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Abstract

Background: The final article in a series of three publications examining the global distribution of 41 dominant
vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with
the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of
the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically,
which, combined with the occurrence of a high number of species complexes and suspected species complexes,
and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not
comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the
effectiveness of vector control interventions, an understanding of the contemporary distribution of each species,
combined with a synthesis of the current knowledge of their behaviour and ecology is needed.

Results: Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS
distribution, were combined with a contemporary database of occurrence data and a suite of open access,
environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution
maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus
other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which
8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT
model. A detailed summary of the information on the bionomics of each species and species complex is also
presented.

Conclusions: This article concludes a project aimed to establish the contemporary global distribution of the DVS
of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into
the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is
particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of
the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the
production of these publications will be made available in the public domain. We hope that this will encourage
data sharing to improve future iterations of the distribution maps.
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Background
The Asian-Pacific region experiences a notably high
diversity of vector species, species complexes and sus-
pected species complexes, many occurring sympatrically
and exhibiting a high level of behavioural plasticity [1].
This complexity, and the taxonomic ambiguity of many
of the dominant vector species (DVS) of the region, is a
major contributing factor to the continuing impact of
malaria in this area.
Second only to Africa, central and southeastern Asia

suffers with 39% of the global malaria burden (estimated
clinical cases of P. falciparum malaria only) [2], with
pockets of medium to high endemicity found in Orissa
State (eastern India), western Myanmar and the low-
lands of New Guinea [3]. The impact of Plasmodium
vivax is also considerable, with an estimated 41.9% of
the global population at risk (PAR) of P. vivax transmis-
sion occurring in India alone. Seven other Asian nations
(China, Indonesia, Pakistan, Vietnam, the Philippines,
Myanmar and Thailand) are also listed within the top
10 countries with the highest P. vivax PAR estimates [4].
Of 41 DVS recognised globally [5], 19 occur in the

Asian-Pacific region and of these, at least ten are now
considered as species complexes [6] (Table 1). A species
complex tends to encompass a group of closely related,
morphologically indistinguishable species, which may

occur in sympatry (but not interbreeding), yet still dis-
play behavioural differences that could confound any
control efforts that ignore their bionomics and epide-
miological importance [7,8]. Moreover, even amongst
those species that are not members of a complex, beha-
vioural differences are common depending upon loca-
tion, such that a species can be considered a primary
vector in one area, but of secondary or no importance
elsewhere [8].
The correct identification of any vector implicated in

malaria transmission is key to successful control. For
example, in central Vietnam, where members of both
the An. dirus and An. minimus species complexes were
considered primary vectors, control was targeted twice
a year to precede the period of malaria transmission
attributed to each species complex. However, Van Bor-
tel et al. [9], discovered that the mosquitoes previously
identified as An. minimus were actually An. varuna
(a member of the Funestus Group that also includes
the Minimus Complex). Anopheles varuna is highly
zoophilic in the study area and therefore a non-vector.
This misidentification resulted in the misdirection of
valuable and limited resources and highlights common
difficulties in vector control in the Asian-Pacific region
where the close relationship and sympatric distributions
of many of the species can result in the application of

Table 1 Defining the dominant Anopheles vector species and species complexes of human malaria in the Asia-Pacific
region.

Anopheline species or species
complex

White
[32]

Service
[522,523]

Kiszewski
[524]

Mouchet
[525]

Malaria
epidemiology zone
(Bangs, unpub obs)

EO source

An. aconitus y y y 8, 9, 10 [32] + TAG

An. annularis y 8, 9, 10 TAG

An. balabacensis y y y 10 [28,32] + TAG

An. barbirostris* y 8, 9, 10 [29,32] + TAG

An. culicifacies* y y y y 6(?), 7, 8, 9, 10(?) [8,32] + TAG

An. dirus* y y y y 9, 10 [8,29,32] + TAG

An. farauti* y y y 12 [32] + TAG

An. flavirostris y y y 10 [32] + TAG

An. fluviatilis* y y y y 8, 9 [8,32] + TAG

An. koliensis y y 12 [32] + TAG

An. lesteri y y y 9(?), 10 Harbach (unpub obs) + TAG

An. leucosphyrus & An. latens y y 10 [8,28,32] + TAG

An. maculatus group y y y y 8, 9, 10 [8,32] + TAG

An. minimus* y y y y 8, 9, 10 [8,32] + TAG

An. punctulatus* y y y 12 [32] + TAG

An. sinensis* y y y y 4(?), 8(?), 9, 10, 11 [32] + TAG

An. stephensi y y 6(?), 8, 9 [32] + TAG

An. subpictus* y y 8, 9, 10, 12 TAG

An. sundaicus* y y y y 9(?), 10 [8,25] + TAG

An asterisk (*) denotes that a “species” is now recognised as a species complex. Macdonald’s malaria epidemiology zones [521] 6, Desert; 7, Ethiopian; 8, Indo-
Persian; 9, Indo-Chinese Hills; 10, Malaysian; 11, Chinese 12, Australasian. A question mark (?) indicates uncertainty of presence in the listed zone. The final DVS
species listed were defined during two separate Technical Advisory Group (TAG) meetings.
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unnecessary or unsuitable intervention methods.
Moreover, in an increasingly changing environment,
deforestation, the implementation of new irrigation pro-
grammes and expanding agricultural development can
rapidly alter the composition of the local mosquito
fauna [10-14], and subsequently influence the control
methods required.
Nonetheless, vector control has proved highly success-

ful in areas of the Asian-Pacific region with the WHO
reporting a greater than 50% decrease in the number of
malaria cases in Bhutan, the Democratic People’s
Republic of Korea, Sri Lanka and Thailand since 2000
[15]. This reduction is associated with intensive malaria
intervention programmes, including indoor residual
spraying (IRS) of insecticides and the distribution of
insecticide-treated bednets (ITNs). Successful control
has also been implemented to take advantage of species-
specific behaviour, for example the introduction of small
larvivorous fish into the intra-domestic water containers
that served as larval habitats for the ‘urban vector’ An.
stephensi [16].
The DVS of the Asian-Pacific region have been the

subject of a number of comprehensive reviews (e.g.
[7,8,17-26]) and attempts to establish their distribution
ranging from simple maps identifying sampling locations
(e.g. [18,27-31]), expert opinion maps (e.g. [8,25,32,33]),
GIS overlays (e.g. [18,34-38]) and those employing
methods to predict species distributions (e.g. [39-42]).
Surprisingly few attempts have been made with the
application of more sophisticated modelling methods to
the DVS of Asia, essentially only those of Foley et al.
[39,41,42].
This current work presents predicted distribution

maps for the 19 DVS of the Asian-Pacific region, cre-
ated using the Boosted Regression Tree (BRT) metho-
dology and applied to a comprehensive database of
contemporary (post 31 December 1984) occurrence
data. The modelling method also benefits from the
inclusion of updated expert opinion (EO) ranges for
each species or species complex, specifically useful for
those species with limited occurrence records. The pre-
dictive maps are presented alongside a bionomics sum-
mary of each species/species complex, highlighting the
complexity of many of the species that occur in this
region.

Methods
An introduction to the MAP DVS project, including
details on DVS selection, is given in Hay et al. [5]. A
full description of the DVS bionomics and occurrence
data assembly, modelling and mapping protocols,
and climatic and environmental variable grid pre- and
post-processing, is provided in Sinka et al. [43].

From a list of 41 DVS recognised globally, 19 species
or species complexes are found within the Asian-Pacific
region (Table 1). These species range from the Arabian
Peninsula (e.g. An. stephensi and the An. culicifacies
complex) across the Indian subcontinent, north into
China and Korea (e.g. An. lesteri) and as far west as the
Solomon Islands and Vanuatu (e.g. the An. farauti
complex) and south into Queensland and the Northern
Territory of Australia (e.g. the An. farauti complex).

Data assembly, data checks and expert opinion maps
A systematic search of the published, peer-reviewed
scientific and medical literature, using online biblio-
graphic databases [44,45], was conducted and augmen-
ted with a range of focussed searches of other relevant
data sources [46-49]. Searches were concluded on 31
October 2009, and all literature containing data meeting
our search criteria [43] were reviewed. Following the
protocol described in Hay et al. [5], data were extracted
and processed through a series of rigorous checking
procedures before migration into a web-based Post-
greSQL database, where a final series of checks were
conducted [43].
A total of 3857 publications and reports were amalga-

mated for review. Of these, 2276 fulfilled the inclusion
criteria [5,43], culminating in the assembly of DVS
occurrence data for 147 countries. The 19 Asian-Pacific
species and species complexes were distributed across
31 countries from data abstracted from 875 sources.
Preliminary maps were produced by overlaying occur-

rence data points over expert opinion (EO, see Table 1)
species distribution ranges (Additional file 1: Expert opi-
nion distribution maps for the 19 DVS of the Asian-
Pacific region (Raster prediction files are available on
request)). These maps were examined and refined by a
technical advisory group (TAG, see acknowledgments)
of Anopheles experts, and any data points that had fallen
outside of the known EO ranges were checked and,
where necessary, the EO ranges were adjusted to incor-
porate any confirmed areas of species presence.

Boosted Regression Trees, climatic/environmental
variables and model protocol
The Boosted Regression Tree method uses open access,
reliable and well-supported R code and benefits from a
flexibility that allows it to utilise both categorical and
continuous data [50-52]. The maps produced are easy to
interpret and are accompanied by a clear ranking of
each environmental or climatic predictor variable identi-
fied by the model as relevant to the distribution of the
species being mapped (see below). Moreover, in a review
that rigorously tested 16 species modelling methods,
BRTs were shown to consistently perform well [53]. The
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BRT method is described in detail in Elith et al. [50]
and summarised in Sinka et al. [43] with specific refer-
ence to its implementation in DVS mapping. The eva-
luation statistics produced using this method (Deviance,
Correlation, Discrimination (Area Under the operating
characteristic Curve: AUC) and Kappa (�)) were used to
guide the assessment of the predictive performance of
the models.
A suite of open access, environmental and climatic

variable 5 × 5 km resolution grids, relevant to the ecol-
ogy and biology of the DVS, were assembled. These
included a digital elevation model (DEM) [54-56], preci-
pitation [57,58], land surface temperature (LST), middle
infra-red radiation (MIR) and the Normalized Difference
Vegetation Index (NDVI) (Advanced Very High Resolu-
tion Radiometer (AVHRR) [59-62]) plus 22 individual
categories of land cover including three grouped classes:
flooded areas, forested areas and dry areas (Globcover
[63] (A full list of the variables applied is given in Addi-
tional file 2: Summary tables showing evaluation statis-
tics for all mapping trials and final BRT environmental
and climatic variable selections for the final, optimal
predictive maps). Each grid underwent a series of pro-
cessing steps to ensure all land and sea pixels exactly
corresponded. Nearest-neighbour interpolation was used
to fill in any small gaps in the data, for example, those
areas obscured by cloud cover. Temporal Fourier analy-
sis was applied to all multi-temporal data to generate
seven products: the overall mean, maximum and
minimum of the data cycles, the amplitude (maximum
variation of the cycle around the mean) and the
phase (timing of the cycle) of the annual and bi-annual
cycles [64].
A detailed protocol describing the modelling proce-

dures followed to attain the ‘optimal’ mapping outputs
are given in Sinka et al. [43]. Briefly, these included run-
ning a series of model iterations to assess the effects of
incorporating half-weighted pseudo-presence data (ran-
domly allocated from within the known EO range of
each DVS), the number of pseudo-absences required
and the extent of buffer from which they should be
drawn. The buffer was established by extending the
range limit of the EO maps to provide an area of terrain
next to the known range of each DVS, and therefore
close to the feasible range of conditions for the species
to exist. Pseudo-absences were assigned within the buf-
fer area at random. The evaluation metrics provided by
the BRT could only be used as a guide to the predictive
performance of each series of maps, as each iteration
was created using different data inputs. Thus the ‘opti-
mal’ settings chosen should be considered as subjective,
as they were based on a combination of visual assess-
ment guided by, but not relying on, the evaluation
metrics.

Bionomics
A bionomics summary of each of the Asian-Pacific DVS
is provided to accompany the predictive maps. The
large geographic ranges, presence of a relatively high
proportion of identified and suspected species com-
plexes and a level of behavioural plasticity amongst
many of the DVS across this region, adds a level of
complexity to summarising each of the species’ beha-
viour. However, understanding their bionomics is crucial
to the success of any interventions applied to control
these malaria vectors. The review provided here does
address some of the complexities, but is a general sum-
mary provided with the caveat that local expertise
should always be additionally consulted when evaluating
the possible vector control methods to be applied in
specific locations.
The bionomics summaries do not include a detailed

assessment of insecticide resistance amongst the DVS of
the Asian-Pacific region. Whilst resistance appears wide-
spread in many of the species, and is therefore an
important aspect that must be considered before the
application of any chemical-based control intervention,
it was not possible to do full justice to this area of vec-
tor biology within the confines of this current work.
However, insecticide resistance is being addressed by a
number of other research groups and projects (e.g.
MALVECASIA [65,66]) and a number of recent publica-
tions (e.g. [23,67-77]) provide detailed information that
should be considered alongside this current work.
The full protocol applied to extracting bionomics data

from the available literature (Table 2) is provided in the
supplemental information accompanying Sinka et al.
[43]. Due to the large number of studies available for
some of the DVS in this region, an additional filtering
step was necessary to maintain a reasonable sized data
source for summary. Where the number of citations
remained significantly high (> 100) after following the
steps outlined in Sinka et al. [43], which included filter-
ing the literature using the terms ‘behaviour’, ‘larva’, ‘bit-
ing’ etc., the remaining citations were manually searched
to provide a minimum of 30 articles, ensuring the most
recent studies that examined all the relevant bionomics
were included in the summary.

Results
The presence of one or more Asian-Pacific DVS was
reported by 875 sources from 10116 independent sites,
of which 8853 were successfully geo-referenced. These
data related to 19110 occurrences (i.e. a study that
sampled at one site on one occasion results in one
occurrence and one site, a study that samples every
month for a year at the same site results in one site but
12 occurrences) of which 15410 were from geo-refer-
enced locations (Table 3).
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Focussing only on the geo-referenced data, 7430 sites
(12353 occurrences) were reported at a resolution that
could be applied to the BRT models, including 6952
points (<10 km2) and 478 wide-areas (between 10-25
km2). Data from small and large polygons (25-100 km2

and >100 km2 respectively) were not used in the BRT
models.
Of the 31 countries with a reported presence of one or

more of the 19 DVS, the greatest number of sites were
across Myanmar, including 1791 mappable locations
(i.e. both points and wide areas collectively, henceforth
referred to as ‘points’). The greatest number of occur-
rences (3935) were reported from India; however, this
included a very high number reported from polygons
(2002), so the number of occurrences from points (1933)
was subsequently lower than those from Myanmar (2724
points from 2777 total occurrences) (Table 3). Four
countries only had a single site where DVS presence was
reported (Singapore: An. maculatus subgroup, Timor-
Leste: An. subpictus complex, Turkey: An. barbirostris
and United Arab Emirates: An. stephensi).
The An. farauti complex was reported from the great-

est number of independent sites, of which 1465 were
points (Table 4). This was due, in part, to the inclusion
of two comprehensive surveys in Papua New Guinea
(PNG) [31] and northern Australia [30], which provided
a total of 846 points. Anopheles leucosphyrus/An. latens

were identified from the fewest number of locations (14,
of which 12 were points), with An. balabacensis also
reported from relatively few sites (17, of which 14 were
points) (Table 4).
Myanmar appeared to contain the greatest number

of DVS, with 10 species recorded at 16 sites. These
included the concurrent presence of An. aconitus,
An. annularis, An. barbirostris complex, An. culicifacies
complex, An. dirus complex, Maculatus Group, An.
minimus complex, An. sinensis complex, An. stephensi
(replaced by An. sundaicus complex in some coastal
sites) and An. subpictus complex [22,78].
Larval collection was by far the most popular sampling

method employed in the capture of the DVS from the
Asian-Pacific region with 199 sources reporting this
sampling method from 2123 sites. A total of 84 sources
did not mention the sampling methods used at one or
more of their sampled sites (1349 sites).
Of those studies that described the methodologies

applied in species identification, morphological examina-
tion was the most common and was used on samples
from 3766 sites, reported from 265 sources.

Mapping trials
The mapping trials, evaluated visually and guided by the
statistical metric output of the BRT models, indicated
that the ‘optimal’ output for the Asian Pacific species

Table 2 Search results for bionomics survey for the 19 Asian and Pacific DVS.

