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Abstract

Insecticide use in public health and agriculture presents a dramatic adaptive challenge to target and non-target
insect populations. The rapid development of genetically modulated resistance to insecticides is postulated to
develop in two distinct ways: By selection for single major effect genes or by selection for loose confederations in
which several factors, not normally associated with each other, inadvertently combine their effects to produce
resistance phenotypes. Insecticide resistance is a common occurrence and has been intensively studied in the
major malaria vector Anopheles gambiae, providing a useful model for examining how insecticide resistance devel-
ops and what pleiotropic effects are likely to emerge as a consequence of resistance. As malaria vector control
becomes increasingly reliant on successfully managing insecticide resistance, the characterisation of resistance
mechanisms and their pleiotropic effects becomes increasingly important.

Introduction

The occurrence of insecticide resistance in insect disease
vectors and agricultural pest species poses potential and
actual hindrances to successful insect control. Insecti-
cide resistance mechanisms are biological attributes
under direct genetic control, and a fundamental issue
arising with the development of resistance is the mode
and number of genetic factors that translate into resis-
tant phenotypes.

The key caveat imposed on individual insects and on
insect populations under insecticide pressure is the pro-
duction of a resistance phenotype that is sufficient to
allow for survival long enough to reproduce. Resistance
phenotypes are produced with remarkable regularity
in insect populations, and their underlying mutational
genotypic changes are tightly conserved, even between
species [1].

The imposition of insecticides onto target and non-
target insect populations presents a rapid and dramatic
addition to their ecological niche. If they are to survive,
their response, drawn from the variation within their
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genomes, must also be rapid. Two broad scenarios are
proposed to explain the rapid evolution of resistance. In
one, an insecticide resistance phenotype is likely to be
constructed using several unrelated components if suffi-
ciently pressured to evolve within a comparatively small
number of generations. This could be necessary under
conditions of intense insecticide selection where genes
not normally associated with each other at the physiolo-
gical level are roped together into a loose confederation.
Such a confederation then becomes a collection of resis-
tance related genotypic changes, each of independent
origin, occurring timeously under conditions of insecti-
cide selection to present as a unified system for the pro-
duction of resistance. The confederation would be
tightly linked under conditions of insecticide selection
and could easily disassemble if selection were relaxed.
Alternatively, an insecticide resistance phenotype is
likely to evolve under intense selection as a single major
effect controlled by one or a very small number of
mutant alleles or gene duplications. The downstream
physiological effect then determines the relative fitness
of carrier individuals with or without insecticide selec-
tion, ultimately determining the frequency of the resis-
tance phenotype in successive generations.

The development and increasing incidence of insecti-
cide resistance in the major African malaria vector
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Anopheles gambiae Giles has been intensively studied
over the past five decades, providing informative data on
the development of resistance genotypes and
phenotypes.

Anopheles gambiae systematics

Anopheles gambiae sensu stricto is the nominal member
of the An. gambiae species complex. Members within
this complex vary widely in their behaviours and malaria
vector competence, and they can be identified to species
level using species specific markers including iso-
enzyme alleles, cytogenetic banding sequences and non-
coding DNA sequences [2-4]. Anopheles gambiae is
widespread across tropical Sub-Saharan Africa [5], and
is usually afforded the status of being Africa’s most
important malaria vector along with An. funestus Giles.
However, its status as a single taxon is under revision.
Cytogenetic and molecular evidence shows that An.
gambiae is genetically structured as a set of discreet
breeding units that rarely interbreed. Five chromosomal
forms (Bamako, Bissau, Forest, Mopti & Savanna) and
two molecular forms (M and S) are recognised [6-8].
The relationship between these two clusters of breeding
units is complex and the closest associations between
them are found within niche partitioning through diver-
gent adaptation [9,10]. It is likely that the M and S
molecular forms are distinct species [11-13], and there
are distinct differences in the assortment of insecticide
resistance genotypes and phenotypes between them.

Detecting and characterising resistance
mechanisms
Insecticide resistance phenotypes are usually assayed
using response-to-exposure tests. The most widely used
is the standard WHO insecticide susceptibility test for
adult anophelines [14]. Using these tests, insecticide
resistance phenotypes in An. gambiae M and S forms
have been assayed from a wide array of localities across
Sub-Saharan Africa. Instances of resistance to organo-
chlorine, pyrethroid (types I and II), carbamate, organo-
phosphate and cyclodiene insecticides have been
recorded in M and S form populations [15-37].
Descriptions of the underlying resistance mechanisms
and the mining of mutant alleles responsible for these
physiological adjustments have proved more proble-
matic. Several methods have been employed, in most
cases led by response-to-exposure assays. Sequencing of
known insecticide target site loci has identified point
mutations associated with resistance [38-40]. These
mutations induce amino acid substitutions leading to
alterations in the structural and chemical attributes of
target proteins, rendering them less susceptible to insec-
ticide binding. Such changes in insecticide affinity can
be assayed biochemically [41,42], and biochemical
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techniques also allow for the quantification of detoxifi-
cation enzyme activities in association with insecticide
resistance [43,44]. These assays are most informative
when backed by quantification of the effects of specific
insecticide synergists on resistance phenotype expres-
sion. Degenerate oligonucleotides designed from the
genome sequences of other insect species have been
used to isolate potential detoxification genes in An.
gambiae, and subsequent RNA transcription assays have
been used to quantify gene expressions in association
with resistance [45]. Facilitated by the sequencing of the
An. gambiae genome [46], gene regulation and expres-
sion of those genes associated with insecticide resistance
can now be quantified by microarray and subsequent
quantitative polymerase chain reaction assay (qPCR),
and specialised microarrays are commercially available
[27,47,48]. Lastly, genetic linkage disequilibrium analysis
and the physical mapping of insecticide resistance quan-
titative trait loci using proximity to microsatellite mar-
kers and single nucleotide polymorphisms (SNP’s) has
proved extremely useful [40,49-51]. These two
approaches are particularly robust because, unlike most
other methods, they make no prior assumptions about
the resistance mechanisms involved.

