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Abstract

Background: Mathematical models developed for describing the dynamics of transmission, infection, disease and
control of lymphatic filariasis (LF) gained momentum following the 1997 World Health Assembly resolution and
the launching of the Global Programme to Eliminate Lymphatic Filariasis (GPELF) in 2000. Model applications
could provide valuable inputs for making decisions while implementing large scale programmes. However these
models need to be evaluated at different epidemiological settings for optimization and fine-tuning with new
knowledge and understanding on infection/disease dynamics.

Discussion: EPIFIL and LYMFASIM are the two mathematical simulation models currently available for lymphatic
filariasis transmission and control. Both models have been used for prediction and evaluation of control
programmes under research settings. Their widespread application in evaluating large-scale elimination
programmes warrants validation of assumptions governing the dynamics of infection and disease in different
epidemiological settings. Furthermore, the predictive power of the models for decision support can be enhanced
by generating knowledge on some important issues that pose challenges and incorporating such knowledge into
the models. We highlight factors related to the efficacy of the drugs of choice, their mode of action, and the
possibility that drug resistance may develop; the role of vector-parasite combinations; the magnitude of
transmission thresholds; host-parasite interactions and their effects on the dynamics of infection and immunity;
parasite biology, and progression to LF-associated disease.

Summary: The two mathematical models developed offer potential decision making tools for transmission and
control of LF. In view of the goals of the GPELF, the predictive power of these models needs to be enhanced for
their wide-spread application in large scale programmes. Assimilation and translation of new information into the
models is a continuous process for which generation of new knowledge on a number of uncertainties is required.
Particularly, a better understanding of the role of immune mechanisms in regulating infection and disease, the
(direct or immune mediated) mode of action of current drugs, their effect on adult worms, their efficacy after
repeated treatment, and the population genetics of drug resistance are important factors that could make the
models more robust in their predictions of the impact of programmes to eliminate LF. However, if these models
are to be user-friendly in the hands of programme managers (and not remain as research tools), it would be
necessary to identify those factors which can be considered as the minimum necessary inputs/outputs in
operational settings for easy evaluation and on-site decision making.
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Background

Two mathematical simulation models, EPIFIL (popula-
tion based, deterministic) and LYMFASIM (individual
based, stochastic), have been developed at the Vector
Control Research Centre, Pondicherry, respectively in col-
laboration with the Wellcome Trust Centre for the Epide-
miology of Infectious Disease, Department of Zoology,
University of Oxford, Oxford and the Department of Pub-
lic Health, Erasmus University, Rotterdam, for tracking
the dynamics of lymphatic filariasis (LF) transmission and
control [1,2]. Model parameters were estimated using
data from an integrated vector management programme
in Pondicherry, India [1,3]. Both models have been used
to predict the long-term impact of control programmes
(mass chemotherapy/vector control) and assess the pros-
pects of elimination [1,4-6]. This assumes significance in
the context of the Global Programme to Eliminate Lym-
phatic Filariasis (GPELF), with Mass Drug Administration
(MDA).

Recently Stolk et al[ 7] compared EPIFIL and LYMFASIM in
terms of their structure and parameter quantifications and
highlighted deficiencies that impede their wide spread
application for decision support. These authors found
that, despite differences in model structure and parame-
terization, both models were able to predict the duration
of control required for elimination under assumptions
based on current biological understanding. However,
actual predictions varied between models that were due to
the choice of criteria used in the models for elimination:
EPIFIL assumes that transmission will cease to occur when
the microfilarial (mf)-prevalence drops (deterministi-
cally) below 0.5% following MDA, whereas LYMFASIM
considers the likelihood (in a number of stochastic simu-
lations) of reaching zero prevalence within 40 years after
the start of MDA. However, when similar assumptions
were used, the predictions by both models were similar in
terms of required coverage and duration of MDA. In this
communication, we discuss additional factors which are
crucial for predictions by models, and the need of exten-
sions to enhance their predictive power for decision sup-
port.