Species References

An. aconitus [10,100,154,156-158,161,163,164,174-177,179,181,182,186,187,189-191]

An. annularis [10,12,13,92,154,156-158,161,163-165,174,179,182,186,187,189-191,215,216,230,262,301,304,478,479,481,482,487,490,526-528]

An. balabacensis [11,221,222,227,230,232,237,308,529]

An. barbirostris* [10,12,92,100,154,156-158,161,163,164,174,177,179,182,186,187,189-191,215,247,262,349,472,479,481,482,487,528-531]

An. culicifacies* [10,12,13,156-158,161,163,164,186,190,191,215,216,252,262,322,472,479,481,482,487,490,526,527,530-542]

An. dirus* [9,35,155,175,181,182,189,215,275,278,280-282,284,285,289-294,348,349,351,533,543-553]

An. farauti* [30,31,371,381,389-391,397,408,409,411,413,420,554-563]

An. flavirostris [174,187,227,230,296,301,303-305,307,308]

An. fluviatilis* [156-158,161,163,191,203,216,283,294,316,319-324,490,537,564-566]

An. koliensis [31,383,386,391,402,406,408,412,425,561,567,568]

An. lesteri [36,121,467,485,569-573]

An. leucosphyrus & An.
latens

[221,329]

An. maculatus group [40,92,100,155,156,158,174-177,181,182,187,189,215,247,281,283,284,304,305,319,343,348,349,472,546,553,574-576]

An. minimus* [27,35,40,143,150,155,181,182,189,215,247,281,283,294,348-351,360,364,369,528,533,545-548,577-580]

An. punctulatus* [31,371,381,386,389-391,401,403,408,411-413,425,581,582]

An. sinensis* [14,36,100,121,128,138,139,141-143,177,181,182,189,467,485,569,573,583-587]

An. stephensi [16,161,163,190,191,322,428,438,440-443,464,476,479,487,489,490,527,542,588-597]

An. subpictus* [10,12,13,16,154,156-158,161,163-165,179,186,190,191,230,252,262,452,458,467,470,472,474,476,478-490,527,598]

An. sundaicus* [181,187,461,486,497,505,518,529,599-603]

Libraries created from MAP database. Filter terms were: ‘behaviour’, ‘behavior’, ‘larva’, ‘biting’, ‘resting’ and ‘habitat’. An asterisk (*) denotes that a “species” is now
recognised as a species complex.
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maps included a 1500 km buffer where pseudo-absences
at a ratio of 10:1 (pseudo-absences to presence data)
were randomly allocated. The ‘hybrid’ model, where
occurrence data were supplemented with 500 half-
weighted pseudo-presences allocated within the EO spe-
cies range, created maps with a much greater predictive
performance than those based on 1000 pseudo-pre-
sences randomly allocated in the EO range alone. Those
maps produced using the occurrence data alone, without
any supplemental pseudo-presences, produced the low-
est, and therefore ‘better’ deviance values. However, on

inspection, the maps were judged to be visually poorer,
with less predictive value, specifically for those species
with limited available data (e.g. An. leucosphyrus/An.
latens, An. balabacensis). This ‘hybrid’ method, was also
judged to provide the best maps for those DVS found in
Africa, Europe, the Middle East and the Americas
[43,79] suggesting that, especially in areas where data is
sparse, an educated addition of pseudo-presences can
greatly improve the final mapping output. The results
for each mapping trial conducted are provided in Addi-
tional file 2 (Additional file 2: Summary tables showing

Table 3 Geo-referenced independent site and occurrence (includes multiple sampling at a single site) data for the 19
Asian-Pacific species by country.

Site Occurrence

Country All Data Polygons All Data Polygons

Afghanistan 14 1 13 55 1 54

Australia 505 493 12 658 645 13

Bangladesh 35 14 21 39 18 21

Cambodia 43 37 6 46 40 6

China 355 160 195 665 328 337

Eritrea 1 1 0 1 1 0

India 1529 673 856 3935 1933 2002

Indonesia 890 865 25 931 906 25

Iran 59 49 10 161 120 41

Iraq 4 1 3 4 1 3

Japan 7 6 1 10 9 1

Korea, Democratic People’s Republic of 30 30 0 44 44 0

Korea, Republic of 242 234 8 319 267 52

Lao People’s Democratic Republic 139 121 18 210 192 18

Malaysia 145 132 13 317 297 20

Myanmar 1830 1791 39 2777 2724 53

Nepal 33 33 0 263 263 0

Pakistan 54 41 13 209 144 65

Papua New Guinea 1503 1487 16 1742 1725 17

Philippines 124 113 11 188 147 41

Singapore 1 1 0 1 1 0

Solomon Islands 160 157 3 291 270 21

Sri Lanka 303 273 30 1229 1121 108

Taiwan Province of China 14 6 8 15 7 8

Thailand 505 412 93 908 791 117

Timor-Leste 1 1 0 1 1 0

Turkey 1 0 1 1 0 1

United Arab Emirates 1 1 0 1 1 0

Vanuatu 36 33 3 36 33 3

Viet Nam 275 255 20 334 314 20

Yemen 14 9 5 19 9 10

Total 8853 7430 1423 15410 12353 3057

’Data’ include points (≤10 km2) and wide areas (10-25 km2) both of which are used in the BRT model and displayed on the predictive maps (Additional file 3).
‘Polygons’ include small (25-100 km2) and large (>100 km2) polygons which are not included in the models or shown on the maps.
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evaluation statistics for all mapping trials and final BRT
environmental and climatic variable selections for the
final, optimal predictive maps).

Predictive maps
The final predictive maps for the 19 Asian-Pacific DVS
are given in Additional file 3 (Additional file 3: Predic-
tive species distribution maps for the 19 DVS of the
Asian-Pacific region). Spatial constraints prevent all spe-
cies being discussed in detail, however, the An. dirus
complex (Figure 1), due to its longevity and the highly
anthropophilic behaviour of its members, is considered
to be the dominant vector group in any area where its
species exist (Manguin, unpub obs) and, therefore, is
discussed below.
The maps produced for the An. dirus complex (and for
all other species complexes) do not differentiate between
the members of the complex. Simply, this is due to a
lack of consistent sibling species identification reported
in the current literature, a status that will improve with
the increasing development of reliable molecular

identification methods and the rising acceptance that
understanding bionomics differences in sibling species is
a prerequisite for efficient control.
Behaviourally, the members of the An. dirus complex

have clear differences (see below), but ecologically, they
tend to occupy the same ecological niche and are gener-
ally considered as forest-dwelling species, specifically
in mountainous areas and foothills, with an affinity
for humid, shaded environments where they make use
of transient or temporary larval habitats such as pools
and puddles.
The phase of the annual cycle of LST (LST (P1)) was

selected by the BRT model as the most influential
variable (58.9%). Interestingly, for all An. dirus complex
outputs in each of the mapping trials conducted, this
variable was always found to be the most influential. LST
(P1) was also chosen as the primary influence for the
distribution of An. aconitus (47.55%), An. annularis
(37.14%), the An. maculatus group (64.0%) and the An.
subpictus complex (34.21%) and, to a slightly lesser
degree, for An. minimus complex (31.46%). The common

Table 4 Geo-referenced and non geo-referenced data by species and area type: ‘Point’ is all mapped data included in
the BRT model: point (≤10 km2), wide areas (10-25 km2) and ‘Polygon’ details data not incorporated in BRT model:
small (25-100 km2) and large (>100 km2) polygons, for the 19 Asian-Pacific DVS (geographically independent sites
(Site) and temporal independent occurrences (Occ)).

Geo-referenced Non geo-referenced

Point and wide
area (’Point’)

Polygon Point and wide
area (’Point’)

Polygon

Species Site Occ Site Occ Site Occ Site Occ

An. aconitus 424 616 74 115 42 54 32 67

An. annularis 496 851 156 332 82 188 32 87

An. balabacensis 14 42 3 3 4 9 2 8

An. barbirostris* 872 1064 69 93 70 94 24 56

An. culicifacies* 550 1568 271 774 178 930 64 371

An. dirus* 372 727 60 87 31 60 12 26

An. farauti* 1465 1737 25 28 35 50 1 1

An. flavirostris 103 122 11 33 4 4 4 4

An. fluviatilis* 83 318 138 352 80 330 27 149

An. koliensis 325 363 7 7 24 26 2 3

An. lesteri 47 80 65 89 17 18 8 14

An. leucosphyrus & An. latens 12 12 2 2 2 2 0 0

An. maculatus group 471 765 83 145 75 188 24 113

An. minimus* 445 711 93 111 75 113 59 153

An. punctulatus* 379 581 9 26 30 42 2 3

An. sinensis* 568 792 121 293 43 108 12 22

An. stephensi 261 646 81 220 19 41 12 59

An. subpictus* 410 1143 127 317 87 219 27 67

An. sundaicus* 133 215 28 30 12 12 9 9

Total 7430 12353 1423 3057 910 2488 353 1212

An asterisk (*) denotes that a “species” is now recognised as a species complex.
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characteristic to each of these species and species com-
plexes appears to be a distribution that includes hilly or
forested hilly areas, both of which (altitude and an
increased evapotranspiration rate over forest, specifically
during the rainy season) could be highly influential in
any satellite-derived LST measurement.
The amplitude of the annual cycle of precipitation,

ranked second by the BRT model, exerted an influence
of 10.47% on the distribution of the An. dirus complex.
This corresponds to the suggested influence of seasonal
LST (P1), and to the creation of temporary pools and
puddles utilised for female oviposition and as a habitat
for the immatures of the An. dirus complex.
The final three variables selected within the top five,

in ranked order, are MIR, the phase of the annual cycle
(8.70%); mean NDVI (7.91%); and LST, phase of the
biannual cycle (3.95%). MIR discriminates land cover
and is able to penetrate better through aerosol particles,
including water, and is thus able to distinguish between
vegetation, soil, rock and water [61] which, alongside
the NDVI, may also refer to the influence of the
forested areas in the distribution of the An. dirus
complex.

Bionomics
Tables 5, 6, 7, 8, 9, 10, 11, 12 show a summary of larval
and adult bionomics data extracted from individual stu-
dies reported in the literature (’Summary’) combined
with the common ‘accepted’ bionomics of each species
(’TAG’).

Anopheles (Anopheles) barbirostris van der Wulp species
complex (Barbirostris Complex)
Anopheles barbirostris and 12 related species comprise
the medically important and taxonomically complex
Barbirostris Group of malaria vectors in the Oriental
Region. Six of these species, including An. barbirostris,
comprise the Barbirostris Subgroup of species that are
almost identical in adult morphology but differ in their
roles in the transmission of malaria and filariasis in
Southeast Asia.
Mosquitoes traditionally identified as An. barbirostris

are common and widely distributed from India through
mainland Southeast Asia and southward through Indo-
nesia to Sulawesi, all of the Lesser Sunda island chain
to Timor Island and possibly the eastern fringe of the
Maluku (Mollucas) archipelago [80,81]. Records of this

Figure 1 Map details: The predicted distribution of the Anopheles dirus species complex mapped using hybrid data (372 occurrence
data plus 500 pseudo-presences weighted at half that of the occurrence data and randomly selected from within the Expert Opinion
(EO) range). Pseudo-absences (3720) were generated at a ratio of 10:1 absence to presence points, and were randomly selected from within the
1500 km buffer surrounding the EO (EO shown in the inset map). Predictions are not shown beyond the buffer boundary. The black dots show
the 372 occurrence records for the complex. Map statistics: Deviance = 0.1738, Correlation = 0.8793, Discrimination (AUC) = 0.9857, Kappa =
0.8451. Environmental variables: 1. LST (P1), 2. Prec (A1), 3. MIR (P1), 4. NDVI (mean), 5. LST (P2), (see Additional file 2 for abbreviations and
definitions). Copyright: Licensed to the Malaria Atlas Project [520] under a Creative Commons Attribution 3.0 License. Citation: Sinka et al. (2011)
The dominant Anopheles vectors of human malaria in the Asia Pacific region: occurrence data, distribution maps and bionomic précis, Parasites &
Vectors 2011, 4:89.
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species in the Maluku region and New Guinea are ques-
tionable and are more likely to be misidentifications of
related species, notably An. vanus Walker. Published
records of An. barbirostris in the Philippines refer to
other species of the Barbirostris Group [82]. Anopheles
barbirostris is generally found in highland areas [81,83],
but in western Timor it is considered a coastal species
[83].
Sequence data for the COI mtDNA gene and the ITS2

rDNA locus [84-86], as well as electrophoretic profiles
of salivary gland proteins [87], indicate that An. barbir-
ostris is a complex of three to five sibling species with
undefined distributions. The question of how many spe-
cies constitute the Barbirostris Complex needs to be
resolved because correct recognition and identification
has important implications in the choice of methods
applied to malaria and lymphatic filariasis control. Ano-
pheles barbirostris is considered an important vector of
malaria and Brugian filariasis in Sulawesi, Flores and
Timor [88-92], whereas it appears to be a non-vector in
other regions [82]. A recent survey in northern Sumatra
identified An. barbirostris as a potential vector of
malaria [93], and Limrat et al. [94] and Apiwathnasorn

et al. [95] reported that either An. barbirostris or
An. campestris Reid (these species could not be reliably
distinguished) is a probable vector of malaria in Sa Kaeo
Province of Thailand where high numbers of females
were captured landing on humans both indoors and
outdoors.
Saeung et al. [84,85] provided strong evidence for at

least two species within the Barbirostris Subgroup
based on a series of cross-mating experiments (also
Choochote et al. [96]), cytogenetic studies and
sequence analysis of ITS2, COI and COII using isolines
derived from wild-caught females. Unfortunately, a
comparison of COI sequence data obtained by Paredes-
Esquivel et al. [86] with those from Saeung et al. [85]
proved to be impossible because the regions sequenced
do not overlap. The A3 form of Saeung et al. [85] has
a much smaller ITS2 amplicon than the corresponding
region investigated by Paredes-Esquivel et al. [86], sug-
gesting that it is not closely related to An. barbirostris
s.l. Sequence comparisons showed that Clades I and II
of Paredes-Esquivel et al. [86] were not included in the
analyses of Saeung et al. [85], and that Clades III and
V of Paredes-Esquivel et al. [86] correspond to form

Table 5 Larval site characteristics.

Light intensity Salinity Turbidity Movement Vegetation

Species Source Helio-
philic

Helio-
phobic

High
(brackish)

Low
(fresh)

Clear Turbid Still or
stagnant

Flowing Higher
plants,

algae etc

No Veg

An. aconitus Summary - - - - 1 1 - 3 2 1

An. aconitus TAG ● ● ● ○ ● ○ ●

An. annularis Summary 1 - - 1 1 1 1 2 7 2

An. annularis TAG ● ● ● ○ ● ○ ● ○

An. balabacensis Summary - 1 - - - - - - - 1

An. balabacensis TAG ○ ● ● ● ○ ○

An. barbirostris* Summary 2 1 - - 4 3 1 1 5 2

An. barbirostris* TAG ● ● ● ○ ●

An. culicifacies* Summary 2 - 1 2 3 1 3 3 3 2

An. culicifacies* TAG ● ○ ● ● ○ ● ● ● ●

An. dirus* Summary 1 10 - 2 4 3 1 - - 2

An. dirus* TAG ● ● ● ● ● ○ ●

An. farauti* Summary 1 6 8 14 2 4 2 1 18 2

An. farauti* TAG ● ○ ● ● ● ○ ● ● ●

An. flavirostris Summary - 2 - - - - - 2 1 1

An. flavirostris TAG ● ● ● ○ ● ● ○

An. fluviatilis* Summary 1 - - 1 - - 1 3 2 1

An. fluviatilis* TAG ● ● ○ ● ● ○

An. koliensis Summary - - - 1 - - - - 1 1

An. koliensis TAG ● ○ ● ● ● ● ○

TAG: ● = typical, ○ = examples exist.

Numbers indicate the number of studies that found larvae under each listed circumstance. An asterisk (*) denotes that a “species” is now recognised as a species
complex.
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A1 and An. campestris of Saeung et al. [85], which they
described as a zoophilic and more anthropophilic spe-
cies, respectively. Zoophilic and anthropophilic forms
of An. barbirostris were previously reported by Lien et
al. [90], but these behavioural differences, which would
influence their capacity to transmit malaria protozoa or
filarial nematodes, could not be associated with distinct
morphological characters [91] and may only reflect
relative availability of different hosts. Saeung et al. [85]
identified specimens with ITS2 sequences similar to
Clade IV of Paredes-Esquivel et al. [86] as An. barbir-
ostris, however specimens of Clade IV are morphologi-
cally distinct from An. barbirostris. Based on available
data, it is not possible to determine which genetic spe-
cies correspond to vector populations. Further analyses
require extensive sampling in areas where An. barbiros-
tris has been reported to be anthropophilic, such as
Sulawesi [90] and Flores [91]. Molecular analyses indi-
cate that Clades I and II of Paredes-Esquivel et al. [86]
occur in the type locality of An. barbirostris in eastern
Java (H. Townson & R. Harbach, pers com), but which
of these two genetic species is conspecific with An.
barbirostris s.s. is unknown.
Females of An. barbirostris s.l. bite humans but gener-

ally prefer to feed on other animals, especially bovids

[81,91,97-99]. Feeding apparently takes place outdoors,
but adults have been collected resting inside houses and
animal shelters as well as outside [81]. Outdoor biting
in peninsular Malaysia near the Thai border takes place
throughout the night [100] (Table 11). Reports that An.
barbirostris is a vector of malarial and filarial parasites
came before the recognition of the Barbirostris Com-
plex, and these reports may refer to other species of
very similar morphology. In view of the feeding prefer-
ences and behaviour of females, An. barbirostris s.s.
probably plays little if any role in the transmission of
malaria and filariasis in most areas where it occurs.
Since Clades III and IV of Paredes-Esquivel et al. [86]
appear to be predominantly zoophilic, they may be of
limited importance in the transmission of human patho-
gens. Unfortunately, there is very limited information on
the habitats of Clades I and II, and none on their blood-
feeding preferences. Anopheles barbirostris s.l. is a con-
firmed vector of P. falciparum malaria in Sri Lanka [99]
and Timor-Leste [92] based on the enzyme-linked
immunosorbent assay (ELISA) detection of sporozoites
in the head-thorax portions of females, which in the
case of the latter study were collected in human-landing
catches. Both P. vivax and P. falciparum have been
detected by ELISA in females of An. barbirostris s.l. in

Table 6 Larval site characteristics (cont.).