Pyrethroid and DDT resistance

The mechanism most commonly associated with resis-
tance to DDT and pyrethroids in An. gambiae is a
reduced target site sensitivity termed knock down resis-
tance (kdr). Two kdr mutations at position 1014 of the
S6 transmembrane segment of the sodium channel gene
have been identified. The L1014F mutation induces a
leucine to phenylalanine substitution whilst the L1014 S
mutation induces a substitution of the same leucine
with serine [38,39]. In both cases, polymerase chain
reaction (PCR) diagnostic assays have been developed
allowing for the genotyping of individual mosquitoes at
this locus, and the co-occurrence of both mutations in
single populations has been documented [52]. However,
questions over the reliability of inferring resistance phe-
notype based solely on the diagnosis of kdr genotype
have been raised, because correlations between pheno-
type and kdr genotype are obscure in some instances.
Recent data suggest that the correlation between
response-to-insecticide phenotype and kdr genotype in
An. gambiae is strongest in association with DDT,
weaker in association with permethrin (type I pyrethoid)
and weakest in association with deltamethrin (type II
pyrethroid) [31,36,53,54]. Correlations deviating signifi-
cantly from absolute imply the presence of resistance
factors other than kdr [36,54-56] and these likely involve
metabolic detoxification as has been demonstrated in
An. gambiae populations from Kenya [50], Nigeria,
Benin [27,48], Uganda [36] and Ghana [57,58].
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Metabolic detoxification is the most common mode of
insecticide resistance in insects [59]. In order for detoxi-
fying enzyme systems to produce effective resistant phe-
notypes, transcription and enzyme production must be
sufficient to catalyze the metabolism of insecticide at a
rate that prevents significant interaction between the
insecticide and its neuronal target. Metabolically
mediated pyrethroid resistance in An. gambiae is most
commonly based on P450 monooxygenase detoxifica-
tion, with esterases implicated in a few cases. Although
both of these enzyme classes are large, resistance tends
to emerge in association with the upregulated activities
of one or a very small number of genes [45,48,58].
There are also instances where kdr is not implicated in
DDT resistance in An. gambiae. In these cases the upre-
gulated expressions of specific glutathione-S transferases
(GST’s) are responsible for the metabolic conversion of
DDT [60,61], although single P450 genes have also been
shown to metabolise DDT [62,63]. Nevertheless, kdr is
widespread in An. gambiae [64] and there is a strong
trend toward increasing kdr frequencies in An. gambiae
populations owing to insecticide selection pressure [65].
Further, kdr haplotypes have arisen independently at
least four times in An. gambiae [66] and it is highly
likely that the presence of kdr in the M form was trans-
ferred through introgression from the S form [67].
These data show that the kdr locus presents as a strong
candidate for selection in the presence of DDT and type
I pyrethroids.

In summary, DDT resistance in An. gambiae is usually
conferred either by kdr or by GST mediated detoxifica-
tion, aligning best with the development of single major
effect genes. On the other hand, pyrethroid resistance is
most likely to emerge as a combination of kdr and
metabolic detoxification, aligning best with the concur-
rent development of several resistance factors. Micro-
array analysis of a Nigerian An. gambiae population pro-
vides a useful example of a resistance confederation,
where differential gene expression identifies several
resistance associated factors including detoxification
genes and cuticle deposition genes. These present
in this population in conjunction with kdr, leading to
significant pyrethroid resistance [27].

Carbamate and organophosphate resistance

Carbamates and organophosphates share acetylcholines-
terase as their target site, and at least two functional
mutations in acetylcholinesterase 1 (ace-1) have been
identified in insect species that offer reduced target sen-
sitivity to intoxication [68]. One of these, ace-IR
(G119S), is most commonly associated with resistance
to these insecticides in An. gambiae [30,69,70]. This
mutation is found in association with resistance in
the M and S molecular forms [34], and sequence
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comparison between forms at this locus suggests a
unique mutational event that co-occurs in both forms
through introgression from the S form [71].

Esterase mediated sequestration of carbamates and
organophosphates is documented for a number of insect
species [72-74] and there is some evidence of this mode
of resistance to the carbamate bendiocarb in An. gam-
biae S form from the Democratic Republic of Congo
(unpublished data). This mode of resistance also devel-
ops as a single major effect that tends not to appear
in conjunction with acetylcholinesterase target site
mutations.

Cyclodiene and phenyl pyrazole resistance
Cyclodienes and the phenyl pyrazole insecticide fipronil
are antagonists of the GABA-gated chloride channel.
Dieldrin resistance was first described in An. gambiae in
Nigeria [75]. It was shown to be inherited in a simple
Mendelian fashion with evidence of two resistance
alleles for the same locus, one dominant and the other
codominant [76-78]. Resistance to dieldrin (rdl) is wide-
spread in An. gambiae, particularly in the West African
region [79], and has been associated with mutations
occurring in the M2 transmembrane domain of the y
amino-butyric acid (GABA) receptor in various insect
species [80]. Cross resistance between dieldrin and
fipronil has been recorded in the two An. gambiae
laboratory strains IAN P20 and CIG [81] and a mutation
conferring the substitution alanine296 to glycine is asso-
ciated with dieldrin resistance in these strains [40]. Evi-
dence of a P450 mediated metabolic component, in
addition to rdl, has been suggested for an An. gambiae
S form population in Ghana [79].

Pleiotropy

Pleiotropy is used here in the classical sense as the effect
of a single gene/factor on multiple traits. Pleiotropy is a
direct consequence of reduced target site sensitivity
mutations (kdr, Ace-1R and rd[), which not only confer
reduced sensitivity to insecticide but also allow for con-
tinued ion flow regulation and enzyme function. This
dual functionality also accounts for the highly conserved
nature of these mutations across insect species.

The most important pleiotropic effect of insecticide
resistance is reduced fitness [82]. Fitness costs are
usually measured in terms of adaptive and reproductive
characteristics as well as comparative measurements of
resistance gene frequencies prior to and following insec-
ticide selection. It is likely that kdr in An. gambiae car-
ries reduced fitness in the absence of insecticide [65],
although super-kdr in house flies appears stable [83], as
does kdr in the peach-potato aphid [84]. There is how-
ever evidence of selection against kdr homozygotes in
peach potato aphids in the absence of insecticide [85].
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Anopheles gambiae individuals homozygous for ace-1R
are likely to show enhanced fitness only in the presence
of insecticide [86], because their pupal mortality is high
and their body weight compromised in comparison to
wild-type homozygous individuals [70]. Dieldrin resis-
tance in association with rdl mutations reduces fitness
in the absence of cyclodienes in An. gambiae and An.
stephensi [87,88] and, to a lesser extent, in Drosophila
[1]. In An. gambiae, homozygous resistant (RR) samples
showed reduced fecundity in females and reduced mat-
ing competitiveness and stimulus flight response in
males compared to the other genotypes [87,88].

