Skip to main content

Advertisement

Table 3 Predicted mean prevalence by matrices A-D for dataset 1 (full Uganda cohort baseline year 0 – year 3)

From: Development and evaluation of a Markov model to predict changes in schistosomiasis prevalence in response to praziquantel treatment: a case study of Schistosoma mansoni in Uganda and Mali

  Low intensity (predicted mean prevalence and 95 % CI) Moderate intensity (predicted mean prevalence and 95 % CI) High intensity (predicted mean prevalence and 95 % CI) Overall prevalence (predicted mean prevalence and 95 % CI)
Matrix Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 Year 1 Year 2 Year 3
Observed prevalence dataset 1 0.134(0.111–0.160) 0.099 (0.080–0.123) 0.102 (0.082–0.126) 0.075 (0.058–0.096) 0.021 (0.013–0.035) 0.033
(0.023–0.049)
0.035
(0.024–0.051)
0.016 (0.009–0.028) 0.020 (0.011–0.031) 0.244 (0.214–0.276) 0.137 (0.114–0.163) 0.154 (0.130–0.182)
Matrix A
Full dataset
0.142 (0.1230.161) 0.108 (0.0910.126) 0.095a
(0.0770.113)
0.075a (0.0620.090) 0.044 (0.033 0.056) 0.033a (0.0230.045) 0.044 (0.0330.055) 0.023 (0.0150.032) 0.017a (0.0100.026) 0.261 (0.2400.282) 0.175 (0.151 0.200) 0.144a (0.1190.171)
Matrix B
Uganda year 1 to year 2
0.135a (0.1120.158) 0.105 (0.0860.126) 0.090 (0.0720.109) 0.069 (0.0510.090) 0.039 (0.028 0.051) 0.028 (0.0190.038) 0.048 (0.0310.066) 0.024 (0.0150.036) 0.016 (0.0090.024) 0.252a (0.2250.278) 0.168 (0.141 0.197) 0.133 (0.1080.160)
Matrix C
3 selected districts
0.152 (0.1220.183) 0.096a (0.0710.122) 0.082 (0.0570.108) 0.045 (0.027 0.065) 0.016a (0.0080.027) 0.009 (0.003 0.017) 0.027 (0.0130.043) 0.011a (0.0030.021) 0.008 (0.001 0.018) 0.223 (0.1930.255) 0.123a (0.0930.156) 0.099 (0.069 0.132)
Matrix D
Mali full dataset
0.165 (0.141 0.190) 0.122 (0.100 0.146) 0.095a (0.073 0.117) 0.081 (0.0620.101) 0.051 (0.037 0.068) 0.035 (0.0230.049) 0.042a (0.0280.057) 0.021a (0.0120.032) 0.031 (0.0070.021) 0.288 (0.264 0.312) 0.195 (0.164 0.226) 0.143 (0.1130.175)
  1. Bold = observed point prevalence values fell outside of the predicted boundaries
  2. aClosest predictions to observed values