Light intensity Salinity Turbidity Movement Vegetation

Species Source Helio-
philic

Helio-
phobic

High
(brackish)

Low
(fresh)

Clear Turbid Still or
stagnant

Flowing Higher
plants,

algae etc

No Veg

An. lesteri Summary - 1 - - - - - - 1 -

An. lesteri TAG ●

An. leucosphyrus & An. latens Summary - - - - - - - - - -

An. leucosphyrus & An. latens TAG ● ● ● ● ●

An. maculatus group Summary 2 1 - - 2 1 2 1 1 1

An. maculatus group TAG ● ● ● ● ● ●

An. minimus* Summary 1 1 - - 2 - 3 2 3 1

An. minimus* TAG ○ ● ● ● ● ● ●

An. punctulatus* Summary 3 - - 1 2 1 - - 2 4

An. punctulatus* TAG ● ○ ● ● ● ● ○ ●

An. sinensis* Summary - - - - 1 - 2 2 2 1

An. sinensis* TAG ● ● ● ○ ●

An. stephensi Summary 2 1 1 1 3 2 2 1 2 1

An. stephensi TAG ○ ● ○ ● ● ● ● ● ●

An. subpictus* Summary 2 - 7 4 3 4 2 1 6 2

An. subpictus* TAG ● ● ● ● ● ● ●

An. sundaicus* Summary 3 1 7 4 1 - 1 - 2 1

An. sundaicus* TAG ● ○ ● ○ ● ● ● ○ ● ○

TAG: ● = typical, ○ = examples exist.

Numbers indicate the number of studies that found larvae under each listed circumstance. An asterisk (*) denotes that a “species” is now recognised as a species
complex.
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Bangladesh, but it is not known whether sporozoites,
oocysts or both were present as whole mosquitoes were
assayed for infection [101].
Larvae can occupy a great variety of aquatic habitats

throughout the range of the complex. Anopheles barbir-
ostris s.l. is a swamp breeder, typically found in deep
fresh water that is still or slow moving. However, it is
not uncommon in or near rice fields and is tolerant of
relatively high levels of organic pollution including sew-
age, and can be found in ground pools with high con-
centrations of animal dung. Other habitats vary from
sunlit to moderately shaded ground-water bodies,
including river and stream margins and pools, ditches,
moats, lakes, permanent and temporary ground pools,
rice fields, wells, canals, marshes, rock pools, ponds,
springs, swamps and animal footprints. The habitats
usually contain some vegetation [80,81] (Tables 5, 7, 9).

Anopheles (Anopheles) lesteri Baisas & Hu
Anopheles lesteri, originally described from Luzon Island
in the Philippines, is a member of the Hyrcanus Group
of mosquitoes within the Myzorhynchus Series [6]. Xu
& Feng [102] described and named An. anthropophagus

as a subspecies of An. lesteri from mosquitoes collected
in Jhangsu (as Kiangsu) Province, China. Ma [103]
raised anthropophagus to species status based on its
morphology, distribution and vectorial capacity. Wilker-
son et al. [104], however, synonymised An. anthropo-
phagus with An. lesteri based on identical ITS2
sequences found in An. lesteri from its type locality in
Laguna Province, the Philippines, and An. anthropopha-
gus from Jhangsu Province, China. Ma & Xu [105] com-
pared ITS2 sequences among 12 species of the
Hyrcanus Group in China and agreed that An. anthro-
pophagus is a synonym of An. lesteri. Likewise, Hwang
et al. [106] reported that sequences of the ITS2 region
provide strong evidence that An. lesteri in Japan and An.
anthropophagus in China are the same species.
Anopheles lesteri readily attacks humans and is consid-

ered a primary vector of malaria in eastern, central and
southern areas of China [102,103,107-109] [as An.
anthropophagus], and is believed to be a principal vector
in Japan and Korea [110-112]. Shin et al. [113] showed
that An. lesteri was able to develop sporozoites of P.
vivax after feeding on a Korean malaria patient. Joshi
et al. [114] detected high densities of sporozoites in

Table 7 Large larval sites.

Large natural water collections Large man-made water collections

Species Source Lagoons Lakes Marshes Slow
flowing
rivers

Other Borrow
pits

Rice
fields

Fish
ponds

Irrigation
channels

Other

An. aconitus Summary - 1 - 2 3 - 5 1 2 2

An. aconitus TAG ○ ● ○ ○ ● ● ●

An. annularis Summary - - 1 4 2 - 14 - 4 6

An. annularis TAG ● ●

An. balabacensis Summary - - 1 - - - 1 - - -

An. balabacensis TAG ○

An. barbirostris* Summary - - 3 5 4 - 17 3 5 6

An. barbirostris* TAG ● ● ● ● ● ●

An. culicifacies* Summary - 1 1 5 3 - 14 - 7 5

An. culicifacies* TAG ● ● ●

An. dirus* Summary - - - - 3 - 3 1 - -

An. dirus* TAG ○

An. farauti* Summary 5 - - 2 11 - 2 2 - 3

An. farauti* TAG ● ○ ● ○ ○ ○ ○ ○

An. flavirostris Summary - - - 1 - - - - - -

An. flavirostris TAG ○ ○ ○ ○

An. fluviatilis* Summary - - - 5 2 - 6 - 1 -

An. fluviatilis* TAG ● ● ●

An. koliensis Summary - - - - - - - 1 - 1

An. koliensis TAG ○ ● ○ ○ ●

TAG: ● = typical, ○ = examples exist.

Numbers indicate the number of studies that found larvae under each listed circumstance. An asterisk (*) denotes that a “species” is now recognised as a species
complex.
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salivary glands of An. lesteri infected with the Korean
strain of P. vivax and concluded that An. lesteri should
be a highly competent vector of P. vivax malaria pro-
vided its survival is sufficiently long in the field. Molecu-
lar [115] and morphological identifications [116] have
extended the distribution of An. lesteri northward in
China to 42° N 120° W and 42.5° N 123.41° W, respec-
tively; localities which are farther north than the Korean
Peninsula. The biting behaviour of An. lesteri is
unknown in the Philippines and Guam, but it is not
known to transmit malarial parasites in these areas
[117]. This species is also regarded as an important vec-
tor of lymphatic filariasis (B. malayi) in China [118].
Larvae of An. lesteri are found in fresh-water ground

pools, ditches, margins of streams and ponds, rice fields,
marshes, swamps, lakes and other impounded waters
[112,119-121] (Tables 6, 8, 10). Adults of An. lesteri rest
in cool and shaded places. Adult populations reach peak
densities during the summer in Hokkaido [122], and
during June and October in Honshu and Kyushu, Japan
[123]. In Hong Kong, An. lesteri commonly occurs in
hilly areas and grassy fields [124]. Basio & Reisen [125]
found larvae in a wallow on Guam and Whang [126]
collected adults in cow sheds and houses in villages dur-
ing malaria surveys in Korea. Anopheles lesteri has been
confused with An. sinensis and other members of the
Hyrcanus Group, and some published records of its

distribution and bionomics are likely not to be accurate,
particularly in Japan, Korea and China [117].

Anopheles (Anopheles) sinensis Wiedemann
Anopheles sinensis is also a member of the Hyrcanus
Group in the Myzorhynchus Series [6]. It is widely dis-
tributed in southern Asia from Afghanistan to northern
China, Japan, Korea, Taiwan and southward into
western Indonesia (Sumatra and West Kalimantan)
[81,112,127-130]. There is evidence that An. sinensis is
refractory to P. falciparum [131,132], but it is still con-
sidered an important vector of P. vivax malaria (and B.
malayi) in both China and Korea [104,108,118,133-137].
It is the most common anopheline species in Japan
[112,138], where it is regarded as an important ‘histori-
cal’ vector of malaria [123]. Anopheles sinensis is also
considered to be a minor malaria vector in Indonesia
(Sumatra only) [130]. Anopheles sinensis has little or no
involvement in malaria transmission in Thailand due to
its zoophilic and exophilic behaviour and its prevalence
primarily in areas where there is little or no malaria [81]
(Table 12).
Along the border between North and South Korea,

Strickman et al. [139] reported that An. sinensis (based
on morphological identifications) comprised 80% of the
anopheline mosquitoes attacking humans during an out-
break of P. vivax malaria. Lee et al. [140] found that a

Table 8 Large larval sites (cont.).

Large natural water collections Large man-made water collections

Species Source Lagoons Lakes Marshes Slow
flowing
rivers

Other Borrow
pits

Rice
fields

Fish
ponds

Irrigation
channels

Other

An. lesteri Summary - - - - 4 - 3 - 1 1

An. lesteri TAG ● ● ●
An. leucosphyrus & An. latens Summary - - - - - - - - - -

An. leucosphyrus & An. latens TAG

An. maculatus group Summary - - - 3 4 - 8 - 1 -

An. maculatus group TAG ● ● ●
An. minimus* Summary - - - - 5 - 8 5 1 2

An. minimus* TAG ● ●
An. punctulatus* Summary - - - - 1 - - 1 - -

An. punctulatus* TAG ○
An. sinensis* Summary - - 1 - 3 - 11 - 2 2

An. sinensis* TAG ● ● ●
An. stephensi Summary - 1 1 5 3 - 5 - 4 3

An. stephensi TAG ● ● ●
An. subpictus* Summary 1 - 2 3 4 - 13 - 6 5

An. subpictus* TAG ● ● ● ●
An. sundaicus* Summary - - 2 - 3 - 2 1 - 1

An. sundaicus* TAG ● ● ●

TAG: ● = typical, ○ = examples exist.

Numbers indicate the number of studies that found larvae under each listed circumstance. An asterisk (*) denotes that a “species” is now recognised as a species
complex.
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Table 9 Small larval sites.

Small natural water collections Small man-made water collections Artificial
sites

Species Source Small
streams

Seepage
springs

Pools Wells Dips
in the
ground

Other Overflow
water

Irrigation
ditches

Borrow
pits

Wheel
ruts

Hoof
prints

Puddles
near
rice
fields

Other Empty
cans,
shells
etc.

An. aconitus Summary 3 - 5 2 1 - - - 2 1 1 - 1 -

An. aconitus TAG ○ ○ ● ○ ○ ○ ○ ● ○ ○ ○ ○ ○

An. annularis Summary 2 - 10 4 - 1 - 1 2 1 2 1 1 1

An. annularis TAG ○ ○ ● ○ ○ ○ ○ ○ ○

An. balabacensis Summary - - 1 - - - - - - - - - - -

An. balabacensis TAG ○ ● ● ● ● ● ○ ○

An. barbirostris* Summary 10 1 13 5 1 3 - - 2 1 1 - 2 -

An. barbirostris* TAG ● ● ● ● ● ●

An. culicifacies* Summary 5 - 14 5 - 5 - 2 5 1 4 1 4 2

An. culicifacies* TAG ● ● ● ● ● ● ● ●

An. dirus* Summary 3 - 13 4 1 3 - - 1 5 4 - 3 -

An. dirus* TAG ● ● ● ● ● ● ●

An. farauti* Summary 10 - 22 3 - 8 - - 1 10 7 - 12 -

An. farauti* TAG ● ○ ○ ○ ○ ○ ○ ○

An. flavirostris Summary 5 - 1 - - - - - - - - - - -

An. flavirostris TAG ● ○ ○ ○ ○ ○ ○

An. fluviatilis* Summary 7 - 3 3 - 4 - 2 3 - 1 - 2 -

An. fluviatilis* TAG ● ○ ○ ● ○

An. koliensis Summary 1 - 1 1 - 1 - - - 1 1 - 1 -

An. koliensis TAG ○ ● ● ● ○ ○ ○

TAG: ● = typical, ○ = examples exist.

Numbers indicate the number of studies that found larvae under each listed circumstance. An asterisk (*) denotes that a “species” is now recognised as a species complex.
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Table 10 Small larval sites (cont.).

Small natural water collections Small man-made water collections Artificial sites

Species Source Small
streams

Seepage
springs

Pools Wells Dips in
the

ground

Other Overflow
water

Irrigation
ditches

Borrow
pits

Wheel
ruts

Hoof
prints

Puddles
near
rice
fields

Other Empty
cans,

shells etc.

An. lesteri Summary 1 - 4 - - 1 - 2 - 1 - - 2 -

An. lesteri TAG ● ● ●

An. leucosphyrus & An. latens Summary - - - - - - - - - - - - - -

An. leucosphyrus & An. latens TAG ● ● ● ● ●

An. maculatus group Summary 10 2 9 1 2 5 - - - 1 1 - 1 -

An. maculatus group TAG ● ● ● ● ● ● ●

An. minimus* Summary 18 2 9 1 1 4 - - - 2 1 3 1 -

An. minimus* TAG ● ● ●

An. punctulatus* Summary 3 - 4 1 1 5 - - - 4 1 - 3 -

An. punctulatus* TAG ○ ○ ● ○ ○ ● ● ● ○

An. sinensis* Summary 4 - 7 - 1 2 - 4 - 1 - - 2 3

An. sinensis* TAG ● ● ● ● ●

An. stephensi Summary 2 - 9 9 1 5 1 1 4 1 3 - 14 11

An. stephensi TAG ● ● ● ○ ●

An. subpictus* Summary 2 - 10 4 - 2 - 2 2 1 2 - 5 2

An. subpictus* TAG ● ● ● ●

An. sundaicus* Summary 3 - 2 2 - 1 - - 1 - - - 3 -

An. sundaicus* TAG ●

TAG: ● = typical, ○ = examples exist.

Numbers indicate the number of studies that found larvae under each listed circumstance. An asterisk (*) denotes that a “species” is now recognised as a species complex.
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third of An. sinensis females that fed on volunteers
infected with a Korean strain of P. vivax became infec-
tive based on the ELISA detection of sporozoites. The
mosquitoes were collected in a non-epidemic area of the
country to ensure that uninfected mosquitoes were used
in the study. Joshi et al. [114] performed feeding experi-
ments with the Korean strain of P. vivax and found that
An. sinensis females develop oocysts but only a reduced
number of sporozoites were detected in salivary glands
compared with females of An. lesteri.
Lee et al. [141] found that An. sinensis delivered a

relatively high biting rate (87.6 bites/person/night) dur-
ing human-bait collections conducted in Paju, South
Korea. The parity of An. sinensis from human-bait col-
lections fluctuated from 41-71% (mean 48.8%) from
June (mean 35.2%) to July (mean 55.0%) and August
(mean 66.2%). From these data, Lee et al. [141] esti-
mated that the probability of daily survival of An. sinen-
sis in the summer season is 0.79, with an assumed
three-day gonotrophic cycle [142] and the expectancy of
infective life through 11 days as 0.073. In contrast, Ree
et al. [142] calculated parity rates of 75.2% in July,
56.5% in August, 78.5% in September and 60.0% in

October, and a slightly higher probability of daily survi-
val rate (0.89) for An. sinensis in Gyonggi-do, South
Korea. Based on blood meal analysis (ELISA), Lee et al.
[141] reported that only 0.8% of An. sinensis females
obtained blood meals from human hosts, as opposed to
61.8% from cows. In comparison, Ree et al. [142] found
that only 0.7% of females had fed on humans, 89.8% on
bovines and the remaining on either swine (3.3%), dogs
(0.7%), chickens (1.6%) or both bovines and swine
(0.7%). Both studies concluded that the malaria trans-
mission potential of An. sinensis is very low despite the
high number of females that attack humans, i.e. vectorial
capacity would be high only in the presence of large
population densities. Chang et al. [143] reported that
females of An. sinensis collected from resting sites in vil-
lages in Taiwan, 86.4% were found to have fed on pig,
9.1% on bovine and 4.5% on horse, as determined by
polymerase chain reaction (PCR) analyses of blood
meals. Females were routinely collected outside human
dwellings and near larval habits, but none were collected
inside human habitations. Mwandawiro et al. [144] stu-
died the host preferences of An. sinensis females in
an extensive rice growing area at Nishi Arita, Saga

Table 11 Adult feeding and resting behaviour.