DDT resistance by GST mediated metabolism does
not incur a fitness cost in An. sacharovi [89], and this is
likely the case for An. gambiae as well [90]. Similarly,
P450 mediated pyrethroid resistance does not incur a
fitness cost in An. funestus [91]. A common observation
in these cases is the persistence of resistance pheno-
types, in wild populations and laboratory colonies, in
the absence of insecticide selection. However, a P450
pyrethroid resistance genotype associates with reduced
fitness in Culex pipiens quinquefasciatus [92].

The effect of pleiotropy is also important at the
chromosomal level. For example, dieldrin resistance in
An. gambiae has been chromosomally mapped to divi-
sion 23C on chromosome arm 2L [46,93,94]. This
position falls within the breakpoints of paracentric
inversion 2La, which is an extremely common inver-
sion polymorphism in An. gambiae. Inversion 2La is
highly stable as a polymorphism in the An. gambiae
IAN P20 and CIG laboratory colonies [81], because
both show positive heterosis whereby 2La+/2La hetero-
zygotes are typically found in excess when compared
to that expected under Hardy-Weinberg assortment.
Further, dieldrin resistant and susceptible females,
characterised as such by their responses to dieldrin
exposure, show a close association between the “stan-
dard” arrangement 2La+ and the resistance phenotype.
Individuals carrying the 2La+/2La+ and 2La+/2La
arrangements were able to survive exposure to dieldrin
whilst those with the alternative 2La\2La arrangement
could not, with only a few exceptions in CIG [81].
These data suggest that dieldrin resistance in these
two colonies is continually maintained at a high level
(phenotypic frequency of approximately 75%) by the
continual maintenance of inversion 2La as a poly-
morphism [90]. Despite the effects of a fitness cost
associated with dieldrin resistance in An. gambiae
[87,88], cross-over suppression associated with inver-
sion polymorphism coupled with the positive heterotic
effect of 2La in these colonies ensures the continual
inheritance of the dieldrin resistance allele through
successive generations without insecticide selection.
Generally, inversion heterokaryotypes carry a fitness
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advantage through multiple heterozygosity at loci
within the breakpoints [95], and this enhanced fitness
is inadvertently conferred on the dieldrin locus by link-
age disequilibrium. Inversion 2La is also associated
with larval habitat [96], adaptation to aridity [97,98],
resistance to desiccation [99] and Plasmodium infectiv-
ity [100]. These traits affect the assortment and fre-
quencies of 2La genotypes, and are likely to exert a
strong influence on the frequency of dieldrin resistance
where it occurs in An. gambiae.

The development of multiple resistance mechanisms
conferring resistance to multiple insecticides in single
populations has been recorded in An. gambiae
[19,21,101]. These scenarios are likely to have developed
as a result of prolonged insecticide selection, and linkage
disequilibria between their controlling loci may influ-
ence the spectrum and frequencies of within population
resistance phenotypes over time, depending on the con-
ditions of selection.

Under prolonged insecticide selection, the relative
dominance or recessivity of resistance alleles defines
the rate at which they are likely to approach fixation.
Most reduced target site sensitivity mutations are
recessive, and recessive alleles only present for selec-
tion when homozygous. As such the selection for resis-
tance under conditions of recessivity is initially slow
because most resistance allele carriers are heterozygous
at affected loci. However, the complete exclusion of
wild-type alleles under conditions of resistance reces-
sivity enables a rapid subsequent increase in resistance
allele frequency toward fixation. Resistance allele dom-
inance can also lead to fixation under selection but the
process tends to be prolonged because wild-type alleles
survive selection in heterozygous carriers. Those fac-
tors controlling enzyme-mediated detoxification are
likely to be dominant or co-dominant in expression.
Whether by dominance or recessivity, resistance allele
fixation can occur if insecticide selection is sufficiently
intense and prolonged, and fixation at resistance loci
will ultimately negate the deleterious fitness effects of
resistance alleles.

The reduced fitness effects of deleterious resistance
alleles can also be compensated under conditions of
prolonged selection without the need for fixation. Pro-
longed selection allows for the development of small
effect compensatory mutations whose additive phenoty-
pic effects negate the reduced fitness associated with the
major effect gene [102].

Conclusion

Insecticide resistance mechanisms and their controlling
genetic factors are generally highly conserved in insects.
Despite this, the incidence of insecticide resistance is
increasing in malaria vector species. In An. gambiae,
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insecticide resistance phenotypes usually develop under
the control of single major genetic factors. Those factors
involving mutations in target site loci are likelier to
reduce fitness and are only advantageous to carriers in
the presence of insecticide. Selection generally acts
against these alleles and they tend to drift out of popula-
tions in the absence of insecticide. However, a combina-
tion of factors producing a single resistance phenotype
also occurs in some instances. These factors invariably
involve metabolic detoxification, are less likely to reduce
reproductive and physiological fitness in carriers, and
tend to be stable over time, even in the absence of
insecticide selection. Resistance allele fixation, compen-
satory mutations and linkage disequilibrium - particu-
larly that associated with polymorphic chromosomal
inversions - can lend stability to otherwise deleterious
resistance alleles, facilitating their continual inheritance
through generations regardless of the presence or
absence of selection.

Malaria vector control is becoming increasingly reliant
on successfully managing insecticide resistance, which
forms a crucial part of broader integrated vector man-
agement (IVM) [103]. Therefore, the characterisation of
resistance mechanisms and their pleiotropic effects is
important, as this information offers directives for each
target vector population by identifying which control
strategies are likely to prove most effective against them.

Acknowledgements
Special thanks to the anonymous reviewers of this manuscript for their
invaluable input and advice.

Author details

'Malaria Entomology Research Unit, School of Pathology of the University of
the Witwatersrand and the National Health Laboratory Service,
Johannesburg, South Africa. Vector Control Reference Unit, National
Institute for Communicable Diseases, NHLS, Private Bag X4, Sandringham,
2131, South Africa.