Discussion

Drug-related factors

Mode of action of drugs

Currently available anti-filarial drugs (diethylcar-
bamazine - DEC, albendazole and ivermectin) differ in
their mode of action. Available evidence suggests that
ivermectin and albendazole have direct killing effect on
microfilariae (mf) whereas DEC acts through immune
mechanisms [8]. The heterogeneity in response to DEC
[9] also indicates that DEC does not kill the parasite
directly. In addition, the immune-mediated effect is
expected to last longer, which may influence model pre-
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dictions. Estimates from a model based on analysis of
data from a hospital trial showed that a single dose DEC
(6 mg/kg) can reduce the mf-production of adult worms
by 67% at 12 months post-treatment and 87% at 24
months post-treatment, and reduce the mf-density in the
peripheral blood by 57% at 12 months and 52% at 24
months post-treatment [9,10]. The increasing effect of
DEC on mf-production up to 24 months post-treatment is
suggestive of slow immune mediated damaging effect of
DEC on adult worms, which occurs at an extended time
scale. However, reliable efficacy estimates, at least for
DEC, need to be obtained through meta-analysis by gen-
erating data from clinical trials with different periods of
follow-up. Also, models should account for the heteroge-
neity in drug response by individuals as well as for the
average duration of the drug effect ('effective duration').
In LYMFASIM the heterogeneity in drug-response by indi-
viduals and the 'effective duration', measured as the
period during which the female parasite recovers from
treatment, are considered as stochastic variables. How-
ever, only the former is being used for model prediction.

Microfilaricidal effect of drugs

Since efficacy estimates (measured as percent reduction of
mf load with respect to baseline) vary between clinical tri-
als, the most reliable estimates are based on rigorous
meta-analysis of data from randomized controlled trials.
Such estimates are available for ivermectin [11] and also
for combination therapies of albendazole with DEC or
ivermectin, albeit based on a limited number of trials
[12]. Similar analyses for DEC and albendazole mono-
therapy may be useful to more confidently predict the syn-
ergistic effect of combination therapy, and determine its
superiority over a single dose regimen.

Macrofilaricidal effect of drugs

DEC is known to have also a macrofilaricidal effect, i.e., to
be effective against adult worms [13-15]. There are similar
indications for albendazole alone [16] or in combination
with DEC [17-19]. However, ivermectin seems to have no
macrofilaricidal effect [20], although model based esti-
mates of its effect on mf-production by adult worms sug-
gests that it may have a damaging effect on the
reproductive system of female worms [9,11]. In the
absence of diagnostic tools to measure adult worm bur-
den accurately, only indirect estimates have been used in
both models [4-7]. This uncertainty will have greater
impact on the predicted durations of MDA for LF elimina-
tion given the fact that the average and distribution of
adult worms' life expectancy has a large influential effect
on the population dynamics [21].

Effects of drug combinations
When co-administration of albendazole with either DEC
or ivermectin was initially proposed, albendazole was not
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intended or expected to enhance the efficacy of either
DEC or ivermectin. However, limited trials with the rec-
ommended combination of albendazole with ivermectin
suggest that co-administration of ivermectin with alben-
dazole is superior to either of the two drugs given alone.
In the case of DEC co-administered with albendazole, the
results have not been so equivocal, although the combina-
tion therapy appears to have an edge over either drug
given alone [22]. While additional studies may be useful
to reliably obtain efficacy estimates as well as to determine
the superiority of the combination, if any, current policies
are clearly in favour of the combination.

Repopulation of blood by mf after anti-fecundity effects
Repopulation of the blood by mf depends on the effects
of anti-filarial drugs on host immunity and worm fecun-
dity. Drugs can improve host immunological responsive-
ness without affecting the viability and fecundity of adult
worms (DEC [8]; ivermectin [23]). This in turn can clear
mf during repeated treatments and thus reduce microfila-
raemia. Drugs may also express their action in different
ways such as sterilizing, killing or affecting the fecundity
of the adult worms. These effects can affect the repopula-
tion of mf in the blood. Anti-fecundity effects may be
manifested in two ways: (i) by an overall reduction in
reproductive capacity across all worms, or (ii) by steriliza-
tion (temporary or permanent) of a proportion of the
female worms. Temporarily sterilized worms may resume
their reproduction and release mf after a period of recov-
ery. Both these effects may vary between individual
worms and therefore may be stochastic in nature. That
anti-fecundity effects may vary between worms has been
incorporated into LYMFASIM, but its implications have
not yet been fully explored or understood.