Feeding habit Biting habit Biting time Pre-feeding
resting habit

Post-feeding
resting habit

Species Source Anthro-
pophilic

Zoo-
philic

Exo-
phagic

Endo-
phagic

Day Dusk Night Dawn Exo-
philic

Endo-
philic

Exo-
philic

Endo-
philic

An. aconitus Summary 1 3 4 3 - 2 5 - - 1 1 2

An. aconitus TAG ○ ● ● ● ○ ● ● ○ ● ○

An. annularis Summary - 8 4 1 - 3 5 - 1 3 1 5

An. annularis TAG ○ ● ● ● ○ ● ○ ● ○ ●

An. balabacensis Summary 4 - 3 2 - 1 4 - - 1 - 2

An. balabacensis TAG ● ● ● ● ● ○ ○ ○ ○

An. barbirostris* Summary - 3 2 1 - 5 3 - 2 1 3 2

An. barbirostris* TAG ○ ● ● ○ ● ● ● ○ ● ○

An. culicifacies* Summary - 9 2 2 - 3 11 - 1 4 1 5

An. culicifacies* TAG ● ● ● ● ● ● ○ ● ○ ●

An. dirus* Summary 12 1 10 7 - - 17 - 2 1 2 -

An. dirus* TAG ● ● ● ○ ● ● ●

An. farauti* Summary 5 - 3 - - 5 10 1 1 - 1 -

An. farauti* TAG ● ○ ● ● ○ ○ ● ● ○ ● ○

An. flavirostris Summary 2 4 6 3 - - 4 - - 1 1 1

An. flavirostris TAG ● ● ● ● ● ● ○ ●

An. fluviatilis* Summary 5 6 3 4 - 2 5 1 3 5 5 7

An. fluviatilis* TAG ● ● ● ● ● ● ○

An. koliensis Summary 3 - 4 6 - 1 6 1 - - - -

An. koliensis TAG ● ○ ● ● ○ ○ ● ○ ● ○ ● ○

TAG: ● = typical, ○ = examples exist.

Numbers indicate the number of studies that found adults under each listed circumstance. An asteriosk (*) denotes that a “species” is now recognised as a
species complex.
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Prefecture, Japan by collecting resting mosquitoes from
animal sheds. Blood meal analysis (ELISA) found that
females preferred cows and pigs to chickens in both ter-
raced hill-side and rice field locations. None were found
to have fed on humans or dogs.
Lee et al. [145] found An. sinensis to be the most

abundant Anopheles mosquito captured from cowshed
resting sites in both high and low-risk malaria areas in
South Korea. However, An. pullus Yamada and An.
kleini Rueda had higher concentrations of circumsporo-
zoite antigen for P. vivax when analysed by ELISA, indi-
cating greater numbers of sporozoites present in salivary
glands. Moreover, An. kleini and An. pullus developed
higher infection rates than An. sinensis in laboratory stu-
dies by feeding on malaria-infected blood from patients.
The findings suggest that An. sinensis is a less effective
vector of malaria in Korea than other members of the
Hyrcanus Group.
Anopheles sinensis is prevalent in Korea from late

April/early May to October, with populations peaking in
late June to mid-July and declining in August [128,133].
The species is present throughout the year in southern
Taiwan, with peak densities in spring (February-March)
and autumn (September-October) that coincide with the
two periods of rice cultivation [133].

Female An. sinensis feed throughout the night, with
peak activity apparently occurring at different hours
depending on locality [108,128,133,139]. Whang [146]
observed that the biting activity of An. sinensis is influ-
enced by wind speed and direction. Under normal cir-
cumstances, females are predominantly zoophilic and
exophilic, infrequently biting humans in the presence of
their preferred hosts (buffalo and cattle), and are rarely
found inside human habitations (Table 12).
The immature stages of An. sinensis are primarily

found in lowland, shallow, fresh-water habitats with
emergent and/or floating vegetation in open agriculture
lands (mainly rice fields). They also utilise stream mar-
gins, irrigation ditches, ponds, marshes, swamps, bogs,
pits, stump ground holes, grassy pools, flood pools,
stream pools, rock pools, seepage-springs and wheel
tracks [29,81,112,128,130,138,147] (Tables 6, 8, 10).
Shading requirements vary, but this species is more
often associated with exposed and sunlit aquatic
environments.
In northern temperate climates, An. sinensis females

hibernate in sheltered places from the end of October,
when the temperature drops to 13-15°C, to April when
temperatures begin to reach 19°C [108,133]. Hibernating
mosquitoes are nulliparous but mated.

Table 12 Adult feeding and resting behaviour (cont.).

Feeding habit Biting habit Biting time Pre-feeding
resting habit

Post-feeding
resting habit

Species Source Anthro-
pophilic

Zoo-
philic

Exo-
phagic

Endo-
phagic

Day Dusk Night Dawn Exo-
philic

Endo-
philic

Exo-
philic

Endo-
philic

An. lesteri Summary 2 2 - - - 1 1 - - 2 - 2

An. lesteri TAG ● ● ● ● ● ●

An. leucosphyrus & An. latens Summary - - - - - 1 2 - - - - -

An. leucosphyrus & An. latens TAG ● ● ● ○ ● ● ●

An. maculatus group Summary 1 9 12 4 - 7 12 1 2 1 3 1

An. maculatus group TAG ○ ● ● ● ● ●

An. minimus* Summary 6 14 12 6 - 6 12 1 3 2 4 4

An. minimus* TAG ● ● ● ● ● ● ○ ● ● ● ●

An. punctulatus* Summary 2 - 3 3 - - 7 2 - - - -

An. punctulatus* TAG ● ○ ● ● ○ ○ ● ○ ● ○ ● ○

An. sinensis* Summary 1 9 2 - - 3 5 - 1 - 1 -

An. sinensis* TAG ● ● ● ● ● ●

An. stephensi Summary 2 4 - - - 1 2 - - 8 - 8

An. stephensi TAG ○ ● ○ ● ● ● ● ●

An. subpictus* Summary 1 9 3 2 - 6 5 - 1 6 1 7

An. subpictus* TAG ● ● ● ● ● ● ●

An. sundaicus* Summary 1 1 1 3 - - 3 - 1 1 1 1

An. sundaicus* TAG ● ○ ● ● ● ● ● ● ●

TAG: ● = typical, ○ = examples exist.

Numbers indicate the number of studies that found adults under each listed circumstance. An asterisk (*) denotes that a “species” is now recognised as a species
complex.

Sinka et al. Parasites & Vectors 2011, 4:89
http://www.parasitesandvectors.com/content/4/1/89

Page 16 of 46



Anopheles (Cellia) aconitus Dönitz
Anopheles aconitus is a member of the Funestus Group
of the Myzomyia Series [148,149]. There are three
recognised members in the Aconitus Subgroup (An. aco-
nitus, An. pampanai Büttiker & Beales and An. varuna
Iyengar). All three species can be found in sympatry in
mainland areas of Southeast Asia. Only An. aconitus has
an extensive geographical range. Adults are similar to
those of the Minimus Subgroup and the two taxa exhi-
bit overlapping characters. Consequently, molecular
techniques have been developed for differentiating these
species [149-152].
Anopheles aconitus is broadly distributed throughout

Indochina from southern Asia, through Southeast Asia
and into the western fringe of the Australasian Region.
Its range extends from Sri Lanka, southern and eastern
India and southern Nepal eastward to southern China
(Hainan Island and Yunnan Province), south into Indo-
nesia as far east as Babar Island in the southern Maluku
archipelago. The species is present in Bangladesh
[153,154], Bhutan, Cambodia [155], China, India
[156-165], the Indonesia archipelago [83,166-174],
including Alor, Babar, Bali, Flores, Java, southeast Kali-
mantan, Kisar, Lombok, Pantar, Sulawesi, Sumatra,
Sumba, Sumbawa, Timor and Timor-Leste [92], Laos
[175], peninsular Malaysia [100,176,177], Myanmar
[178], Nepal [127], Singapore [80], Sri Lanka [10,179],
Thailand [29,180] and Vietnam [150,181,182]. Although
suitable habitats exist, An. aconitus has not been
reported in the Philippine Islands [183] or Taiwan.
Three chromosomal forms (karyotypes A, B, C) have
recently been described for An. aconitus [29,184], how-
ever little is known about their individual bionomics
and epidemiological significance. Forms B and C do not
appear to be distinct species, rather cytological races of
the same species.
Anopheles aconitus can be found from sea level to

upland hill zones at higher altitudes (600-800 m), but is
generally restricted to below 1000 m. Depending on the
season (rainfall and/or agricultural cycle), it can be a
very abundant mosquito [174,185]. Larvae are frequently
found in open country near foothills and forest fringes
with rice fields (active and fallow), various shallow pools
(rock, stream, seepage, flood) and slow moving streams
[154,158] with grassy margins (Tables 7, 9). Both coastal
plain and upland rice fields (young and older plants) are
particularly favoured habitats [37,161,163,169,174,182,
186,187], especially when plants are closer to maturity
and greater than 1.5 m in height [127,163,188]. Larvae
can also be found in abundance in fallow rice fields and
rain-fed pools in dry fields (Tables 7, 9). Aquatic habi-
tats are almost exclusively clear (non-polluted but some-
times turbid or slightly cloudy), stagnant or slow-flowing
fresh water, mostly sun-exposed (heliophilic), and only

on occasion are larvae found in small running (lotic)
streams [158,174,189]. In most cases, common larval
habitats contain various floating higher plants (e.g. water
hyacinth) and algae [29,154,164] (Table 5). Other nat-
ural and human-made larval sites include lakes [154],
swamps, marshes, flooded grassland [182], shallow
ponds [154,190], ground depressions [154,182], pools in
rocks, creeks and river beds [158,174,182,190,191], irri-
gation channels [10,174,190], fish ponds [177], roadside
storm water drains, open ditches and tanks (reservoirs)
with grassy margins [29] (Table 7, 9). On rare occasions
this species has been found in wells, borrow pits, wheel
ruts, hoof prints or small container habitats [158,191]
(Table 9).
Adult mosquitoes can be found throughout the year in

many localities but often show strong seasonal popula-
tion peaks and periodicities that coincide with the time
of rice harvest. Females are primarily zoophilic, some-
times strongly so, and although larger animals (e.g.
bovids) are the commonly preferred hosts, when they
are scarce, they will feed on humans as an alternative
host [10,180-182] (Table 11). Females will feed on
humans both inside and outside houses and in varying
proportions, depending on location, generally with no
strong preference reported [100,175,187]. Feeding can
occur throughout the evening, typically beginning at
dusk [100,176], with the majority of females feeding on
humans before midnight [161,179,192,193] (Table 11).
In Timor-Leste, peak feeding commonly occurred dur-
ing the first hour of the evening and continued only
sporadically for the remainder of the evening [92]. Var-
iation in feeding habits has been noted by location (e.g.
coastal vs upland) and season [161,187]. Some blood-fed
females will rest indoors by day [156,157], but overall
this species is considered strongly exophilic throughout
its range [10,156,162,171,181] (Table 11). Natural out-
door adult resting places include steep, shaded stream
banks, irrigation ditches and low shaded undergrowth
[188]. Common human-made resting sites are found in
and around animal shelters. Little is known about adult
flight range and dispersal. Older literature has described
movement as limited (0.5 to 1 km) whereas others have
indicated this species is capable of much longer flights
[188].
Throughout much of its geographical range An. aconi-

tus is considered a secondary (incidental) malaria vector
[80,180] and has been implicated in the transmission of
Bancroftian filariasis [194]. However, under ‘ideal condi-
tions’, this species can play a major role in malaria
transmission, and thus its inclusion as a DVS. This spe-
cies has been incriminated as a secondary, but impor-
tant regional vector of malarial parasites in Thailand
[195,196] and Bangladesh [153]. In Indonesia, it is con-
sidered a primary, but focal, vector throughout much of
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Java and areas of Sumatra, especially in locations with
intense rice cultivation [185,197]. It appears to play no,
or only a very minor, role as a vector in Sulawesi, Kali-
mantan and the Lesser Sunda island group (e.g. Bali,
Lombok, etc.). In general, vectorial capacity is dimin-
ished by marked tendencies for zoophilic feeding beha-
viour but can be compensated by large seasonal or
continuous biting densities. Even in areas where An.
aconitus is still regarded as a primary vector (e.g. upland
areas of Java and Sumatra) [174,193], its epidemiological
importance appears density dependent (both mosquito
and human) and is likely to be influenced by the num-
ber of cattle or buffalo present in relation to humans.
During seasonal peak periods when large numbers of
adults are in close proximity to more concentrated
human populations, especially when fewer cattle or
other non-human hosts are available, its medical impor-
tance can dramatically increase [80]. The close associa-
tion of An. aconitus with rice cultivation practices and
periodic adult population peaks has been linked to
increased malaria transmission in central Java during
the two main periods of harvest (March-April and
August-September) [185]. In fact, in the early decades of
malaria control in Indonesia, knowledge of the close
relationship of this species with rice and irrigation
schemes lead to the development of successful, non-che-
mical, vector control practices using environmental and
mechanical interventions such as intermittent irrigation
and drainage schemes [188].

Anopheles (Cellia) annularis van der Wulp
Anopheles annularis is the nominotypical member of the
Annularis Group in the Neocellia Series [6]. The Group
currently includes five formally named species in south-
ern Asia: An. annularis, An. nivipes (Theobald) and An.
philippinensis Ludlow, which are widespread in the
region, An. pallidus Theobald, which is known in Sri
Lanka, India and Myanmar, and An. schueffneri Stanton,
which occurs in Java and Sumatra. Anopheles annularis
is widely distributed in southern Asia from Afghanistan
eastward through areas of Pakistan, India, Nepal, Sri
Lanka, Bangladesh, Myanmar, southern China, Taiwan,
Thailand, Cambodia, Malaysia, Indonesia, Timor-Leste,
Vietnam and the Philippines. It is an important vector
of malaria in India, Nepal and Sri Lanka [13,198-206],
but is considered to be of minor importance elsewhere
[80,199]. It plays a role in malaria transmission in
Myanmar [207] and has been incriminated as a vector
along border areas of Thailand and Cambodia [208].
Differences observed in the vectorial capacity of An.
annularis may be due to variation in population densi-
ties or genetic structures in different localities. The spe-
cies has been reported to occur, for example, in very
large numbers in Sri Lanka [204] and India [13] in

association with irrigation, and was incriminated as a
vector of P. vivax in villages with river-irrigated rice
fields in Afghanistan [209]. Anopheles annularis is
regarded as a secondary vector in Myanmar [22], but is
responsible for epidemic outbreaks of malaria in the
Rakhine coastal region where population densities
increase dramatically after major cyclone activity
[210,211]. Similarly, An. annularis may transmit malaria
in areas where humans are the most available hosts, for
example, Maheswary et al. [212] found a high rate of
sporozoite infections in An. annularis during a P. vivax
epidemic in a village in the Narayanganj District of Ban-
gladesh where cattle were absent near houses.
Differences observed in the banding patterns of the

ovarian polytene chromosomes led Atrie et al. [213] to
conclude that An. annularis consists of two sibling spe-
cies in India, which they provisionally designated as spe-
cies A and B. More recently, Alam et al. [214]
developed PCR-restriction-fragment length polymorph-
ism (PCR-RFLP) assays based on endonuclease restric-
tion sites in the ITS2 and D3 regions of rDNA which
accurately distinguished the two species. However, the
assays were developed using specimens collected from
areas where Atrie et al. [213] found chromosomal forms
A and B, i.e. assays were not directly correlated with
cytologically identified specimens.
Species A and B are sympatric in the Shahjahanpur

and Ghaziabad Districts in Uttar Pradesh, India, but
only species A has been found in Assam, Haryana,
Orissa and Rajasthan. Both species have been collected
in non-riverine and canal-irrigated ecotypes in Shahja-
hanpur District. Species A has been found in similar
ecotypes in districts where species B is not known to
occur, and has also been found in hilly-forested areas
[213]. Anopheles annularis is only considered to be a
vector in areas of Assam and Orissa States where spe-
cies B is absent. Consequently, the realisation that An.
annularis consists of two species does not explain why
it is a vector in only certain areas of India. Whether spe-
cies A and B are more widely distributed in India and in
other countries needs to be investigated.
Larvae of An. annularis are typically found in clean,

still bodies of water with abundant vegetation, especially
ponds, swamps and rice fields [80] (Tables 5, 7). They
are strongly associated with hill rice fields in Java [83]
and have been found in a wide variety of habitats in
Thailand, including ponds, swamps, marshes, ditches,
pits, wells, sand pools, ground pools, flood pools, stream
pools, stream margins, seepage springs, rice fields, ani-
mal footprints and rock pools [29] (Tables 7, 9). Har-
bach et al. [215] collected larvae of An. annularis in
association with larvae of An. minimus Theobald, An.
nivipes (Theobald) and An. vagus Dönitz in a rice field
pool near the Thai- Myanmar border. Females will enter
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human dwellings and animal shelters [80,216]. They are
primarily zoophilic (e.g. Parida et al., [216]) but are
known to bite humans in the presence of cattle [217]
(Table 11).