Authors’ contributions
BDB drafted the manuscript, LLK edited and contributed to certain sections.
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 14 July 2010 Accepted: 17 August 2010
Published: 17 August 2010

References

1. French-Constant RH, Daborn PJ, Le Goff G: The genetics and genomics of
insecticide resistance. Trends Genet 2004, 20:163-170.

2. Green CA: Cytological maps for the practical identification of females of
three freshwater species of the Anopheles gambiae complex. Ann Trop
Med Parasitol 1972, 66:143-147.

3. Hunt RH: Cytological studies on a new member of the Anopheles
gambiae complex. Trans R Soc Trop Med and Hyg 1972, 66:532.

4. Scott JA, Brogdon WG, Collins FH: Identification of single specimens of
the Anopheles gambiae complex by the polymerase chain reaction. Am J
Trop Med d Hyg 1993, 49:520-529.

20.

21.

22.

23.

24.

Page 5 of 8

Coetzee M, Craig M, Le Seur D: Distribution of African malaria mosquitoes
belonging to the Anopheles gambiae complex. Parasitol Today 2000,
16:74-77.

Coluzzi M, Petrarca V, Di Deco MA: Chromosomal inversion intergradation
and incipient speciation in Anopheles gambiae. Boletino Zoologica 1985,
52:45-63.

Favia G, Della Torre A, Bagayoko M, Lanfrancotti A, Sagnon NF, Toure YT,
Coluzzi M: Molecular identification of sympatric chromosomal forms of
Anopheles gambiae and further evidence of their reproductive isolation.
Insect Mol Biol 1997, 6:377-383.

della Torre A, Fanello C, Akogbeto M, Dossou-yovo J, Favia G, Petrarca V,
Coluzzi M: Molecular evidence of incipient speciation within Anopheles
gambiae s.s. in West Africa. Insect Mol Biol 2001, 10:9-18.

Costantini C, Ayala D, Guelbeogo WM, Pombi M, Some CY, Bassole IHN,
Ose K, Fotsing J, Sagnon N, Fontenille D, Besansky NJ, Simard F: Living at
the edge: biogeographic patterns of habitat segregation conform to
speciation by niche expansion in Anopheles gambiae. BMC Ecol 2009,
9:16.

Simard F, Ayala D, Kamdem GC, Pombi M, Etouna J, Ose K, Fotsing J-M,
Fontenille D, Besansky NJ, Costantini C: Ecological niche partitioning
between the M and S molecular forms of Anopheles gambiae in
Cameroon: the ecological side of speciation. BMC Ecol 2009, 9:17.

della Torre A, Costantini C, Besansky NJ, Caccone A, Petrarca V, Powell JR,
Coluzzi M: Speciation within Anopheles gambiae - the glass is half full.
Science 2002, 298:115-117.

Stump AD, Fitzpatrick MC, Lobo NF, Traoré S, Sagnon NF, Costantini C,
Collins FH, Besansky NJ: Centromere-proximal differentiation and
speciation in Anopheles gambiae. Proc Natl Acad Sci USA 2005,
102:15930-15935.

Lehmann T, Diabate A: The molecular forms of Anopheles gambiae: A
phenotypic perspective. Infect Genet Evol 2008, 8:737-746.

World Health Organisation: Test procedures for insecticide resistance
monitoring in malaria vectors, bio-efficacy and persistence of
insecticides on treated surfaces. Document WHO/CDS/CPC/MAL/98.12
Geneva, Switzerland 1998 [http://whglibdocwho.int/hg/1998/
WHO_CDS_CPC_MAL_98.12.pdf].

Chandre F, Darrier F, Manga L, Akogbeto M, Faye O, Mouchet J, Guillet P:
Status of pyrethroid resistance in Anopheles gambiae sensu lato. Bulletin
World Health Organisation 1999, 77:230-234.

Coetzee M, Horne DWK, Brooke BD, Hunt RH: DDT, dieldrin and pyrethroid
resistance in African malaria vector mosquitoes: an historical review and
implications for future malaria control in southern Africa. S Afr J Sci 1999,
95:215-218.

Etang J, Manga L, Chandre F, Guillet P, Fondjo E, Mimpfoundi R, Toto JC,
Fontenille D: Insecticide susceptibility status of Anopheles gambiae s.l.
(Diptera: Culicidae) in the Republic of Cameroon. J Med Entomol 2003,
40:491-497.

Casimiro S, Coleman M, Hemingway J, Sharp B: Insecticide resistance in
Anopheles arabiensis and Anopheles gambiae from Mozambique. J Med
Entomol 2006, 43:276-282.

Coetzee M, van Wyk P, Booman M, Koekemoer LL, Hunt RH: Insecticide
resistance in malaria vector mosquitoes in a gold mining town in Ghana
and implications for malaria control. Bull Soc Pathol Exot 2006, 99:400-403.
Tia E, Akogbeto M, Koffi A, Toure M, Adja AM, Moussa K, Yao T, Carnevale P,
Chandre F: Pyrethroid and DDT resistance of Anopheles gambiae s.s.
(Diptera: Culicidae) in five agricultural ecosystems from Cote-d'Ivoire.
Bull Soc Pathol Exot 2006, 99:278-282.

Corbel V, N'Guessan R, Brengues C, Chandre F, Djogbenou L, Martin T,
Akogbeto M, Hougard JM, Rowland M: Multiple insecticide resistance
mechanisms in Anopheles gambiae and Culex quinquefasciatus from
Benin, West Africa. Acta Trop 2007, 101:207-216.

Sharp BL, Ried! FC, Govender D, Kuklinski J, Kleinschmidt I: Malaria vector
control by indoor residual insecticide spraying on the tropical island of
Bioko, Equatorial Guinea. Malar J 2007, 6:52.

Adasi K, Hemingway J: Susceptibility to three pyrethroids and detection
of knockdown resistance mutation in Ghanaian Anopheles gambiae
sensu stricto. J Vector Ecol 2008, 33:255-262.