Change in efficacy after repeated treatment

Clinical trials of single (DEC or ivermectin) or combina-
tion (albendazole plus DEC or ivermectin) drug therapies
are limited to provide estimates for the change in efficacy
(measured as percent reduction of mf load with respect to
baseline) after repeated treatments. However, available
trial results suggest that efficacy of single drug therapy
(DEC or ivermectin) increases with multiple single dose
treatments at a constant rate and reaches a plateau after a
few treatments [24,25]. This effect does not necessarily
imply that the drug has become less efficacious but that
the percent reduction in microfilaraemia effected by treat-
ment may also depend on mf load at the point of treat-
ment, with the highest reductions recorded for heavier
microfilaraemia, i.e., microfilaricidal efficacy declines
with decreasing mf load (density-dependent efficacy).
(For an individual, whose initial mfload is 100, a decrease
to 5 following treatment would mean a reduction by 95%;
whereas for a person with 5 mf ending up with 1 mf, the
reduction will be of the order of 80%). Such density-
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dependent efficacy is also apparent from a study in which
four repeated full (each with 6 mg/kg for 12 days) courses
of treatments were given over a period of one year: efficacy
did not vary among those who received one (90.4%), two
(95.7%), three (97.4%) and four (100%) courses of treat-
ment. However, those who required at least 2 courses of
treatment, had a higher pre-treatment mf-density than
those who needed only one-course (6 mg/kg x 12 days) of
treatment [26]. Similar observations are also evident from
community based trials with single dose DEC (6 mg/kg)
administered monthly [27,28], or semi-annually [29] for
one year and annually for four years [30] and DEC (6 mg/
kg) or ivermectin (400 pg/kg) for 10 years (Fig. 1A[31]).

The efficacy of co-administration of albendazole (400
mg) with DEC (6 mg/kg), or ivermectin (150 pg/kg) is

constant and independent of the number of repeated
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treatments (albendazole plus DEC: 92%, 95%, 98% and
94% following, respectively, the first, second, third, and
fourth treatments [19]; albendazole plus ivermectin: 87%
and 93% following, respectively, the first and second
treatments [32]) i.e. the efficacy is maximum upon first
treatment, decreasing afterwards with the increasing
number of treatments and decreasing mf-load (density-
dependent efficacy). The results of field trials with
repeated administration of DEC plus ivermectin or DEC
plus albendazole are also suggestive of an initial constant
rate of increase and decline after few repeated treatments
(>90% reduction in each of four annual rounds of MDA
with DEC plus ivermectin [30]; 70-96% reduction over
four rounds of MDA with DEC plus albendazole [33]; Fig.
1B[31]).

The currently available predictions of the prospects of
elimination by both EPIFIL and LYMFASIM are based on
the assumption that single drug efficacy (DEC, ivermectin,
and albendazole) is constant and independent of the
number of repeated treatments [4,5,34]. But with the evi-
dence of change in efficacy after repeated treatments with
single or combination therapies, as well as the considera-
tion that drug resistance may emerge (see section on pop-
ulation genetics of drug resistance below), the
chemotherapy components of the models need to be
updated as density-dependent processes, relaxed by the
effects of interventions, can considerably alter the pros-
pects of elimination [35,36].