Anopheles (Cellia) balabacensis Baisas
Anopheles balabacensis is a member of the Leuco-
sphyrus Complex, which is placed in the Leucosphyrus
Subgroup of the Leucosphyrus Group within the Neo-
myzomyia Series. The complex also includes An. leuco-
sphyrus Dönitz, An. latens Sallum & Peyton and An.
introlatus Colless [28]. All but An. introlatus are vectors
of human malaria.
Anopheles balabacensis inhabits forested areas of the

Philippine Islands (Balabac, Culion, Palawan), Brunei,
Malaysian Borneo (eastern Sarawak, Sabah) and Indone-
sia (East Kalimantan, South Kalimantan, Java, Lombok,
Sumbawa, Sumba) [28,166,218-222]. The immature
stages are principally found in shaded temporary pools
of stagnant fresh water, including puddles, animal foot-
prints, wheel tracks, ditches and rock pools (Tables 5,
9). Larvae have been collected in animal wallows in pri-
mary forest in Sabah ([223] Harbach, unpub obs). They
are sometimes found at the edges of swamps, streams
and rice fields, and less frequently in containers (e.g.
coconut shells, cocoa pods, barrels, drums and buckets)
in shaded, partially shaded or sunny locations (Tables 7,
9).
Anopheles balabacensis is considered the main vector

of human malaria in northern and eastern areas of Bor-
neo [193,223-228], central Java [169,229] and in the
mountainous area of Lombok Island [167]. Harbach et
al. [221] found an infection rate of 1.3% for P. falci-
parum in South Kalimantan, Indonesia based on the
ELISA detection of sporozoites. On Banggi Island off
the northern coast of Sabah, An. balabacensis was found
positive for P. falciparum sporozoite antigen by IRMA
[227]. Based on human-landing rates and sporozoite
positive females, Hii et al. [227] calculated an entomolo-
gical inoculation rate of 160 infective bites per person
per year, and estimated vectorial capacity to be 1.44-
19.70 in Kapitangan and 7.44-9.97 in Palau Darat (Indo-
nesia). Anopheles balabacensis is considered to be a sec-
ondary vector of malaria on Palawan Island (the
Philippines) [230], and Vythilingam et al. [11] found
that An. (Anopheles) donaldi Reid appears to have
replaced An. balabacensis as the main vector in the
Kinabatangan area of Sabah as a result environmental
changes (deforestation) and malaria control activities. In
central Java, this species is closely associated with heav-
ily forested (natural and agricultural) foothill environ-
ments and has been collected in shaded salak palm
(Salacca edulis) plantations (Bangs, unpub obs). Ano-
pheles balabacensis is also involved in the transmission

of Brugian and Bancroftian lymphatic filariasis
[226,231-233].
Schultz [230] found that An. balabacensis on Palawan

Island entered houses and fed on humans principally
between 20:00-03:00 h. In Sabah, An. balabacensis
females mainly feed outdoors, with peak activity
between 22:00-02:00 h, but will also feed indoors and
rest outdoors afterwards [234-238]. Chiang et al. [239],
however, observed that peak biting activity occurred
shortly after midnight in three villages in Sabah. In con-
trast, Vythilingam et al. [11] found that An. balabacensis
feed outdoors throughout the night with peak activity
between 19:00 and 20:00 h, whereas indoor feeding
peaked between 22:00 and 23:00 h. The biting activity of
An. balabacensis is strongly exophagic in the mountai-
nous area of Lombok Island, Indonesia where biting
activity was highest from 19:00-21:00 h and gradually
decreased toward morning [167] (Table 11).

Anopheles (Cellia) culicifacies Giles species complex
(Culicifacies Complex)
Anopheles culicifacies is a complex of species within the
Funestus Group of the Myzomyia Series [6]. The Culici-
facies Complex includes five isomorphic species
informally designated species A, B, C, D and E. The
members of the complex have been cytogenetically sepa-
rated and exhibit biological differences in their beha-
viour, seasonal prevalence, distribution and vectorial
capacity [240,241]. More recently, molecular assays have
been developed, including PCR-RFLP assays [242,243],
allele-specific PCR assays [244,245], and a multiplex
PCR [246]. However, no single currently available appli-
cation can directly identify all five species, indicating
that the techniques are weak, raising some doubt about
their validity. More sequences need to be analysed in
order to identify those that show more clear species dif-
ferences (Manguin, unpub obs).
The Culicifacies Complex is widely distributed across

Southeast Asia, including southern China, India, Paki-
stan, southern Afghanistan and Iran, with a western
extension into the Arabian Peninsula (Yemen) and
Ethiopia [99,209,247-250]. The bionomics and ecology
of the species within this complex have been largely stu-
died in India [23,241,251] and Sri Lanka [99,252,253],
but there is a general lack of detailed information from
other regions, especially the western areas [8]. Four spe-
cies of the complex (A, C, D, E) are reportedly malaria
vectors in India where they are apparently responsible
for transmitting 60-65% of all cases of malaria in peri-
urban and urban environments [254]. Anopheles culici-
facies E, due to its high anthropophilic and endophilic
behaviour [255,256], is the most important and efficient
vector of P. falciparum and P. vivax in southern India
and Sri Lanka. Species A, C and D appear to be mainly
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zoophilic with very low anthropophilic indices of 3-4%
[251] (Table 11). Therefore, these three species generally
play very minor roles in malaria transmission compared
to species E [257]; however, species C was found to be
responsible for local malaria transmission in deforested
riverine areas of central India [258]. Due to its highly
zoophilic behaviour, species B is considered to be a
poor or non-vector [241,259] (Table 11). This species
has the widest distribution of all members of the com-
plex, occurring from Iran and Sri Lanka to Southeast
Asia, and is the only species of the complex found in
the far eastern areas of southern China (Sichuan), Viet-
nam, Laos, Cambodia and northwestern Thailand
[180,247-250,253,260]. Species B occurs in sympatry
with other species of the complex, particularly species E,
in western areas of its distribution. Sympatric popula-
tions of two or more sibling species are also common in
India [254].
Species of the Culicifacies Complex are abundant in

plains, hilly and mountainous areas up to elevations of
1500 to 2000 m in Afghanistan (Kabul region) and the
Indian Himalayas [23,261]. They occur in different eco-
types, ranging from forested areas with perennial
streams to deforested riverine ecosystems and irrigated
areas. Larval habitats include irrigated canals, stream
margins, seepages, borrow pits, hoof marks, rock pools,
sandy pools near rice fields, rock quarries, newly
dug pits, ponds, domestic wells, tanks and gutters
[23,249,252,254,262-264] (Tables 7, 9). Immature stages
develop in fresh-water habitats but tolerance to moder-
ate salinity has been reported in Oman where larvae
have been collected in concrete reservoir tanks contain-
ing brackish water [265] (Table 5). Similarly, species E is
able to tolerate variable salinity due to monsoonal rain
in Sri Lanka [252] where it otherwise exploits a wide
range of aquatic habitats, reflecting the significant envir-
onmental adaptability of this malaria vector [264].
Nanda et al. [258] studied the presence of species A, B
and C in forested and deforested ecosystems in Orissa
(India) and found that An. culicifacies C (71%) greatly
outnumbered species B in forested areas, whereas spe-
cies C (78%), B (21%) and A (1%) were present in quite
different proportions in deforested areas. These data
also reflect the ability of An. culicifacies C to inhabit dif-
ferent ecosystems. In India, species A has been shown to
be more abundant in villages with domestic wells,
whereas species B was found in higher densities in vil-
lages with streams [23]. Studies have shown that adult
biting activity occurs during the first half of the night in
cooler months (November-March) and during the sec-
ond and third quarters of the evening in the warmer
months (September-October), whereas others reported
peak biting activity occurring around 23:00 h to mid-
night [266,267]. Post-feeding behaviour of the species

showed a higher tendency for resting indoors, mainly in
cattle sheds, but outdoor resting has also been reported
[268,269]. As members of the Culicifacies Complex
exhibit distinctly different vectorial capacities and beha-
viour, a more thorough study of the bionomics of each
species must be undertaken to specifically and efficiently
target control efforts against those species involved in
malaria transmission.

Anopheles (Cellia) dirus Peyton & Harrison species
complex (Dirus Complex)
Species of the Dirus Complex are closely related to
members of the Leucosphyrus Complex, and this has
been the cause of considerable confusion in the pub-
lished literature [8]. Numerous studies, mainly based on
crossing experiments, cytogenetics, allozyme data and
more recently molecular methods, have been necessary
to recognise the individual species and to confirm their
taxonomic status [28,220,270-274].
Members of the Dirus Complex inhabit forested

mountains and foothills, cultivated forests, plantations
(e.g. rubber) and forest fringes. As Rosenberg et al.
[275] stated, “The danger from An. dirus s.l. is not only
that it is very resistant to control within its habitat but
that it is an extraordinarily efficient vector, so long-lived
and anthropophilic that only a small population is
necessary to maintain high malaria endemicity”. The
situation is, however, more complicated as the Dirus
Complex includes seven species that vary from highly
competent vectors of malaria and Bancroftian filariasis
to non-vectors. Each member of the complex has now
been formally named: An. dirus (formerly An. dirus spe-
cies A), An. cracens Sallum & Peyton (formerly sp. B),
An. scanloni Sallum & Peyton (formerly sp. C), An. bai-
maii Sallum & Peyton (formerly sp. D), An. elegans
(James) (formerly sp. E), An. nemophilous Peyton &
Ramalingam (formerly sp. F) and An. takasagoensis
Morishita [218,274,276,277]. The primary disease vec-
tors are An. dirus and An. baimaii, which transmit P.
falciparum and P. vivax, as well as Wuchereria bancrofti
[7,19,278-281]. Both species are highly anthropophilic,
exophagic as well as endophagic and exophilic
[181,271,278,280,282-284] (Table 11). Studies have
shown that biting activity is species-specific, for example
in Thailand, An. dirus has a tendency to bite between
20:00 and 23:00 h and An. baimaii from 22:00 h to
02:00 h [28,274,285], although in India earlier biting at
20:00-21:00 h was also recorded for An. baimaii [278]
(Table 11). Anopheles scanloni is also anthropophilic
and plays a more focal role in malaria transmission of
both P. falciparum and P. vivax in Thailand [286]. This
is an early evening biter with peak activity starting at
dusk, between 18:00-19:00 h [285]. There is no clear evi-
dence that An. cracens (restricted to the Thai-Malaysian
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peninsular) and An. elegans (only present in hill forests
of southwestern India) are involved in malaria transmis-
sion [274,286].
The recent development of two allele-specific PCR

assays that identify sympatric species, such as An. dirus,
An. cracens, An. scanloni, An. baimaii and An. nemophi-
lous [287,288], will allow for more precise determination
of the degree by which each species may be involved in
malaria transmission. The two remaining species of the
complex, An. nemophilous and An. takasagoensis, the
latter species being restricted to Taiwan, appear to be
non-vectors of human malaria due to their strict zoophi-
lic behaviour [271,276].
Larvae of the Dirus Complex typically inhabit small,

shallow, usually temporary, mostly shaded bodies of
fresh, stagnant (or very slowly flowing) water, such as
pools, puddles, small pits (e.g. gem pits), animal foot-
prints (e.g. elephant footprints), wheel ruts, hollow logs,
streams and even wells located in primary, secondary
evergreen or deciduous forests, bamboo forests and fruit
or rubber plantations [7,271,289-292] (Tables 5, 9).
Water can be clear or turbid [293], and habitats with
nitrogenous wastes, due to elephant and buffalo
excreta or rotten leaves, appear more productive [291]
(Table 5). These species are most abundant during the
rainy (monsoon) season due to the larval requirement
and oviposition preference for small temporary pools
[271,284,293,294].

Anopheles (Cellia) farauti Laveran species complex (Farauti
Complex)
See Anopheles (Cellia) punctulatus Dönitz species group
below.

Anopheles (Cellia) flavirostris (Ludlow)
Anopheles flavirostris is a member of the Minimus Sub-
group within the Myzomyia Series [295]. For many dec-
ades, this species was regarded as a subspecies of An.
minimus, but once elevated, its species status has been
supported by most authorities [119,180]. Somboon et al.
[296] presented conclusive evidence supporting specific
status using hybridisation experiments and internal mor-
phology (cibarial armature). Molecular studies of rDNA
have further substantiated An. flavirostris as a valid spe-
cies [295,297,298]. All previous records of An. minimus
from the Philippines, Sabah and Indonesia are now con-
sidered invalid with only An. flavirostris regarded as pre-
sent in these areas.
Anopheles flavirostris occurs extensively throughout

the Philippines, through much of Indonesia, in eastern
Malaysia (Sabah, Borneo) [19,80,296,298] and Timor-
Leste [92]. In Indonesia, it has been reported on the lar-
ger islands of Sumatra, Java, Kalimantan and Sulawesi,
and is scattered across the smaller islands of the Lesser

Sunda island group, extending as far east as Timor
[173]. Records from smaller islands include Bali,
Lombok, Sumbawa, Sumba, Flores and western Timor
[166-168,170,296,298,299] (Bangs, unpub obs). Older
records of its presence in the Maluku island group
(Seram) have not been verified. Interestingly, species dis-
tribution on the island of Borneo (Kalimantan) appears
confined to the eastern side of the island and nearer the
coast. It has not been reported from northwestern (Sara-
wak, Malaysia) or western Kalimantan. It occurs in sym-
patry with three other species of the Minimus Group:
An. aconitus (Indonesia), An. filipinae Manalang and
An. mangyanus (Banks) (the Philippines). The absence
of a pale fringe spot at vein 1A on the hind margin of
the wing distinguishes this species from An. aconitus
and An. filipinae. The species differs from An. mangya-
nus (an incidental malaria vector in the Philippines) in
usually lacking a presector pale spot on the costa or the
absence of pale scales basal to the sector pale spot.
Epidemiologically, this species has been incriminated

frequently as a vector of human malarial parasites in the
Philippines [300,301] and is regarded as the primary
vector throughout much of the country [302]. Despite
normally low numbers of sporozoite-infected mosqui-
toes detected, under favourable circumstances low infec-
tive rates remain sufficient to maintain endemic
transmission or cause outbreaks [302]. It has been
implicated in malaria transmission above 1000 m eleva-
tion in Luzon (Villanueva & Kalaw in [302]). It has also
been incriminated as a vector of W. bancrofti on Luzon
and Palawan Islands in the Philippines [80]. It is a con-
firmed malarial vector in Sabah (Malaysian Borneo)
along the eastern coast (Banggi Island, Semporna, Pitas)
[223] (Bangs, unpub obs). Only a few historical records
of natural infections are known from Indonesia
[185,188], specifically in western Java, Sulawesi and
Palau Laut in southeastern Kalimantan (Borneo). In
Indonesia, this species is seldom encountered in human-
landing collections and is regarded as only an incidental,
focal vector.
Anopheles flavirostris is quintessentially a ‘foothill’,

stream-breeding species but is by no means entirely
restricted to such lotic environments (Table 5). In the
Philippines, An. flavirostris can be found from the coastal
plains near sea level to elevations up to 1500 m [302],
although it is more commonly found no higher than 600
m elevation throughout its range [119,167,188].
Given its importance as a malaria vector, the majority

of bionomic information on this species has come from
the Philippines [302,303]. Characteristically, this species
has a high preference for clear, slow-moving fresh-water
habitats that are typically partly shaded by surrounding
overhead vegetation and with margins containing emer-
gent plants or grasses [304] (Table 5). In the foothills of
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western Java, it has been commonly collected from mar-
gins of forested streams with moderate to high flow
rates [174]. It can also be found at the edges of seepage
pools, slow-flowing, grassy river edges, canals and irriga-
tion ditches. It has been reported from natural wells and
occasionally stagnant pools, and very rarely from rice
fields or ponds [188] and pools in stream beds [305]
(Tables 7, 9). It typically has a low tolerance for salinity
[119] and prefers more alkaline (7.3-8.2) water [302].
Foley et al. [306] also reported that most larvae
occurred in areas dominated by overhanging vegetation
other than grass. They also found early instar larvae
were more likely to be present in heavily shaded sites,
suggesting sunnier areas were less preferred as oviposi-
tion sites, whereas overall larval abundance was higher
in less shady locations. Late instars were more evenly
dispersed and their presence only weakly related to
available shaded conditions (Table 5). Larval habitats
have been described as being relatively close to human
habitation compared to many other species [174,306]. In
western Java, Stoops et al. [174] examined environmen-
tal determinants of spatial distribution for Anopheles
and found An. flavirostris associated with lower eleva-
tion foothill sites, lower water temperatures with less
acidity, greater water depth, higher water current, rocky
substrate, higher canopy cover, greater forested riparian
vegetation and higher amounts of low emergent vegeta-
tion compared to most other anopheline species in
the area.
Adult females are primarily zoophilic, preferring to

feed on larger animals (e.g., water buffalo, cows),
although they will readily attack humans both indoors
and outdoors [167,301,305,307]. Hii et al. [227,308]
described this species as primarily human-biting and
endophagic in Sabah. It is regarded as exophagic, but
varies depending on the circumstances and season [307].
This species may be opportunistic in feeding habits and
can show a varying preference for biting location that
appears dependent on the availability of hosts. Near
equal biting proportions between indoors and outdoors
have also been reported [187,227,230,301,305,307].
Females blood-feed throughout the evening with lower
numbers in the early evening gradually increasing to
peak biting frequency on humans nearer midnight and
for several hours afterwards (22:00-03:00 h), with a sharp
drop off in activity before dawn [187,230,305,307,308]
(Table 11).
Females are strongly exophilic, resting during the day

on low vegetation, often near cool, damp overhanging
stream banks close to larval habitats [302]. Very seldom
are they found resting indoors during daylight hours,
although pre- and post-feeding indoor resting does
occur [227,309], but rarely for long periods before exit-
ing the house (Table 11). The flight range is considered

short, at a maximum of 1-2 km from origin (Russell &
Santiago in [302]).