Chouaibou M, Etang J, Brevault T, Nwane P, Hinzoumbe CK, Mimpfoundi R,
Simard F: Dynamics of insecticide resistance in the malaria vector
Anopheles gambiae s.|. from an area of extensive cotton cultivation in
Northern Cameroon. Trop Med Int Health 2008, 13:476-486.


http://www.ncbi.nlm.nih.gov/pubmed/15036810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15036810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5021564?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5021564?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10652493?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10652493?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9359579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9359579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11240632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11240632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19460144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19460144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19460144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19460146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19460146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19460146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12364784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16247019?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16247019?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18640289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18640289?dopt=Abstract
http://whqlibdoc.who.int/hq/1998/WHO_CDS_CPC_MAL_98.12.pdf
http://whqlibdoc.who.int/hq/1998/WHO_CDS_CPC_MAL_98.12.pdf
http://www.ncbi.nlm.nih.gov/pubmed/14680116?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14680116?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16619611?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16619611?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17253060?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17253060?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17253060?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17111979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17111979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17359927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17359927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17359927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17474975?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17474975?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17474975?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19263844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19263844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19263844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18248566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18248566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18248566?dopt=Abstract

Brooke and Koekemoer Parasites & Vectors 2010, 3:74
http://www.parasitesandvectors.com/content/3/1/74

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Kamau L, Agai D, Matoke D, Wachira L, Gikandi G, Vulule JM: Status of
insecticide susceptibility in Anopheles gambiae sensu lato and Anopheles
funestus mosquitoes from western Kenya. J Insecticide Sci 2008, 8:11.
Okoye PN, Brooke BD, Koekemoer LL, Hunt RH, Coetzee M:
Characterisation of DDT, pyrethroid and carbamate resistance in
Anopheles funestus from Obuasi, Ghana. Trans R Soc Trop Med Hyg 2008,
102:591-598.

Awolola TS, Oduola OA, Strode C, Koekemoer LL, Brooke BD, Ranson H:
Evidence of multiple pyrethroid resistance mechanisms in the malaria
vector Anopheles gambiae sensu stricto from Nigeria. Trans R Soc Trop
Med Hyg 2009, 103:1139-1145.

Betson M, Jawara M, Awolola S: Status of insecticide susceptibility in
Anopheles gambiae s.I. from malaria surveillance sites in The Gambia.
Malar J 2009, 8:187.

Dabire KR, Diabate A, Namountougou M, Toe KH, Ouari A, Kengne P,

Bass C, Baldet T: Distribution of pyrethroid and DDT resistance and the
L1014F kdr mutation in Anopheles gambiae s.|. from Burkina Faso (West
Africa). Trans R Soc Trop Med Hyg 2009, 103:1113-1120.

Dabire KR, Diabate A, Namontougou M, Djogbenou L, Kengne P, Simard F,
Bass C, Baldet T: Distribution of insensitive acetylcholinesterase (ace-1R)
in Anopheles gambiae s.I. populations from Burkina Faso (West Africa).
Trop Med Int Health 2009, 14:396-403.

Ramphul U, Boase T, Bass C, Okedi LM, Donnelly MJ, Muller P: Insecticide
resistance and its association with target-site mutations in natural
populations of Anopheles gambiae from eastern Uganda. Trans R Soc
Trop Med Hyg 2009, 103:1121-1126.

Ranson H, Abdalla H, Badolo A, Guelbeogo WM, Kerah-Hinzoumbe C,
Yangalbe-Kalnone E, Sagnon N, Simard F, Coetzee M: Insecticide resistance
in Anopheles gambiae: data from the first year of a multi-country study
highlight the extent of the problem. Malar J 2009, 8:299.

Vezenegho S, Brooke BD, Hunt RH, Coetzee M, Koekemoer LL: Malaria
vector mosquito composition and insecticide susceptibility status in
Guinea Conakry, West Africa. Med Vet Entomol 2009, 23:326-334.

Ahoua Alou LP, Koffi AA, Adja MA, Tia E, Kouassis PK, Kone M, Chandre F:
Distribution of ace-1R and resistance to carbamates and
organophosphates in Anopheles gambiae s.s. populations from Cote
d'lvoire. Malar J 2010, 9:167.

Carnevale P, Toto JC, Guibert P, Keita M, Manguin S: Entomological survey
and report of a knockdown resistance mutation in the malaria vector
Anopheles gambiae from the Republic of Guinea. Trans R Soc Trop Med
Hyg 2010, 104:484-489.

Verhaegen K, Van Bortel W, Roelants P, Okello PE, Talisuna A, Coosemans M:
Spatio-temporal patterns in kdr frequency in permethrin and DDT
resistant Anopheles gambiae s.s. from Uganda. Am J Trop Med Hyg 2010,
82:566-573.

Yadouleton AW, Padanou G, Asidi A, Moiroux N, Bio-Bangana S, Corbel V,
N'Guessan R, Gbenou D, Yacoubou |, Gazard K, Akogbetou M: Insecticide
resistance status in Anopheles gambiae in southern Benin. Malar J 2010,
9:83.

Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berger JB,
Devonshire AL, Guillet P, Pasteur N, Pauron D: Molecular characterization
of pyrethroid knockdown resistance (kdr) in the major malaria vector
Anopheles gambiae s.s. Insect Mol Biol 1998, 7:179-184.

Ranson H, Jenson B, Vulule JM, Wang X, Hemingway J, Collins FH:
Identification of a point mutation in the voltage-gated sodium channel
gene of Kenyan Anopheles gambiae associated with resistance to DDT
and pyrethroids. Insect Mol Biol 2000, 9:491-497.

Du W, Awolola TS, Howell P, Koekemoer LL, Brooke BD, Benedict MQ,
Coetzee M, Zheng L: Independent mutations in the Rdl locus confer
dieldrin resistance to Anopheles gambiae and Anopheles arabiensis. Insect
Mol Biol 2005, 14:179-183.

Hemingway J, Smith C, Jayawardena KGlI, Herath PRJ: Field and laboratory
detection of the altered acetylcholinesterase genes which confer
organophosphate and carbamate resistance in mosquitoes (Diptera:
Culicidae). Bull Entomol Res 1986, 76:559-565.

Brogdon WG: Microassay of acetylcholinesterase activity in small
portions of single mosquito homogenates. Comp Biochem Physiol 1988,
90:145-150.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

59.

Page 6 of 8

Hemingway J: A note on simple biochemical methods for resistance
detection and their field application in Sri Lanka. Pestic Sci 1989,
27:281-285.