Population genetics of drug resistance

Drug resistance is one of the causes for treatment failure
in the control of many parasitic diseases. Large scale MDA
with ivermectin in areas of the Onchocerciasis Control
Programme in West Africa has raised concerns about the
possibility that individuals who have been repeatedly
treated may exhibit suboptimal responses to ivermectin
(their rate of skin repopulation by mf of Onchocerca volvu-
lus is faster than expected [37,38]). In populations of
Wuchereria bancrofti in Ghana, the frequency of a phenyla-
lanine to tyrosine change at position 200 of the beta-tubu-
lin gene (TYR200, a marker for resistance to
benzimidazoles in veterinary nematodes), was found to
be significantly higher in microfilariae obtained from
patients treated once or twice with albendazole plus iver-
mectin than in mf from those untreated by the GPELF
[39], whereas, analysis of W. bancrofti populations in
India revealed absence of this genetic change, suggesting
albendazole susceptibility [40]. These results indicate that
selection for albendazole and ivermectin resistance may
already be occurring in some localities. Though strong evi-
dence for resistance to DEC is lacking [41,42], more stud-
ies are required to understand whether or not selection
under chemotherapeutic pressure is indeed occurring, to
elucidate the possible mechanisms of resistance, as well as
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to measure the frequency of putative resistance markers in
a broad spectrum of epidemiological settings for sound
incorporation of worm genetic heterogeneity with respect
to drug susceptibility in the models. Recently, EPIFIL has
been modified to account for parasite population genet-
ics, and has been used to examine the consequences of a
hypothetical spread of benzimidazole resistance on the
impact of MDA with albendazole in combination with
ivermectin or DEC [43], or the impact of multidrug resist-
ance (to ivermectin and albendazole) under various
assumptions of the genetics of drug resistance [44]. The
LYMFASIM model can also be extended in a similar way;
its microsimulation approach may prove to be more effec-
tive for accounting of any genetic variability between indi-
vidual parasites within hosts that may be identified by
molecular genetics to improve its predictive value.

Drug distribution and consumption

Programmes report only coverage of drug distribution; no
data on actual consumption of the drug are currently
available. So far both models consider coverage as a proxy
for the actual consumption, but there are considerable
gaps between coverage (measured as the proportion of the
population that received the drug) and consumption
(measured as the proportion of the population that actu-
ally consumed the drug) [45]. Quantification of their rela-
tionship [46] and its incorporation into models would
enhance the robustness of model predictions.

Reproductive biology and mating success

Reproductive lifespan, worm mating, its modality and fre-
quency; the per worm rate of mf production (worm fecun-
dity and fertility rates), and longevity of mf in the blood
are parameters governing the reproductive biology of the
parasite. The values of these parameters may vary between
worms and/or mf according to a (largely unknown) prob-
ability distribution. In addition, worm survival and fecun-
dity may be age-dependent. No direct estimates are
available for the means and uncertainty of all these
parameters. Schulz Key [47] has studied the reproductive
biology of Onchocerca volvulus and assessed the fecundity
of the parasite (through the examination of embryograms
of adult worms excised from palpable, subcutaneous nod-
ules), whereas such studies are not possible for LF (given
the difficulty in obtaining adult worms from the lymphat-
ics). However, indirect estimates of some of the biological
characteristics of W. bancrofti have been made in LF (lon-
gevity; mf production per female worm [3,48]). Unfortu-
nately, the lack of appropriate animal models in which to
mimic the natural parasite dynamics and behaviour has
hindered the study of biological features that are relevant
for models (but see [49]). In light of such uncertainties,
sensitivity analysis of the models to plausible variation of
model parameter values will be useful to ascertain the
extent to which such variations may influence model pre-
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dictions and their usefulness for decision making. Incor-
poration of stochastic effects of these biological
parameters into the model is necessary to derive more
realistic quantitative conclusions. Since EPIFIL is a popu-
lation based deterministic macro-simulation model, it
does not consider detailed aspects of the reproductive
biology of the parasite, whereas LYMFASIM being an indi-
vidual based, micro-simulation model, can more easily
handle such biological complexities of the parasite. For
example the number of adult male and female worms is a
determinant of the probability of mating and production
of mf. Thus LYMFASIM has the potential to strengthen its
biological validity and to extend its predictive power to
determining transmission thresholds and breakpoints
and their associated uncertainty.

