.

Our data, obtained from natural populations, cor-
roborate the results of previous studies, as we observed 
that mean monthly temperatures of > 19 °C and humid-
ity not exceeding 62% are optimal environmental con-
ditions for microsporidians infecting mosquitoes in 
Central Europe. However, as the presence of micro-
sporidian DNA is not necessarily due to infection, con-
firmation of the infection by microscopic analysis is 
required. In addition, comparing the proliferation effi-
ciency of microsporidians during the warm and cold 
periods using quantitative analyses would provide fur-
ther understanding of the infection dynamics. How-
ever, notably, the occurrence of Hazardia sp. during the 
cold months was found to be strongly related to its host 
specificity for Cx. pipiens, which was primarily present 
during the cold months considered in this study.

Variations in microsporidian presence between males 
and females
Although our research and data from the literature 
indicate that temperature is the primary environmental 
factor affecting microsporidian occurrence rates, vari-
ables such as daily fluctuations in temperature, the rate 
of parasite development and essential elements of mos-
quito biology, including life stages and sex, should also 
be considered [45, 47, 105, 129].

Our study showed that the rate of microsporidia 
occurrence in males was constant at approximately 25% 
throughout the warm and cold seasons. In contrast, 
females were more likely to be microsporidian positive 
during the warm months than during the cold months 
(50% and 28%, respectively). This observation can be 
explained by the difference in the lifespans of male and 
female mosquitoes. In general, females have a longer 
lifespan than males [130–134], and this difference var-
ies from approximately 1  week for Cx. quinquefascia-
tus [133] and Cx. fatigans [130] to 1  month for Aedes 
aegypti [130]. A longer life history can result in a longer 
exposure to microsporidian spores. In addition, tem-
perature can affect the duration and distance travelled 
by mosquitoes. The optimum flight temperature has 
been estimated to range from 15 °C to 32  °C [135]. At 
lower (10 °C) or higher (35 °C) temperatures, flight is 
possible but only for short durations. Moreover, higher 
temperatures affect the frequency of wing beats [136]. 
In conclusion, the longer lifespan of females and the 
influence of temperature on their flight activity suggest 
that these two factors contribute to a higher exposure 
of female mosquitoes to microsporidian spores during 
warm months. However, further experiments under 
controlled conditions are required to confirm this 
hypothesis.
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Effects of temperature on microsporidians 
in co‑occurrences
The level of co-occurrence of different microsporid-
ian species in the same host in the present study was 
3.63%, which is consistent with the level of co-infection 
(3.6%) noted in our previous study [5]. The results of 
the present study confirmed a strong co-occurrence 
relationship between A. salinaria and Amblyospora 
sp. 2. In addition, warm months promoted microspo-
ridian co-occurrence: compared with the cold months, 
we recorded twofold more individuals with at least two 
microsporidian species during the warm months. Pre-
vious research on the co-occurrence of microsporidians 
has focused on the interactions between microsporid-
ians themselves rather than on the influence of envi-
ronmental factors that promote co-infection [137–140]. 
To the best of our knowledge, the present study is the 
first to show that seasonal climatic factors play an 
important role in the dynamics of both the occurrence 
and co-occurrence of microsporidians. Therefore, we 
cannot refer to the results of other studies. Notably, 
the increase in the co-occurrence of various species 
of microsporidians in the same host individual dur-
ing warm months does not necessarily arise from par-
asite-host interactions and may result from a greater 
abundance of spores in the environment. However, we 
believe that our observations may prompt further stud-
ies to address this question.

Conclusions
In the present study, we demonstrated that climatic fac-
tors, such as temperature, determine the seasonal occur-
rence of microsporidians among mosquitoes. We showed 
that the prevalence of microsporidians in mosquitoes 
during warm months was nearly double that during cold 
months. This observation applies to the dominant species 
in the population; some microsporidian species have a 
preference for warm months (Enterocytospora artemiae) 
or alternatively for cold months (Hazardia sp.).

Our results suggest that the susceptibility of mosqui-
toes to parasite occurrence is primarily determined by 
their activity—and not by the state associated with sub-
optimal environmental conditions. This observation may 
be relevant to efforts to biologically control malaria-
transmitting mosquito populations, which consider the 
dual role of microsporidians as natural parasites that 
directly reduce the vector population and as agents that 
limit Plasmodium development in mosquito tissues.

Although our results are based on DNA data, they 
are largely consistent with previous findings based 
on techniques that directly detect parasites, such as 

spore counting and histochemical techniques, indicat-
ing that DNA barcoding is a useful technique that can 
promptly provide reliable data on microparasites and 
their hosts.
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temperature vs. rainfall (D) humidity vs. wind, (E) humidity vs. rainfall, (F) 
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Values near branches show Bayesian posterior probabilities (PP) and 
bootstrap support values (BS) (PP/BS). Black circles: maximally supported; 
empty circles: supported > 0.95 PP and > 75% BS. Sequences found in 
this study are in bold. Figure according to Trzebny et al. (2023): 10.1016/j.
jip.2022.107873. Figure S3: Correlation plots between microsporidian-
positive mosquitoes and (A) temperature (°C), (B) humidity (%), (C) wind 
(m/s), and (D) rainfall (mm). The R value indicates the Pearson’s correlation 
coefficient statistic, the p value is statistically significant, the shadowed 
area shows the 95% confidence interval, and the black line is the regres-
sion line. The month and year of the data points are indicated according 
to the legend at the bottom. Figure S4. Host mosquito species in which 
particular microsporidian species were found. Vertical axis: percentage of 
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where a value of 1 indicates that the species was exclusively found in that 
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sporidia in each individual. Table S17: Frequency of co-occurrence pairs 
in females and males divided by season. The pairs noted in both warm 
and cold seasons are shown.
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