Penilla RP, Rodriguez AD, Hemingway J, Torres JL, Arrendo-Jimenez J,
Rodriguez MH: Resistance management strategies in malaria vector
mosquito control. Baseline data for a large scale field trial against
Anopheles albimanus in Mexico. Med Vet Entomol 1998, 12:217-233.

Nikou D, Ranson H, Hemingway J: An adult-specific CYP6 P450 gene is
overexpressed in a pyrethroid-resistant strain of the malaria vector,
Anopheles gambiae. Gene 2003, 318:91-102.

Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR,
Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M,
Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P,
Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J,

Blass C, Bolanos R, Boscus D, Barnstead M, et al: The genome sequence of
the malaria mosquito Anopheles gambiae. Science 2002, 298:129-149.
David JP, Strode C, Vontas J, Nikou D, Vaughan A, Pignalelli PM, Louis C,
Hemingway J, Ranson H: The Anopheles gambiae detoxification chip: a
highly specific microarray to study metabolic based insecticide
resistance in malaria vectors. Proc Natl Acad Sci USA 2005, 102:4080-4084.
Djouaka RF, Bakare AA, Coulibaly ON, Akogbeto MC, Ranson H,
Hemingway J, Strode C: Expression of the cytochrome P450 s, CYP6P3
and CYP6M2 are significantly elevated in multiple pyrethroid resistant
populations of Anopheles gambiae s.s. from Southern Benin and Nigeria.
BMC Genomics 2008, 9:538.

Ranson H, Jensen B, Wang X, Prapanthadara L, Hemingway J, Collins FH:
Genetic mapping of two loci affecting DDT resistance in the malaria
vector Anopheles gambiae. Insect Mol Biol 2000, 9:499-507.

Ranson H, Paton MG, Jensen B, McCarroll L, Vaughan A, Hogan JR,
Hemingway J, Collins F: Genetic mapping of genes conferring permethrin
resistance in the malaria vector, Anopheles gambiae. Insect Mol Biol 2004,
13:379-386.

Black IV WC, Gorrochetegui-Escalante N, Randle NP, Donnelly MJ: The Yin
and Yang of linkage disequilibrium: mapping of genes and nucleotides
conferring insecticide resistance in insect disease vectors. Adv Exp Med
Biol 2008, 627:71-83.

Pinto J, Lynd A, Elissa N, Donnelly MJ, Costa C, Gentile G, Caccone A, do
Rosario VE: Co-occurrence of East and West African kdr mutations
suggests high levels of resistance to pyrethroid insecticides in Anopheles
gambiae from Libreville, Gabon. Med Vet Entomol 2006, 20:27-32.

Reimer L, Fondjo E, Patchoke S, Diallo B, Ng A, Ndjemai HM, Atangana J,
Traore SF, Lanzaro G, Cornel AJ: Relationship between kdr mutation and
resistance to pyrethroid and DDT insecticides in natural populations of
Anopheles gambiae. J Med Entomol 2008, 45:260-266.

Nwane P, Etang J, Chouaibou M, Toto JC, Kerah-Hinzoumbe C,
Mimpfoundi R, Awono-Ambene HP, Simard F: Trends in DDT and
pyrethroid resistance in Anopheles gambiae s.s. populations from urban
and agro-industrial settings in southern Cameroon. BMC Infect Dis 2009,
9:163.

Brooke BD: kdr: Can a single mutation produce an entire insecticide
resistance phenotype? Trans R Soc Trop Med Hyg 2008, 102:524-525.
Protopopoff N, Verhaeghen K, Van Bortel W, Roelants P, Marcotty T, Baza D,
D'Alessandro U, Coosemans M: A significant increase in kdr in Anopheles
gambiae is associated with an intensive vector control intervention in
Burundi highlands. Trop Med Int Health 2008, 13:1479-1487.

Muller P, Donnelly MJ, Ranson H: Transcription profiling of a recently
colonised pyrethroid resistant Anopheles gambiae strain from Ghana.
BMC Genomics 2007, 8:36.

Muller P, Warr E, Stevenson BJ, Pignatelli PM, Morgan JC, Steven A,

Yawson AE, Mitchell SN, Ranson H, Hemingway J, Paine M, Donnelly MJ:
Field-caught permethrin-resistant Anopheles gambiae overexpress
CYP6P3, a P450 that metabolises pyrethroids. PLoS Genet 2008, 4:
€1000286.

Hemingway J, Ranson H: Insecticide resistance in insect vectors of human
disease. Annu Rev Entomol 2000, 45:371-391.

Ranson H, Cornel AJ, Fournier D, Vaughan A, Collins FH, Hemingway J:
Cloning and localization of a glutathione S-transferase class 1 gene from
Anopheles gambiae. J Biol Chem 1997, 272:5464-5468.


http://www.ncbi.nlm.nih.gov/pubmed/18405930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18405930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18829056?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18829056?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19656399?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19656399?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19246066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19246066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19246066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19254231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19254231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19303125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19303125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19303125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20015411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20015411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20015411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19941598?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19941598?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19941598?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20553593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20553593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20553593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20227096?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20227096?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20227096?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20348500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20348500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20334637?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20334637?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9535162?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9535162?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9535162?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11029667?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11029667?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11029667?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15796751?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15796751?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9737593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9737593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9737593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14585502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14585502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14585502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12364791?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12364791?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15753317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15753317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15753317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19014539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19014539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19014539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11029668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11029668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15271210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15271210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18510015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18510015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18510015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16608487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16608487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16608487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18402142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18402142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18402142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19793389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19793389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19793389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18295809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18295809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18983277?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18983277?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18983277?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17261191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17261191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19043575?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19043575?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10761582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10761582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9038148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9038148?dopt=Abstract

Brooke and Koekemoer Parasites & Vectors 2010, 3:74
http://www.parasitesandvectors.com/content/3/1/74

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Wang Y, Qiu L, Ranson H, Lumjuan N, Hemingway J, Setzer WN, Meehan EJ,
Chen L: Structure of an insect epsilon class glutathione S-transferase
from the malaria vector Anopheles gambiae provides an explanation for
the high DDT-detoxifying activity. J Struct Biol 2008, 164:228-235.