Anopheles (Cellia) fluviatilis James species complex
(Fluviatilis Complex)
Anopheles fluviatilis is a complex of species within the
Funestus Group of the Myzomyia Series [6]. Members
of the complex are widely distributed in forested hills
and mountainous regions of southwestern Asia, includ-
ing Iran, Pakistan, Afghanistan, India, Nepal, Bangladesh
and Myanmar [160,161,249,258,283,310]. However, little
detailed information is available on the bionomics, ecol-
ogy and distribution of the species outside of India and
Iran [8]. The complex includes three sibling species,
informally designated S, T and U, based on cytogenetic
differences [310], and a form V of uncertain status
[311]. Molecular techniques have been developed to dis-
tinguish the three sibling species [312-314]. Species T
has the widest distribution, which includes India, Nepal,
Pakistan and Iran [311]. Species U has been recorded in
northern India and Iran, and species S appears to be
restricted to India [311,315]. Anopheles fluviatilis S is
the most anthropophilic and endophilic species of the
complex [258], and is regarded as a highly efficient
malaria vector in hilly regions of India [257,316]. Ano-
pheles fluviatilis T and U are primarily zoophilic, exo-
phagic and exophilic, and are considered to be poor or
non-vectors in India [316] (Table 11). However, in Paki-
stan, Nepal and Iran, species T has been recorded as an
important malaria vector in general, or a localised vector
for maintaining malaria in mountainous and hilly
regions [199,317,318]. Biting activity begins around
19:00 h and peaks between 20:00 h and 21:00 h, but
may also occur throughout the night until dawn without
an apparent peak [161] (Table 11). A study conducted
in Orissa State of India showed that members of the
complex are essentially absent in deforested areas, but
An. fluviatilis S is the predominant species in forested
areas (98% species S; 2% species T) [258].
Larvae of An. fluviatilis are generally associated with

slow-flowing streams or river margins, in direct or diffuse
sunlight. They have also been reported from rice fields,
often in low numbers, possibly washed into the fields from
the irrigation channels where they tend to be found in
higher densities [158,163,191,294,319-324] (Tables 5, 7, 9)

Anopheles (Cellia) koliensis Owen
See Anopheles (Cellia) punctulatus Dönitz species group
below.

Anopheles (Cellia) leucosphyrus Dönitz and An. (Cel.) latens
Sallum & Peyton
Anopheles leucosphyrus and An. latens are members of
the Leucosphyrus Complex, which is placed in the
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Leucosphyrus Subgroup of the Leucosphyrus Group
within the Neomyzomyia Series. The subgroup also
includes An. balabacensis Baisas and An. introlatus Col-
less [28]. All but An. introlatus are competent vectors of
human malaria.
Anopheles leucosphyrus and An. latens are sister spe-

cies [325]. The former is found in forested areas of
Sumatra and the latter in forested areas from the
extreme south of Thailand through peninsular Malaysia,
and northern and eastern areas of Borneo (excluding
Sabah except its western border area with Sarawak)
[274]. Both species are important vectors of malaria in
areas where they occur. Anopheles leucosphyrus and An.
latens were regarded as the same species (An. leuco-
sphyrus) until Baimai et al. [326] provided evidence
from mitotic karyotypes and cross-mating studies that
they were separate species. Most of the published litera-
ture on “An. leucosphyrus“ refers to An. latens, and little
information pertains to the genetic species in Sumatra
that is now known as An. leucosphyrus.
Females of An. leucosphyrus are attracted to humans

inside and outside houses situated at the edge of forest
[274,326] (Table 12). This species has been shown to be
a vector of human malaria in Sumatra ([80] and in older
literature cited by Sallum et al. [274]). Little else is
known about its bionomics but it is presumably similar
to other members in the Leucosphyrus Group.
Anopheles latens is a primary vector of human malaria

in forested areas and villages near forests in Sarawak
[327-330]. Females bite throughout the night, but peak
activity occurs at different times in different locations.
de Zulueta [328] found that biting females were more
abundant between 24:00 h and 02:00 h in mountainous
areas, Colless [327] observed peaks of activity from
22:00-04:00 h during the dry season and from 22:00-
24:00 h in the wet season in the Akah River region, and
Chang et al. [329] recorded peak activity around mid-
night in forested areas and soon after dusk in village set-
tlements in the Baram District. Adults do not rest in
houses by day, but will enter to bite at night, mostly
after 22:00 h [327] (Table 12). Macdonald & Traub
[331] and Wharton et al. [332] noted that An. latens
was collected more frequently in the canopy than at
ground level in lowland secondary dipterocarp forests in
peninsular Malaysia. The species also occurs in environ-
ments that have been altered by human activities, for
example, areas of secondary forest with fruit and rubber
plantations [274].
In Sarawak, Chang et al. [329,330] found An. latens

more abundant and malaria transmission more intense
at farms located in forest fringe areas than in village set-
tlements further removed from forest. The entomologi-
cal inoculation rate for An. latens was calculated at 0.11
infective bites per person per night in a village perimeter

site and 0.15 in a forested area in the Baram District
[329]. In contrast, Chang et al. [330] estimated the
inoculation rate in farm huts in the Belaga District to be
0.023 [330]. Harbach et al. [221] recorded a sporozoite
infection rate of 1.0% in a remote village in South Kali-
mantan, Indonesia, where An. latens females attacked
humans in higher numbers than in nearby forest.
In addition to human malarial parasites, An. latens is

also known to transmit the monkey malarial parasite
Plasmodium knowlesi to humans in the Kapit District of
Sarawak [333]. Tan et al. [334] found that An. latens is
the main vector of P. knowlesi in dense jungle and forest
fringes in the district. Nearly 90% of females attracted to
humans were collected in forest (50%) and at a farm
located amid fruit trees and secondary vegetation (40%).
In contrast, only 10% were collected in a longhouse (tra-
ditional home of indigenous people) surrounded by trees
and shrubs near a river, and of these, 71% were col-
lected outdoors. The inoculation rates of P. knowlesi by
An. latens in the forest and farm were estimated at 4.6
and 7.8 infective bites per person per year, respectively.
Like other members of the Leucosphyrus Group, larval

habitats of An. latens are mostly shaded temporary
pools and natural containers of clear or turbid water on
the ground in forest areas (Table 6). Wharton [335]
noted that larvae of An. latens were usually found in
clear seepage pools in forest swamps in peninsular
Malaysia. In Sarawak, Colless [327] found larvae in
pools beside a forest stream and in swampy patches in
hilly country. Habitats occupied by An. latens in Thai-
land include stump ground holes, sand pools, ground
pools, flood pools, rock pools, stream pools, stream mar-
gins, seepage-springs, wheel tracks and elephant foot-
prints [29,274] (Table 10).

Anopheles (Cellia) maculatus Theobald species group
(Maculatus Group)
Anopheles maculatus belongs to the Maculatus Sub-
group within the Maculatus Group of the Neocellia Ser-
ies. In addition to An. maculatus, the group includes
eight other formally named species [6,336]: An. dravidi-
cus Christophers (the second member of the Maculatus
Subgroup); An. notanandai Rattanarithikul & Green,
An. rampae Harbach & Somboon (formerly An. macula-
tus species K; see Somboon et al. [336]) and An. sawad-
wongporni Rattanarithikul & Green, which belong to the
Sawadwongporni Subgroup, and four species, An. dispar
Rattanarithikul & Harbach, An. greeni Rattanarithikul &
Harbach, An. pseudowillmori (Theobald) and An. will-
mori (James), which are unplaced within the group
[337]. Members of the group have a varied distribution
from Afghanistan and Pakistan to southern China, Indo-
nesia and the Philippines. Two species, An. dispar and
An. greeni, are found exclusively in the Philippines
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[338,339] and can be identified using a PCR-RFLP assay
[339]. The application of this molecular method may
help shed light on the vector status of these two species
as data collected on previously undifferentiated An.
maculatus s.l. in the Philippines are considered unreli-
able. In addition, two allele-specific PCR assays have
been developed to distinguish An. dravidicus, An. macu-
latus, An. pseudowillmori, An. sawadwongporni and
either An. willmori [337] or An. rampae [340]. These
species are variously involved in malaria transmission
[8,341-343]. However, again, the vector role of each spe-
cies is not precisely known due to previous misidentifi-
cations based solely on overlapping morphological
characters. Further uncertainty arises within this group
as the vectorial capacity of a species appears to vary
depending on geographical location. In general, females
are more strongly attracted to cattle than humans, but
freely bite people both inside and outside houses (Table
12). Anopheles maculatus and An. sawadwongporni
appear to be the least zoophilic of the species and exhi-
bit early biting activity, peaking between 18:00 h and
21:00 h [155,182,215]. Even though An. maculatus has
the widest distribution of all species of the group, it is
only an important vector of human malarial parasites in
hilly areas of eastern India, southern Thailand, peninsu-
lar Malaysia and south-central Java [169,196,281,
341,344]. Anopheles sawadwongporni has been found
with malaria sporozoite rates of 1-2% in Thailand where
it is considered an important vector [345,346]. Ano-
pheles pseudowillmori is a secondary vector in northwes-
tern Thailand along the Myanmar border [196,272].
Anopheles willmori is one of the primary vectors in
Nepal [347], but it is seldom collected in Thailand and
does not appear to be involved in malaria transmission
there. Anopheles dispar and An. greeni, regarded as sec-
ondary vectors in the Philippines, exhibit strong exopha-
gic and zoophilic behaviours, with a biting rate on water
buffalo that is 50 times greater than on humans [305].
Anopheles notanandai, An. dravidicus and An. rampae
are not known to be involved in malaria transmission
[33,336].
Members of the Maculatus Group are typically found

in or near hilly and mountainous areas. Larvae have
been collected in a diverse number of permanent or
semi-permanent bodies of clean water that are often
exposed to direct sunlight, including ponds, lakes,
swamps, ditches, wells, different types of pools (grassy,
sandy, ground, flood, stream), margins along small,
slow-flowing streams, gravel pits along stream margins,
seepages, springs, rice fields, foot and wheel prints, and
occasionally tree holes and bamboo stumps [29,189,215,
348-351] (Tables 6, 8, 10). More specific studies have
shown that each species has a preferred habitat. For
instance, larvae of An. willmori are found only along

stream margins at altitudes between 990 and 1450 m in
northern Thailand, whereas larvae of An. pseudowillmori
have been collected primarily in rice fields, stream mar-
gins, ponds, pits and wells [29,351]. Anopheles macula-
tus prefers to use pools of water formed on the banks of
rivers and waterfalls. The most common larval habitats
are shallow pools 5-15 cm deep with clear water, mud
substrate and emergent plants. This species also
requires, or strongly prefers, open to partially shaded
habitats. Habitats are commonly located at 100-400 m
from the nearest human settlement [352] (Table 6). The
combination of the early evening biting activity of these
malaria vectors (particularly An. maculatus and An.
sawadwongporni) and their zoophilic and exophilic ten-
dencies indicates that they will be less affected by vector
control methods based on IRS and ITNs. However, a
strategy of creating a barrier using insecticide on vegeta-
tion near cattle or other animal hosts may prove signifi-
cant in the control of these vectors [182].

Anopheles (Cellia) minimus Theobald species complex
(Minimus Complex)
The Minimus Complex belongs to the Minimus Sub-
group within the Funestus Group of the Myzomyia Ser-
ies. Anopheles minimus s.l. is considered a primary
malaria vector taxon in the hilly forested regions of
mainland Southeast Asia. Anopheles minimus s.l. com-
prises three sibling species, namely An. minimus (for-
merly species A), An. harrisoni Harbach & Manguin
(formerly sp. C) and An. yaeyamaensis Somboon & Har-
bach (formerly sp. E) [353-355]. Whereas An. minimus
and An. harrisoni have a broad distribution in much of
Southeast Asia [8], An. yaeyamaensis is restricted to the
Ryukyu Archipelago in southern Japan where it played a
major role as a disease vector until 1962 when malaria
was eradicated [356,357]. Despite historical records of
An. minimus in Indonesia, all are considered invalid and
now regarded as An. flavirostris. The two other species,
An. minimus and An. harrisoni, are vectors of malaria
parasites throughout their respective distributions,
although further investigation needs to be conducted on
An. harrisoni as its implication in malaria transmission
appears weaker than that of An. minimus [24]. Ano-
pheles minimus is also involved in the transmission of
W. bancrofti in southern China [358] and most likely in
Thailand, as demonstrated under laboratory conditions
by Pothikasikorn et al. [359]. Larvae are generally found
in small to moderate-sized streams or canals with slow-
running, clear and cool water, partially shaded and with
grassy margins where females prefer to lay their eggs
[180,189,351,360] (Tables 6, 10). They develop in var-
ious pools (rock, ground, stream and seepage) [180,221]
(Table 10). Unusual larval habitats for An. minimus (e.g.
rain water tanks) have also been reported in the suburbs
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of Hanoi, Vietnam [361]. Anopheles minimus s.l. is com-
monly found at elevations ranging from 200 to 900 m
and is rare at altitudes above 1500 m [22,180,362]. In
northern Vietnam and western Thailand, An. minimus
occupies a greater variety of habitats, ranging from
dense canopy forest to open agricultural fields, particu-
larly traditional rice agro-ecosystems (Table 8). Ano-
pheles harrisoni has a narrower habitat preference, being
more closely linked to recently altered agro-ecosystems
(e.g. maize cultivation) in deforested areas [24,34].
These differences in habitat choice may explain the
wider distribution of An. minimus in Southeast Asia,
although An. minimus and An. harrisoni are found sym-
patrically in several regions, including southern China,
northern and central Vietnam [38], northern Laos, wes-
tern and northern Thailand (Somboon, pers comm) and
central and eastern Myanmar [8]. Anopheles minimus is
the only species of the Minimus Complex found in
Cambodia and northwestern India, as well as other
regions of Southeast Asia not mentioned above
[24,65,363]. In contrast, only in the central part of
China (up to 32.5°N latitude) can An. harrisoni be
found in the absence of An. minimus [358].
The adult behaviour of An. minimus s.l. is reported as

highly diverse for two main reasons: (1) most studies do
not differentiate An. minimus and An. harrisoni and (2)
these two species are highly opportunistic in their
habits, exhibiting considerable behavioural and ecologi-
cal plasticity [24]. Females of An. minimus mainly bite
humans (up to 93% in Assam, India), but the degree of
anthropophily/zoophily depends on the availability of
alternative hosts (e.g. cattle) [181,364,365]. This species
is mainly endophagic in India, Thailand and central
Vietnam, and more exophagic in Cambodia and north-
ern Vietnam [181,360,366] (Table 12). Studies showed
that housing in central Vietnam, made with incomplete
walls of split bamboo and very large eaves, allows easy
entry of the mosquito which would otherwise show exo-
phagic behaviour [181]. Its resting behaviour is reported
as exophilic in southern China, Thailand and Vietnam,
and mainly endophilic in India [181,360,366]. However,
the degree of endophagy and endophily of An. minimus
is also largely influenced by the use of IRS, provoking
either a modified behavioural response [367] or a drastic
reduction in population density [368]. In contrast, the
few studies conducted on An. harrisoni have shown a
greater tendency for exophagy, exophily and zoophily
and thus its role in malaria transmission is more ques-
tionable [181,369,370], despite it being reported as a
main vector in China [358]. Anopheles harrisoni exhibits
two peaks of biting activity in western Thailand, the first
in the early evening, between 18:00-21:00 h, with a sec-
ond, smaller peak from midnight to 02:00 h or from
03:00-06:00 h [364,369]. The early evening peak (before

22:00 h) has also been observed in northern Vietnam
[181]. Anopheles minimus tends to bite later, with peak
activity occurring around 22:00 h in Cambodia and
Thailand, after 22:00 h in Vietnam and between 01:00-
04:00 h in Assam, India [181,215,360] (Table 12).
Clearly more studies are required on An. minimus and

An. harrisoni across a wider geographical area as many
uncertainties exist in relation to their respective habitats,
behaviour, involvement in malaria transmission and geo-
graphic distribution. These studies will need to utilise
molecular assays to distinguish the sibling species, as
well as related sympatric species such as An. aconitus,
An. pampanai Büttiker & Beales and An. varuna Iyen-
gar [151,152]. Moreover, the many older records of An.
minimus from the Indonesian archipelago require con-
firmation, either based on adults with associated larval
and pupal exuviae or, preferably, DNA analysis (Har-
bach, unpub obs).