Role of vector-parasite combinations

Parasite persistence and its elimination/eradication,
besides heterogeneities in human and vector processes,
are also strongly influenced by host-parasite interactions
[36]. Three types of possible processes have been recog-
nized through the analysis of developmental transitions
within filarial vector-parasite combinations: (i) propor-
tionality (describing a number of infective larvae, L3,
developing per mosquito which increases linearly with mf
intake at a constant rate, therefore revealing lack of regu-
lation or density dependence), (ii) facilitation (the per
microfilaria rate of development into L3 larvae per mos-
quito increases with mf intake) and (iii) limitation (the
per microfilaria rate of development into L3 decreases
with mf intake, describing a relationship in which the
number of L3 developing within the mosquito increases
with mf intake in a saturating fashion until it reaches a
plateau at high mf intakes) [50]. The operation and
strength of any of these processes depend on the specific
vector parasite combination: limitation is found to occur
in Culex [50-54] and Aedes [51,54] mosquitoes transmit-
ting W. bancrofti; facilitation in Anopheles vectors
[50,51,55,56] also transmitting W. bancrofti, and propor-
tionality has been observed in Mansonia mosquitoes
transmitting Brugia malayi [51]. It has been proposed that
elimination/eradication of infection would require more
interventional efforts in places where vectors exhibiting
limitation or proportionality patterns prevail, because the
transmission thresholds for these processes would be
much lower compared to those in settings with vectors
exhibiting facilitation (but see [57,58]). Existence of eco-
logical differences in vector-parasite relationships is
reported to be one of the reasons for inconsistent patterns
in the success of large scale control programmes in differ-
ent parts of the world (Melanesian islands [59]; China
[60]; Pacific islands [56]). Therefore models should be
specifically calibrated for each vector-parasite combina-
tion and for each ecological setting. This means that
although 'global, mainly qualitative trends' (i.e., out-
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comes from strategic models) may be useful advocacy
tools, detailed, and mainly quantitative predictions (from
tactical models) will be needed to guide locale-specific LF

policy.

Magnitude of transmission thresholds

The decision to stop/continue MDA depends on the mag-
nitude of thresholds for transmission success ('transmis-
sion threshold') and parasite establishment/maintenance
('breakpoint density') in the human and vector hosts.
These thresholds are critical minimum values (of vector
biting rate, of parasite density) derived from the transmis-
sion processes relating vector-to-host and host-to vector
below which the parasite population would not be able to
persist [21]. Both types of threshold are expected to vary
with exposure to vector biting, the eliciting of protective
immune responses, and to depend on the regulatory proc-
esses that occur within vector-parasite combinations
(among other factors). The transmission threshold is
defined as the vector density below which infection estab-
lishment and sustained transmission in the population
would not occur (the infection would not become
endemic). Breakpoint densities refer to parasite densities
below which infection cannot persist [21,36]. A relatively
simple population dynamic model has been used to
determine the transmission threshold(s) [34]. In this sim-
ple model, the authors related mf intensity or prevalence
in a community as a function of annual vector biting rate
and parameters governing regulation of parasite popula-
tions in the human and vector hosts. Nevertheless, the
estimates indicate not only the existence of thresholds for
filariasis elimination programmes but also suggest that
there are significant vector-parasite differences for these
thresholds. Reliable estimates are crucial to make credible
predictions of the optimal intervention strategies and
their impact. This requires detailed modeling of the den-
sity-dependent processes operating within human and
vector hosts and on the heterogeneity between persons
with regard to exposure to vector biting, parasite aggrega-
tion and the acquisition of immune responses [61,62].
Although the LYMFASIM simulation model has included
density-dependent processes and heterogeneities [2], the
model should be tested in different endemic settings so
that it can be used more effectively to obtain reliable esti-
mates of region-specific transmission thresholds.

Infection and disease dynamics related factors

Infection dynamics

A better understanding of the processes regulating infec-
tion in the human host is essential for predicting the long-
term impact of MDA and assessing the prospects of elim-
ination. Age-infection (prevalence and intensity) profiles
derived from cross-sectional surveys have been used to
interpret the processes that shape the age-infection pro-
files. Four types of age-intensity profiles can emerge from

Page 5 of 9

(page number not for citation purposes)