Chiu TL, Wen Z, Rupasinghe SG, Schuler MA: Comparative molecular
modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of
metabolizing DDT. Proc Natl Acad Sci USA 2008, 105:8855-8860.

Chung H, Bogwitz MR, McCart C, Andrianopoulos A, French-Constant RH,
Batterham P, Daborn PJ: Cis-regulatory elements in the Accord
retrotransposon result in tissue-specific expression of the Drosophila
melanogaster insecticide resistance gene Cyp6g1. Genetics 2007,
175:1071-1077.

Santolamazza F, Calzetta M, Etang J, Barrese E, Dia |, Caccone A,

Donnelly MJ, Petrarca V, Simard F, Pinto J, della Torre A: Distribution of
knock-down resistance mutations in Anopheles gambiae molecular forms
in west and west-central Africa. Malar J 2008, 7.74.

Lynd A, Weetman D, Barbosa F, Egyir Yawson A, Mitchell S, Pinto J,
Hastings I, Donnelly MJ: Field, genetic, and modeling approaches show
strong positive selection acting upon an insecticide resistance mutation
in Anopheles gambiae s.s. Mol Biol Evo 2010, 27:1117-1125.

Pinto J, Lynd A, Vincente JL, Santolamazza F, Randle NP, Gentile G,
Moreno M, Simard F, Charlwood JD, do Rosario VE, Caccone A, Della

Torre A, Donnelly MJ: Multiple origins of knockdown resistance
mutations in the Afrotropical mosquito vector Anopheles gambiae. PLoS
ONE 2007, 2:¢1243.

Weill M, Chandre F, Brengues C, Manguin S, Akogbeto M, Pasteur N,
Guillet P, Raymond M: The kdr mutation occurs in the Mopti form of
Anopheles gambiae s.s. through introgression. Insect Mol Biol 2000,
9:451-455.

Alout H, Berthomieu A, Cui F, Tan Y, Berticat C, Qiao C, Weill M: Different
amino-acid substitutions confer insecticide resistance through
acetylcholinesterase 1 insensitivity in Culex vishnui and Culex
tritaeniorhynchus (Diptera: Culicidae) from China. J Med Entomol 2007,
44:463-469.

Djogbenou L, Dabire R, Diabate A, Kengne P, Akogbeto M, Hougard JM,
Chandre F: Identification and geographic distribution of the ACE-1(R)
mutation in the malaria vector Anopheles gambiae in south-western
Burkina Faso, West Africa. Am J Trop Med Hyg 2008, 78:298-302.
Djogbenou L, Noel V, Agnew P: Costs of insensitive acetylcholinesterase
insecticide resistance for the malaria vector Anopheles gambiae
homozygous for the G119 S mutation. Malar J 2010, 9:12.

Djogbenou L, Chandre F, Berthomieu A, Dabire R, Koffi A, Alout H, Weill M:
Evidence of introgression of the ace-1(R) mutation and of the ace-1
duplication in West African Anopheles gambiae s. s. PLoS One 2008, 3:
e2172.

Hemingway J, Karunaratne SHPP: Mosquito carboxylesterases: a review of
the molecular biology and biochemistry of a major insecticide resistance
mechanism. Med Vet Entomol 1998, 12:1-12.

Wirth MC, Marquine M, Georghiou GP, Pasteur N: Esterases A2 and B2 in
Culex quinquefasciatus (Diptera: Culicidae): role in organophosphate
resistance and linkage. J Med Entomol 1990, 27:202-206.

Li CX, Dong YD, Song FL, Zhang XL, Gu WD, Zhao TY: Company
amplification of estalpha2/estbeta2 and correlation between esterase
gene copy number and resistance to insecticides in the field Culex
pipiens pallens strains collected from Beijing, China. J Med Entomol 2009,
46:539-545.

Elliott R: Insecticide resistance in Anopheles gambiae Giles. Nature 1956,
177:532-533.

Davidson G: Insecticide resistance in Anopheles gambiae Giles. A case of
simple Mendelian inheritance. Nature 1956, 178:4535.

Davidson G, Hamon J: A case of dominant dieldrin resistance in
Anopheles gambiae. Nature 1962, 196:1012.

Haridi AM: Linkage studies on DDT and dieldrin resistance in species A
and species B of the Anopheles gambiae complex. Bulletin of the World
Health Organisation 1974, 50:441-448.

Brooke BD, Hunt RH, Matambo TS, Koekemoer LL, van Wyk P, Coetzee M:
Dieldrin resistance in the malaria vector Anopheles gambiae in Obuasi,
Ghana. Med Vet Entomol 2006, 20:294-299.

Ffrench-Constant RH, Anthony N, Aronstein K, Rocheleau T, Stilwell G:
Cyclodiene insecticide resistance: from molecular to population
genetics. Annu Rev Entomol 2000, 45:449-466.

82.

83.

84.

85.

86.

87.

88.

89.

90.

9.

92.

93.

94.

95.

96.

97.

98.

99.

100.

o

Page 7 of 8

Brooke BD, Hunt RH, Coetzee M: A dieldrin resistance mechanism in the
malaria vector Anopheles gambiae Giles assorts with inversion 2La. Med
Vet Entomol 2000, 14:190-194.

Georghiou GP, Taylor CE: Genetic and biological influences in the
evolution of insecticide resistance. J Econ Entomol 1977, 70:319-323.
Rinkevich FD, Hamm RL, Geden CJ, Scott JG: Dynamics of insecticide
resistance alleles in house fly populations from New York and Florida.
Insect Biochem Mol Biol 2007, 37:550-558.

Guillemaud T, Guillemaud T, Brun A, Anthony N, Sauge MH, Boll R,
Delorme R, Fournier D, Lapchin |, Vanlerberghe-Masuffi F: Incidence of
insecticide resistance alleles in sexually-reproducing populations of the
peach-potato aphid Myzus persicae (Hemiptera: Aphididae) from
southern France. Bull Entomol Res 2003, 93:289-297.

Anstead JA, Mallet J, Denholm I: Temporal and spatial incidence of alleles
conferring knockdown resistance to pyrethroids in the peach-potato
aphid, Myzus persicae (Hemiptera: Aphididae), and their association with
other insecticide resistance mechanisms. Bull Entomol Res 2007,
97:243-253.