Anopheles (Cellia) punctulatus Dönitz species group
(Punctulatus Group)
The Punctulatus Group is comprised of at least 12 sib-
ling species which collectively span most tropical areas
of the Australasian region [21,371]. Some members in
the group are major vectors of malaria, and in many
areas they also transmit the nocturnal periodic form of
Bancroftian filariasis (W. bancrofti) [372-387]. The
major malaria vectors include An. punctulatus, An.
koliensis Owen, An. farauti Laveran, An. hinesorum
Schmidt and An. farauti No. 4 [388-392] (Bangs, unpub
data). The important characteristics these species share
include an ability to occur in high densities, a predilec-
tion to feed on humans (Tables 11, 12) and a high vec-
torial competence (i.e. ability to develop human malaria
parasites). Most of the information available on vector
incrimination is based on spatially and temporally lim-
ited studies from a small number of localities, predomi-
nately in PNG.
The species group extends from the far eastern

regions of Indonesia (Maluku island group and Papua),
PNG (including the Bismarck Archipelago) and into the
southwestern Pacific to the limits of all anopheline spe-
cies distributions (Solomon Islands and Vanuatu) [393].
The group occupies a variety of different habitats, pre-
dominately in the lowlands, but extending from the
coastal zone to elevations as high as 2250 m above sea
level. Only recently has the taxonomy and phylogeny of
this group become better defined using DNA-based
molecular methods to overcome the inherent problems
of accurately identifying both allopatric and sympatric
populations morphologically (because of identical or
overlapping characters) and those that comprise a com-
plex of near-identical cryptic species (Anopheles farauti
s.l.) [393-396]. The geographical isolation of numerous
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insular populations, and in some cases populations sepa-
rated by significant physical barriers, has lead to the
genetic divergence, speciation and radiation in the
group. By far, the centre of evolution for this group has
taken place on the island of New Guinea [31]. This has
resulted in some species showing niche-specific habitat
preferences whereas others show a much wider selection
and diversity in habitats and behaviour. However, differ-
ences in biology and behaviour among the members of
the Punctulatus Group do not appear to be reliable
characters for determining phylogenetic relationships,
and even closely related sympatric species (e.g. small
rDNA genetic distances) can show very dissimilar bio-
nomics [371,397].
Across the range of species, oviposition sites appear

variable [31] and often dependent on seasonal availabil-
ity. Generally, most species utilise earthen-bound (often
non-porous, clay-like substrates) collections of fresh
water that are exposed to direct sunlight either entirely
or partially. Water sources shaded by thick jungle are
unfavourable. Only a few members of the Farauti Com-
plex show salt-tolerance, but brackish water is not obli-
gatory for oviposition [30,371,398]. Ideally, water is
stagnant, clear to muddy (turbid), but never heavily pol-
luted [399] (Tables 5, 6). For those species that have
been studied in more detail (An. punctulatus, An.
koliensis and An. farauti s.l.), most show a high degree
of synanthropy, and although females appear to be
opportunistic blood-feeders that attack a wide range of
hosts, they often have a stronger preference for humans.
Other animals (pigs, dogs, cats, cattle, goats, fowl) can
serve as alternative or primary blood sources, depending
on locality [384]. In general, the primary vector species
of the group are more exophilic in resting habits and
facultatively exo- and endophagic in host blood feeding
(Tables 11, 12). Outside resting sites are largely
unknown or otherwise poorly described. Blood-feeding
activity is predominately nocturnal whereas frequency
and peak activity appears variable by locality, prevailing
environmental conditions, season, time and investigative
methods used for study [377,384,400-402]. Other studies
suggest physiological condition (e.g. age, parity) and
malaria infection can influence biting frequency and
time [401,403]. Larval habitats of all vector species of
the group are generally found in close proximity with
human habitation.
The relatively recent understanding of the inter-spe-

cific morphological variation and genetic diversity in
this taxon casts doubt on past data on mosquito beha-
viour, larval habitat preferences [377,384,404] and on
the interpretation of those studies conducted before
the advent and common use of biochemical and
molecular methods to accurately identify species
[371,389,391,394,396, 405-407]. Moreover, intra-species

heterogeneity in both bionomics and behaviour over
each species’ range further complicates interpretation
of the data collected before the existence of sibling spe-
cies within the group was fully recognised and appre-
ciated. Variations in study designs also undoubtedly
contribute to the apparent heterogeneity, and some-
times, conflicting observations. More recently, studies
have begun to identify specific differences in ecology
and behaviour (e.g., larval habitats, biting cycles and
host preferences) of some of the sibling species using
molecular-based (primarily nuclear and mitochondrial
DNA) identification techniques [391,394,408,409].
However, much more work is needed on the group to
better understand the bionomics, respective role and
epidemiological contribution of each species/morpho-
type in malaria and filarial transmission and to improve
vector control strategies.
In general, there is more published work describing

species distribution and adult behaviour in relation to
disease transmission and control but far less on larval
biology and habitat characteristics [31,371,410,411].
Moreover, compared to PNG, northern Australia and
the malaria endemic island groups in the southwestern
Pacific, there is a significant paucity of information on
this species group from Papua (western half of New
Guinea Island) and the Maluku Archipelago in eastern
Indonesia.

Anopheles (Cellia) punctulatus Dönitz species complex
(Punctulatus Complex)
Anopheles punctulatus is the nominotypical member of
the Punctulatus Group of the Neomyzomyia Series.
Anopheles punctulatus s.l. comprises two apparent spe-
cies, An. punctulatus and An. sp. near punctulatus
[393]. Anopheles sp. near punctulatus is relatively
uncommon and has only been found in a few remote
highland localities on the island of New Guinea (Papua,
Indonesia and PNG), and very little is known about its
biology or role in disease transmission [31,392,412,413].
Anopheles punctulatus, however, is highly susceptible to
infection by Plasmodium parasites and is an efficient
and important vector of human malaria in many areas
throughout its range. This species is also a vector of
periodic Bancroftian filariasis in New Guinea and Gua-
dalcanal [374,378,386,387]. It can be found in lowland
river valleys and plains with extensions up to elevations
above 1700 m, possibly extending above 2000 m on
occasion [31]. Its distribution appears to be very limited
west of New Guinea Island (excluding Halmahera Island
in northern Maluku, its presence remains questionable
throughout the rest of the island chain) and is
apparently of less epidemiological importance moving
eastward of the PNG mainland into the Bismarck Archi-
pelago and the Solomon Islands chain [371,390].
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The immature stages of An. punctulatus prefer small,
scattered, shallow, sunlit (although partial shade is toler-
ated) temporary pools of fresh water (Tables 6, 10). Ovi-
position has been observed on muddy pools and even
moist soil [399]. Water can be clear or turbid (muddy),
but never brackish. In some cases, high organic content
(e.g. animal excrement, typically pigs) is tolerated
(Bangs, unpub data) (Table 6). Most transient sites are
maintained by rainfall or are found in areas with high
water tables. Other natural sites include sand or gravel
ground pools in small streams and riverbeds, and larvae
are only occasionally found in rock pools [31] (Table
10). Often sites are completely free of natural predators
with little or no vegetation (occasionally algae or sparse
emergent plants). This species will generally only thrive
in areas with perennial rainfall, however eggs can with-
stand desiccation and larvae have the ability to survive
in damp mud in the absence of free water for several
days during limited periods of drought [399]. Often
man-made small ground depressions or those created by
animals (rooting pigs, hoof prints) become ideal habitats,
as well as recently disturbed areas such as land clearing
for gardens and road construction, and natural land-
slides. Larvae are able to withstand water temperatures
exceeding 40°C and typically have rapid growth and a
short development period to adults (5-9 days). High
densities of larvae and general abiotic conditions of
recently created sites can result in significant cannibal-
ism as a survival mechanism. Not infrequently, this spe-
cies is found in habitats with An. farauti s.l. and An.
koliensis..
Anopheles punctulatus is particularly effective at

exploiting disturbed ecology [414]. Populations may
reach high densities in very short periods of time when
environmental and seasonal conditions are favourable.
Under optimal conditions with rapid, synchronous larval
development, this species can quickly invade recently
disturbed (cleared) and previously uncolonised areas to
produce large numbers of adults. The efficiency by
which this species can quickly exploit sudden and dra-
matic changes in habitat (e.g. temporary pools formed
by recession of rivers in drought conditions) has
resulted in severe and unexpected outbreaks of malaria
in the highlands of New Guinea [415].
Adults are often found in close proximity to human

habitation and larval habitats, with females readily
attacking humans outdoors but also entering houses in
search of hosts. Individuals that feed in houses may rest
indoors for the entire evening and daytime but the vast
majority of females leave before dawn to rest outdoors
[399,416,417]. Feeding frequency and peak activity is
variable by locality, environmental conditions and sea-
son with peak activity occurring around or after mid-
night in some areas, and the majority of biting

occurring before midnight in other localities (Table 12).
Flight dispersal is regarded as limited, generally under
1 km (0.4-2.4 km) [399].

Anopheles (Cellia) farauti Laveran species complex (Farauti
Complex)
The Farauti Complex is comprised of eight cryptic (iso-
morphic) species and shows the widest distribution and
greatest genetic divergence among members in the
Punctulatus Group [393,418]. The complex extends
from the Maluku island group (Moluccas) in Indonesia
to the western Pacific (Vanuatu) in the east. Anopheles
farauti s.s., An. hinesorum Schmidt (formerly An. farauti
No. 2) and An. farauti No. 4 are the only members that
are considered to be important malaria vectors
[391,392]. A newly identified taxon, tentatively named
An. farauti No. 8 [419] has also been incriminated as a
vector of malaria in PNG, whereas An. farauti No. 6
appears, based on circumstantial evidence, to be a major
vector in the highland river valleys and intramontane
plains of New Guinea up to 2000 m or higher [31,392].
Anopheles farauti s.s. has by far the widest distribution
of any member in the Punctulatus Group. This species
is predominately found within 1 km of coastal areas and
is replaced by other members in the complex further
inland [31]. Salinity tolerance appears to be a major fac-
tor in species distribution within the complex. For
example, An. hinesorum has far less tolerance for salinity
than An. farauti and appears restricted to inland fresh-
water locations [398,409,420]. However, the degree of
tolerance may be variable within a species range
[397,398] (Table 5).
In general, more data are available on An. farauti s.l.

compared to the other major malaria vectors of the
Punctulatus Group yet still relatively little is known defi-
nitively about the ecology and behaviour of most of the
species in the Farauti Complex. Unidentified members
of the complex have been found in a wide range of
aquatic habitats and adults appear to exhibit a prefer-
ence for certain hosts in different regions. The time of
peak biting activity also varies by locality. The heteroge-
neous behavioural patterns and wide range of aquatic
habitats are proving to be attributable to specific differ-
ences between the individual species of the complex
[391,399,409].
Anopheles irenicus Schmidt (formerly An. farauti 7)

lives in sympatry with An. farauti s.s. and appears to be
restricted to the Solomon Islands [409]. Experimentally,
this species shares the high salt-tolerance capabilities of
An. farauti s.s. [397]; however, it is only found in fresh-
water habitats. This species is not anthropophilic and
therefore not considered to have an important role in
malaria transmission, whereas An. farauti s.s., which
readily bites humans, is an important vector in the
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Solomon Islands [371,388,389] and the more northerly
islands such as Buka and Bougainville, PNG [390].
Larvae of An. farauti s.l. are commonly found in nat-

ural, rain-fed temporary pools to larger semi-permanent
to permanent bodies of ground water, usually with some
varying degree of floating or emergent vegetation (e.g.
Ipomoea aquatica). They also sometimes occur in artifi-
cial containers, drums, coconut shells, canoes and other
unusual habitats (Tables 9, 11). Collectively, the com-
plex shows an ability to use a great variety of aquatic
habitats. Habitat selection is also dependent on availabil-
ity and influenced by dry and wet season precipitation
patterns. Sites can be shaded or sunlit but usually con-
sist of open areas away from heavy shade (canopy)
(Table 5). The complex, being large and ecologically
diverse, can utilise tidal and coastal brackish zones and
a variety of inland fresh-water sites. Anopheles farauti s.
s. can occupy brackish water pools high in organic deb-
ris and subject to tidal fluctuations in areas where vast
stretches of mangroves occupy the coastline. Natural
sites ranging from swamps (non-peat), dead river arms
(oxbows) and open river flats to artificial sites including
fish ponds and large ditches, burrow pits, pig wallows,
garden pools and pools created along stream and river
margins (Tables 7, 9). Anopheles farauti s.s. is not
uncommonly found with An. punctulatus even though it
generally prefers more undistributed ecology.
Feeding of An. farauti s.l. is mainly nocturnal and

continues throughout the evening, however, daytime bit-
ing can occur. Although females will feed on birds and
mammals, and when near human habitation, will often
feed on domestic dogs, pigs and cattle, they have a
higher proclivity for biting humans in most areas (Table
11). Host preference also appears to depend on the
availability of host types. Adult females will readily
attack humans inside and outside houses. Indoor resting
behaviour before and after feeding occurs but habits are
varied and daytime indoor resting has been observed.
Individuals that feed inside houses may rest indoors for
a period of time but the majority will exit before dawn
to rest outdoors (Table 11). Daytime resting sites
include cool, damp and darkened places near ground
level.
Feeding frequency and peak activity is variable by

locality and influenced by prevailing conditions and sea-
son, with some areas recording fairly uniform biting
throughout the night. Other locations have seen peaks
around or after midnight with other sites showing the
majority of biting occurring before midnight [399,416,
417]. Early evening peaks have also been recorded in
some localities (Table 11). Flight dispersal is regarded as
limited, with most adults remaining close to their larval
sites, generally under 1 km [399,421].

Anopheles (Cellia) koliensis Owen
Anopheles koliensis is an important vector of human
malaria throughout its distribution. This species has
been found naturally infected with W. bancrofti in PNG
and the Solomon Islands. It is still regarded as a single
species; however, it may be a complex of two or more
cryptic species based on the recent discovery of three
independently evolving rDNA genotypes that also appar-
ently differ in biting behaviour [391]. Outside of New
Guinea island, its distribution and occurrence becomes
more limited and patchy [371], with some areas entirely
devoid of the species despite the presence of apparently
acceptable environmental conditions [390,411].
The larval habitats of An. koliensis appear to be inter-

mediate between those of An. farauti s.l. and An. punc-
tulatus [417,422]. They typically prefer more permanent
collections of fresh water, such as irrigation ditches and
ponds containing floating and emergent vegetation, tem-
porary pools in open grassland and along the margins of
jungle, mostly exposed to sunlight (Tables 5, 7, 9). They
sometimes occur in temporary pools also preferred by
An. punctulatus. Other sites include still pools in Sago
swamps and shallow-water fish ponds, often in associa-
tion with An. farauti s.l. Anopheles koliensis larvae are
rarely, if ever, found in artificial containers and never in
brackish water. Larval habitats are often in close associa-
tion with human habitation.
The biting habits of An. koliensis have been observed

on New Guinea island [377,384,391,402,412,423,424]
and the Solomon Islands [425]. Females are generally
strongly anthropophilic but they will also feed on ani-
mals (birds, dogs and pigs). This species readily bites
outdoors and will freely enter houses to feed but does
not rest indoors for long periods of time either before
or after feeding [422]. Females have been found resting
inside dwellings throughout the evening and during the
day, but this is rare [399]. Similar to An. punctulatus,
biting occurs throughout the night both indoors and
outdoors with the greatest activity often occurring later
in the evening between midnight and dawn. Feeding fre-
quency and peak activity are variable by locality and sea-
son; in some areas biting peaks occur before midnight
and in others the majority of biting occurs during the
early hours of the morning [422] (Table 11).