Parasites & Vectors 2008, 1:2

cross-sectional data [63]. The shape of age-infection pro-
files is determined by the following processes: (i) age-
dependent exposure, (ii) parasite-induced host mortality,
(iii) heterogeneity within the host population, (iv)
clumped infection, (v) density-dependent parasite mor-
tality, and (vi) density-dependent parasite establishment.
(If age profiles are investigated by using indirect measures
of infection, which they usually are, i.e., microfilariae
rather than adult worms profiles, then density-dependent
female fecundity will also be important). Increase in
infection (mf) prevalence/intensity with age either with
(linear-saturating) or without (linear) reaching a plateau
at adult age suggests that acquired immunity may not be
very important, whereas an increase with age to reach a
peak followed by a decline (convex pattern) suggests the
operation of either acquired immunity or a reduction in
parasite acquisition as a consequence of decreasing expo-
sure with increasing age [62,63]. The former also being
accompanied by a decrease in the age at which peak infec-
tion is reached (or peak shift [64]). Application of both
EPIFIL and LYMFASIM models to Pondicherry data and
EPIFIL to East African data showed that the models had to
include acquired immunity to explain the observed con-
vexity in the age-infection profiles of W. bancrofti mf,
although there is indication of transmission dependency
[65]. Despite strong indication for the role of acquired
immunity from Pondicherry (Fig. 2[3,66]) and East Africa
[65], a recent meta-analysis of age-prevalence data from
India and African countries casts doubts over the role of
immune mechanisms in regulating LF infection in
humans [67]. The impact of this uncertainty on the pre-
dicted duration of control would have serious implica-
tions on the decision to stop/continue MDA programmes.
Premature cessation of MDA programmes may reduce the
ability of developing an immune response and thus
increase the likelihood of resurgence. This will be further
worsened if drugs do not act on adult worms or their pro-
ductivity. Therefore both EPIFIL and LYMFASIM models
need to be validated in different epidemiological settings
to explore the plausible mechanisms/processes regulating
infections in humans.

Disease dynamics

At present both EPIFIL and LYMFASIM models have con-
sidered very simple assumptions of disease dynamics
[1,2]. Fits of the EPIFIL model to the Pondicherry situa-
tion indicated that disease progression (lymphoedema/
hydrocoele) is a consequence of worm burden, but not
necessarily associated with immunopathological mecha-
nisms. However, available evidence suggests that,
although progression to hydrocoele may be associated
with worm burden, progression to lymphoedema is due
to immunopathological reactions and secondary bacterial
infections [68]. Further progression of lymphoedema
depends on the frequency of acute episodes of adenolym-
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Age related prevalence (A) and intensity (B) of Wuchereria
bancrofti microfilarial load in Pondicherry, India [66]. Error
bars are 95% confidence intervals for the observed preva-
lence and intensity of microfilariae.

phangitis (ADL), and vice versa [69], and therefore mod-
els should also consider other modalities of disease
progression. LYMFASIM should be extended to include
the relationship between infection and disease, and the
estimation of these parameters for quantification and val-
idation. Prevention of disease incidence can be a long
term outcome of GPELF with the goal of elimination of LF
as public health problem. It would also be important to
assess cost and cost-effectiveness of MDA for disease pre-
vention, and of morbidity management (hydrocoelec-
tomy/limb care) for disability prevention.

Summary

¢ LF has been targeted for global elimination by 2020.
Mathematical models could be potential tools for deci-
sion-making if they are able to reliably predict the impact
of control programmes/interventions.

e Current models need to be improved to enable them to
make more realistic predictions. This will necessitate vali-
dation in different epidemiological settings and incorpo-
ration of new knowledge.

Page 6 of 9

(page number not for citation purposes)



Parasites & Vectors 2008, 1:2

e Presently available simulation models should account
for the mode of action of drugs (e.g. direct effects or
immune mediated effects), drug resistance, and changes
in efficacy after repeated treatment. This necessitates gen-
eration of knowledge on the effects of drugs on adult
WOrms.

e Parasite-related factors such as its reproductive biology
need to be quantified as they are critical for predictions
based on models.

¢ Models should be fine-tuned to different epidemiologi-
cal settings to explore the mechanisms regulating infec-
tion and disease.

¢ Incorporation of knowledge on disease dynamics and
progression can help set new targets to reach the goal of LF
elimination as a public health problem, or identify
aspects that would need to be addressed to achieve this
target.

e There is an urgent need to consolidate and bring out user
friendly models with the minimum necessary inputs/out-
puts for application in decision making and evaluation by
programme mangers. Models will remain only research
tools if their scope of application in GPELF is not broad-
ened.
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