Alout H, Djogbenou L, Berticat C, Chandre F, Weill M: Comparison of
Anopheles gambiae and Culex pipiens acetycholinesterase 1 biochemical
properties. Comp biochem Physiol. Part B, Biochemistry and Molecular Biology
2008, 150:271-277.

Rowland MW: Behaviour and fitness of yYHCH/dieldrin resistant and
susceptible female Anopheles gambiae and An. stephensi mosquitoes in
the absence of insecticide. Med Vet Entomol 1991, 5:193-206.

Rowland MW: Activity and mating competitiveness of yHCH/dieldrin
resistant and susceptible male and virgin female Anopheles gambiae and
An. stephensi mosquitoes, with assessment of an insecticide rotation
strategy. Med Vet Entomol 1991, 5:207-222.

Hemingway J, Small GJ, Monro A, Sawyer BV, Kasap H: Insecticide
resistance gene frequencies in Anopheles sacharovi populations of the
Cukurova plain, Adana Province, Turkey. Med Vet Entomol 1992, 6:342-348.
Brooke BD, Hunt RH, Chandre FC, Carnevale P, Coetzee M: Stable
chromosomal inversion polymorphisms and insecticide resistance in the
malaria vector mosquito Anopheles gambiae (Diptera: Culicidae). J Med
Entomol 2002, 39:568-573.

Okoye PN, Brooke BD, Hunt RH, Coetzee M: Relative developmental and
reproductive fitness associated with pyrethroid resistance in the major
southern African malaria vector Anopheles funestus. Bull Entomol Res 2007,
97:599-605.

Hardstone MC, Lazarro BP, Scott JG: The effect of three environmental
conditions on the fitness of cytochrome P450 monooxygenase-
mediated permethrin resistance in Culex pipiens quinquefasciatus. BMC
Evol Biol 2009, 9:42.

Hunt RH: Location of genes on chromosome arms in the Anopheles
gambiae group of species and their correlation to linkage data for other
anopheline mosquitoes. Med Vet Entomol 1987, 1:81-88.

Zheng L, Benedict MQ, Cornel AJ, Collins FH, Kafatos FC: An integrated
genetic map of the African human malaria vector mosquito, Anopheles
gambiae. Genetics 1996, 143:941-952.

Haldane JBS: The conditions for coadaptation in polymorphism for
inversions. J Genet 1957, 55:218-225.

Manoukis NC, Powell JR, Toure MB, Sacko A, Edillo FE, Coulibaly MB,

Traore SF, Taylor CE, Besansky NJ: A test of the chromosomal theory of
ecotypic speciation in Anopheles gambiae. Proc Natl Acad Sci USA 2008,
105:2940-2945.

Coluzzi M, Sabatini A, Petrarca V, Di Deco MA: Chromosomal
differentiation and adaptation to human environments in the Anopheles
gambiae complex. Trans R Soc Trop Med Hyg 1979, 73:483-497.

Bayoh MN, Thomas CJ, Lindsay SW: Mapping distributions of
chromosomal forms of Anopheles gambiae in West Africa using climate
data. Med Vet Entomol 2001, 15:267-274.

Gray EM, Rocca KAC, Costantini C, Besansky NJ: Inversion 2La is associated
with enhanced desiccation resistance in Anopheles gambiae. Malar J
2009, 8:215.

Petrarca V, Beier JC: Intraspecific chromosomal polymorphism in the
Anopheles gambiae complex as a factor affecting malaria transmission in
the Kisumu area of Kenya. Am J Trop Med Hyg 1992, 46:229-237.

. Dabire KR, Diabate A, Djogbenou L, Ouari A, N'Guessan R, Ouedraogo JB,

Hougard JM, Chandre F, Baldet T: Dynamics of multiple insecticide


http://www.ncbi.nlm.nih.gov/pubmed/18778777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18778777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18778777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18577597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18577597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18577597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17179088?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17179088?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17179088?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18445265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18445265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18445265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18043750?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18043750?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11029663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11029663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17547232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17547232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17547232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17547232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18256433?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18256433?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18256433?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20070891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20070891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20070891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18478097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18478097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9513933?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9513933?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9513933?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2093766?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2093766?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2093766?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19496425?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19496425?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19496425?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19496425?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/13321902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14031348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14031348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17044880?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17044880?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10761585?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10761585?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10872863?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10872863?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/874142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/874142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17517332?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17517332?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12908914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12908914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12908914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12908914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17524156?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17524156?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17524156?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17524156?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1722728?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1722728?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1722728?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1722729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1722729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1722729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1722729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1463899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1463899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1463899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12144286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12144286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12144286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17997873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17997873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17997873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19228410?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19228410?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19228410?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2980962?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2980962?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2980962?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8725240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8725240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8725240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18287019?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18287019?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/394408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/394408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/394408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11583443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11583443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11583443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19772577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19772577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1539757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1539757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1539757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18817564?dopt=Abstract

Brooke and Koekemoer Parasites & Vectors 2010, 3:74 Page 8 of 8
http://www.parasitesandvectors.com/content/3/1/74

resistance in the malaria vector Anopheles gambiae in a rice growing
area in South-Western Burkina Faso. Malar J 2008, 7:188.

102. Kulathinal RJ, Bettencourt BR, Hartl DL: Compensated deleterious
mutations in insect genomes. Science 2004, 306:1553-1554.

103. Chanda E, Masaninga F, Coleman M, Sikaala C, Katebe C, Macdonald M,
Baboo KS, Govere J, Manga L: Integrated vector management: the
Zambian experience. Malar J 2008, 7:164.

doi:10.1186/1756-3305-3-74

Cite this article as: Brooke and Koekemoer: Major effect genes or loose
confederations? The development of insecticide resistance in the
malaria vector Anopheles gambiae. Parasites & Vectors 2010 3:74.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVied Central



http://www.ncbi.nlm.nih.gov/pubmed/18817564?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18817564?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15498973?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15498973?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18752658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18752658?dopt=Abstract

	Abstract
	Introduction
	Anopheles gambiae systematics
	Detecting and characterising resistance mechanisms
	Pyrethroid and DDT resistance
	Carbamate and organophosphate resistance
	Cyclodiene and phenyl pyrazole resistance
	Pleiotropy
	Conclusion
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