Anopheles (Cellia) stephensi Liston
Anopheles stephensi is an unplaced member of the Neo-
cellia Series. It occupies a geographical range in south-
ern Asia that extends across the Indian subcontinent
with a westward extension through Iran and Iraq into
the Middle East and Arabian Peninsula and eastward in
Bangladesh, southern China, Myanmar and Thailand
[426-428]. This species was first incriminated as a vector
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of malaria in Mumbai in 1911, Gujarat and Madras in
1938, Ahmedabad in 1943 and Broach in 1967
[429,430]. Anopheles stephensi has been recognised as
an important vector of malaria in urban areas bordering
the Persian Gulf, including western and northwestern
India [430,431]. It includes three egg phenotypes, mysor-
ensis Sweet & Rao, typical and intermediate, based on
egg dimensions and the numbers of ridges on the egg
float [432]. The type form is an efficient vector of urban
malaria whereas the mysorensis form is restricted to
rural areas and has a poor vectorial capacity due to its
highly zoophilic behaviour [433] (Table 12). Subbarao
[434] indicated that the mysorensis form is considered
an important vector in Iran. Sporozoite rates from
southern Iran have been reported to range from 0.5 to
47% [427,435-437]. The intermediate form is typically
found in rural villages and peri-urban areas, but very lit-
tle is known about its vector status.
Larvae of An. stephensi breed in various artificial con-

tainers in homes and collections of water associated
with construction sites and other industrial locations. In
rural areas, An. stephensi larvae utilise fresh-water pools,
stream margins and stream beds, catch basins, seepage
canals, wells and domestic water-storage containers
[428] (Table 10). Larvae have also been found in domes-
tic wells, overhead water tanks, room coolers, cisterns
and roof gutters in the city of Delhi [438,439], but
greater numbers of larvae are typically found outdoors
compared with indoors [440]. Larvae of the mysorensis
form appear to exclusively inhabit stone pots and earth-
enware containers [441].
Anopheles stephensi is generally considered to be an

endophilic and endophagic species even though it will
bite outdoors during the warmer summer months due
to greater outdoor activity of humans and domestic ani-
mals [442,443]. This species rests primarily in temporary
or poorly constructed human and animal shelters rather
than brick structures [444]. Outdoor blood-feeding
activity varies seasonally, with females feeding later in
the night during the summer months compared to the
winter months [445]. However, indoor biting frequencies
of An. stephensi appear to show no marked seasonal
variation during different months of the year [430]
(Table 12). In rural areas of Gujarat, An. stephensi is
associated with canal-irrigated, non-irrigated and river-
ine villages all year round, but generally in low densities.
In urban areas, An. stephensi is found throughout the
year, but is most abundant in the summer months
(between June and August) which coincides with the
peak period of malaria transmission.
Blood-meal analyses of An. stephensi females collected

in urban areas indicated an increased tendency to feed
on humans rather than cattle [446] and other indica-
tions of variable anthropophily have been observed,

depending on the availability of alternative hosts [430].
For example, in Delhi the anthropological index (AI) of
An. stephensi varies from 0.45% (near the riverine zone)
to 1.40% (non-riverine zone). In Kheda (city), the AI
was found to be 1.03%. However, higher AI values of
8.6% and 4.9% were recorded in the cities of Ahmeda-
bad and Surat, respectively [430]. In addition, sporozoite
rates of females in the south of Iran reportedly range
between 0.5 and 47% [427,435-437,447].

Anopheles (Cellia) subpictus Grassi species complex
(Subpictus Complex)
The Subpictus Complex belongs to the Pyretophorus
Series [6]. Anopheles subpictus was traditionally consid-
ered to be comprised of three subspecies, An. s. subpic-
tus, An. s. malayensis Hacker and An. s. indefinitus
(Ludlow), until Reid [448] concluded that the distinct
morphological characteristics of their larvae indicated
that An. subpictus was actually two separate species, An.
subpictus and An. indefinitus (of which An. s. malayensis
is a synonym), with partially overlapping distributions.
Anopheles subpictus larvae were considered to mostly be
found in brackish water habitats, with An. indefinitus to
be primarily a fresh-water species. Reid [448], based on
previous reports of distinguishing features of egg mor-
phology, also suggested that An. subpictus may be a
complex consisting of two or more sibling species. Ano-
pheles subpictus and An. indefinitus were classified,
along with An. vagus Dönitz, as being within a ‘Subpic-
tus Group’ by Rattanarithikul et al. [29], but this group-
ing has not been universally recognised [6].
After the separation of the confounding fresh-water

An. indefinitus from An. subpictus, further investigation
identified a fresh-water type and subsequent morpholo-
gical and chromosomal examinations of specimens col-
lected from inland and coastal localities in India
confirmed the existence of two sibling species [449,450],
provisionally designated as species A and B. Continued
investigation has led to the detection of two additional
species, thus, the Subpictus Complex is currently con-
sidered to include four sibling species, designated spe-
cies A, B, C and D [451]. Species B is the only species
restricted to coastal brackish-water habitats [451-453],
with species A, C, and D generally found in fresh-water
sites including riverine pools and rice fields [451].
Abhayawardan et al. [452] reported the presence of spe-
cies A in brackish-water coastal habitats, showing some
level of salt tolerance, but densities of species A at these
sites increased only after rain diluted the percentage of
salinity. Indeed, Suguna et al. [451] reported the pre-
sence of all four species in waters with salinity ranging
between 0.56 and 5.36% but it appears that only species
B is found in great numbers under such conditions, or
is able to tolerate the higher levels of salt content [453].
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Recent investigations have, however, added doubt to
some of these classifications, particularly where they are
based solely on morphological characteristics. Surendran
et al. [454] analysed rDNA from larval and adult speci-
mens morphologically classified as species B, collected
mainly from the Eastern Province of Sri Lanka. They
demonstrated that the majority of these specimens were
actually members of the Sundaicus Complex, another
group of sibling species that are able to utilise both salt-
and fresh-water larval habitats (see below). A smaller
number of those specimens initially characterised as
species B did belong to the Subpictus Complex but were
genetically related to species A, C or D.
The Subpictus Complex has a wide distribution, ran-

ging from northeastern Pakistan, across India, Sri Lanka,
Bangladesh, Myanmar, Thailand and along coastal
regions of southern Cambodia, Vietnam and coastal
areas of Malaysia, Indonesia, Timor-Leste, Papua New
Guinea and extending as far east as the Solomon Islands
[67,154,174,181,329,345,451,452,455-473]. Species identi-
fication has not been widely reported and therefore
informally named members of the complex are only
known from limited areas of India, Sri Lanka, the Philip-
pines and Thailand [451,452,471,474,475].
Larvae of the Subpictus Complex are found in both

clear and turbid waters but have been reported from
highly polluted habitats including sites contaminated
with organic waste such as waste stabilisation ponds
[476], street pools and drains [477]. Habitats may be
exposed and sunlit [262,472] and larvae are frequently
associated with floating algae or other vegetation
[164,262,452,476,478] (Table 6). Natural larval habitats
for members of the complex include lagoons, shallow
ponds, marshes, slow-flowing rivers, natural pools and
margins of small streams [12,158,190,191,262,467,
470,472,479,480] (Tables 8, 10), but the species are also
highly associated with rice fields [12,13,154,158,163,
186,190,191,479-483] and irrigation schemes [13,190,
479] (Tables 8, 10), specifically in the earlier stages of
rice cultivation [13,163,481,482]. Larvae have also been
collected from small, artificial containers, including
intra-domestic earthen pots, tanks and barrels [16,479]
(Table 10).
Members of the Subpictus Complex are generally zoo-

philic (Table 12), however species B will readily bite
humans. Abhayawardana et al. [452] reported a high
human biting rate, but this conclusion was based on
only a single night of human-landing catches. Blood-
meal analyses from resting collections have revealed a
preference for bovine blood. For example, blood ana-
lysed from females collected from inland locations in Sri
Lanka (considered to represent species A) revealed that
87.2% contained bovine blood [452]. Other studies con-
ducted in Sri Lanka, West Bengal and Orissa, also

reported high percentages of females to have fed on
bovine hosts with few, if any, having fed on humans
[165,458,484]. Landing collections also indicate zoophily,
for example a study conducted during the implementa-
tion of the Mahaweli Development Project in eastern Sri
Lanka found 37.4% of An. subpictus females collected
were attracted to cattle compared to only 0.1% attracted
to humans [10]. A similar result was reported from col-
lections made in northwestern coastal Malaysia, with
166 females collected in cow-baited traps compared to
none in human-baited nets, and only 14 captured in
human-landing collections [485].
Where human-landing catches have been conducted,

no clear preference for either indoor or outdoor biting
has been reported [452,483] (Table 13). However,
Kawada et al. [486], in a study conducted on Lombok
Island, Indonesia, reported An. subpictus as one of the
dominant anophelines collected outdoors. Indeed, Dash
et al. [165] described An. subpictus as a zoophilic spe-
cies that feeds outside and then enters houses to rest.
Amerasinghe et al. [484] stated that An subpictus is the
most abundant endophilic anopheline in Sri Lanka
accounting for >90% of specimens collected resting
indoors. The majority of studies summarised (Table 12)
indicate an endophilic resting habit [157,483,487-490],
with only one study conducted in Jaffna District, Sri
Lanka, suggesting a higher level of exophilic behaviour
[474]. However, this conclusion was based on the
assumption that the collections from cattle-baited huts
can be interpreted as indicative of indoor resting beha-
viour whereas those from cattle-baited nets indicated
outdoor resting. Authors reported species B, C and D
being collected in higher numbers by cattle-baited net
traps.
Two recent reviews have focussed on the Subpictus

Complex and the capacity of its members as vectors,
but the role in malaria transmission played by each spe-
cies is still not clear [26,491]. Anopheles subpictus s.l. is
confirmed as a malaria vector in Malaysia and Indonesia
[26,491] and has been reported naturally infected with
malaria parasites and W. bancrofti in parts of eastern
Indonesia (Flores, Timor and nearby islands) [194,
279,492,493]. However the true identity of what has
been called An. subpictus in Timor is questionable and
may turn out to be another species [92]. Species B is
frequently reported as a vector in coastal areas of south-
eastern India based on the work of Panicker et al. [494].
There is also evidence of sporozoite-positive members
of the complex identified from inland areas of India and
Sri Lanka [10,157,484,495], yet with limited specific
information and some doubt as to the classification of
species B [454], further work is needed to confirm the
vectorial capacity and distribution of each species across
the wide geographical range of the complex [491].
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Anopheles (Cellia) sundaicus (Rodenwaldt) species
complex (Sundaicus Complex)
The Sundaicus Complex belongs to the Pyretophorus
Series [6]. Members of the complex are predominately
coastal vectors as their immature stages develop primar-
ily in habitats containing levels of salinity ranging from
low, brackish to sea water concentrations. Populations
have also been recorded further inland in association
with fresh water, particularly in northeastern India, Car
Nicobar Island, peninsular Malaysia, Malaysian Borneo
(Miri, Sarawak), northern Sumatra and Java, Indonesia
[80,496-499] (Table 6). This ecological difference and
behavioural heterogeneity led Reid [500] to suspect that
An. sundaicus was a species complex. This was con-
firmed by Sukowati et al. [499,501] who provided cyto-
genetic and allozyme evidence for the presence of three
species (informally designated species A, B and C) in
Sumatra, Java and Thailand. Based on molecular
approaches, An. sundaicus is currently regarded a com-
plex of at least four species that do not exhibit ecologi-
cal differences such as fresh-water/brackish-water
preference [502,503]. Anopheles sundaicus s.s. based on
a neotype from the Lundu District of Sarawak, Malaysia
is distributed along the coast of Borneo [504]; An. epiro-
ticus Linton & Harbach (formerly An. sundaicus species
A) occurs most often along the mainland coastal areas
from eastern India to Thailand, southern Vietnam and
peninsular Malaysia; An. sundaicus species D appears to
be restricted to the Nicobar and Andaman Islands of
India [502,505]; and An. sundaicus species E is found in
Sumatra and Java, Indonesia [503]. These four species
are mainly allopatric but this does not preclude sympa-
try in some areas (e.g. An. epiroticus and An. sundaicus
species E may coexist in northern Sumatra). A molecu-
lar assay developed to identify the species of the com-
plex will help investigate the potential sympatry of the
species [506]. The distribution of these species, espe-
cially An. epiroticus, often occurs in distinct foci along
the coast of Thailand and Cambodia.
The immature stages generally require sunlit habitats

containing pooled stagnant water, algae and non-inva-
sive vegetation (Table 6). Filamentous floating algae and
aquatic plants are crucial for the development of the lar-
vae as they provide food (micro-algae and bacteria) and
protection against predators. Particularly favourable
habitats include ponds, swamps, lagoons, open man-
grove, rock pools and coastal shrimp or fish ponds
(active or abandoned/poorly maintained impoundments
such as in Indonesia), as well as irrigated inland sea-
water canals [25,496,507-510]. The close association of
An. epiroticus with aquaculture (shrimp and fish farms)
in southern Vietnam [510,511] requires special attention
as this economic activity is increasing throughout
Southeast Asia. With an increase in vector density, the

risk for malaria epidemics, as previously recorded in
Indonesia [512], is of constant concern (Table 8).
Females are mainly anthropophilic and exhibit both

endophagic and exophagic feeding habits. Peak biting
activity typically occurs between 20:00 h and 03:00 h
depending on locality. Blood-engorged females can be
found resting inside or outside houses (Table 12). Vary-
ing degrees of indoor and outdoor resting occurs and
some members of the complex have been reported to be
predominantly endophilic during the gonotrophic cycle.
Species of the complex are considered as either major

or secondary malaria vectors depending on location [7].
They are regarded as the main vectors of malaria along
the coastal areas of India, southern Vietnam and much
of Indonesia [170,199,510,513,514] where they transmit
both P. falciparum and P. vivax, and are responsible for
local outbreaks [498,514-516]. However, their current
role in malaria transmission along coastal areas of Thai-
land, Cambodia, Malaysia and Nicobar Island remains
questionable [507,517,518], as well as the more recent
role of An. epiroticus in the Mekong Delta (southern
Vietnam) where it was found with a null sporozoite rate
in Bac Lieu Province despite very high biting densities
(12.78 bites per hour) [519]. The ecological and beha-
vioural plasticity of species of the Sundaicus Complex
poses difficulties for developing efficient and appropriate
vector control strategies [25].

Discussion
The predictive maps presented here have been created
using the most up-to-date information available, includ-
ing the EO species range maps, examined and updated
by the TAG, many of whom have very specific and in-
depth knowledge of the 19 DVS of this region. The
occurrence data are maintained in what we believe to be
the most comprehensive database of global DVS occur-
rence currently available. The climatic and environmen-
tal variables, all from open access sources, also represent
what we consider to be the best data available. However,
despite these efforts, the maps can still not be consid-
ered as a true and precise representation of the ranges
of each of the species and species complexes.
Any species mapping process will always be limited by

the available data, in terms of its quantity, quality and
distribution. The methodology applied in sampling mos-
quitoes in any given location can have an inherent effect
on the abundance, but also in some cases, on the species
collected. Moreover, a great deal of work on malaria
vectors will, understandably, be conducted in areas
where malaria is being transmitted to humans. Thus a
great deal of sampling will occur in locations near
human habitations or activity, and therefore will be a
spatially biased sample. Nonetheless, maps that indicate
a species distribution, accepting a human ‘co-variable’,
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are clearly of use, particularly where there is a need to
focus limited resources on vector control efforts. How-
ever, by applying pseudo-presences taken from within
the EO range of each species or species complex, some
of this bias may be removed, and a better distribution of
the full range of the taxon produced. As far as we are
aware, there are no other DVS maps currently available
that have incorporated EO ranges within the model, and
thus while the maps produced will not be the true
representation of each DVS distribution, they may be
the best and most accurate currently available.

Bionomics
The bionomics summaries presented are the culmina-
tion of a joint effort by leading Anopheles experts. The
need for continued research into the behaviour and
ecology, combined with confirmed identification of the
evolving and emerging sibling species and the complex
status of many of the DVS in the Asian-Pacific region, is
highlighted repeatedly. Simple, universal species-specific
statements regarding the biology of these vectors are
nearly impossible due to the locational diversity in beha-
viour and sympatric distributions of sibling species that
contributes to a level of complexity not seen amongst
the DVS of other regions. Here we have indicated the
behavioural plasticity and locational variation in species
behaviour where possible, and also where known and
suspected species complexes exist. However, until the
taxonomic situation is resolved, the behaviour of many
of these DVS will remain unclear.

Conclusions
This is the third in a series of three articles presenting
the global distribution maps of 41 of the most important
malaria vectors currently known [5,43,79]. In each case,
the maps are presented with the caveat that they repre-
sent only the beginning of a process to establish the dis-
tribution of these DVS, and that each will be greatly
improved as more data become available. Moreover, the
corresponding bionomics summaries will also evolve as
more information and a clarification of the taxonomy of
many of these species are reported. These three articles
have been produced in collaboration with a number of
Anopheles experts, willing to share both their time and
their data to ensure the best information is presented.
We have been continually surprised by the generosity of
the vector research community in providing data and
assistance, and in this spirit, and according to the open
access principles of the MAP, all our data will be made
available to the research community. In return, we hope
to continue improving and adapting our maps and to
cultivate new collaborations to ensure we can maintain
a database of the most comprehensive DVS occurrence
and bionomics available.

Additional material
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Additional file 2: Summary tables showing evaluation statistics for
all mapping trials and final Boosted Regression Tree environmental
and climatic variable selections for the final, optimal predictive
maps.

Additional file 3: Predictive species distribution maps for the 19
DVS of the Asian-Pacific region.
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