Nowling et al. Parasites & Vectors 2013, 6:150
http://www.parasitesandvectors.com/content/6/1/150

Parasites
&Vectors

RESEARCH Open Access

Identification of novel arthropod vector G
protein-coupled receptors

Ronald J Nowling'", Jenica L Abrudan®*", Douglas A Shoue??, Badi’ Abdul-Wahid', Mariha Wadsworth®?,
Gwen Stayback®?, Frank H Collins®'?, Mary Ann McDowell** and Jesus A Izaguirre'"

Abstract

quantitative RT-PCR.

Background: The control of vector-borne diseases, such as malaria, dengue fever, and typhus fever is often
achieved with the use of insecticides. Unfortunately, insecticide resistance is becoming common among different
vector species. There are currently no chemical alternatives to these insecticides because new human-safe classes of
molecules have yet to be brought to the vector-control market. The identification of novel targets offer
opportunities for rational design of new chemistries to control vector populations. One target family, G protein-
coupled receptors (GPCRs), has remained relatively under explored in terms of insecticide development.

Methods: A novel classifier, Ensemble*, for vector GPCRs was developed. Ensemble* was validated and compared
to existing classifiers using a set of all known GPCRs from Aedes aegypti, Anopheles gambiae, Apis Mellifera,
Drosophila melanogaster, Homo sapiens, and Pediculus humanus. Predictions for unidentified sequences from Ae.
aegypti, An. gambiae, and Pe. humanus were validated. Quantitative RT-PCR expression analysis was performed on
previously-known and newly discovered Ae. aegypti GPCR genes.

Results: We present a new analysis of GPCRs in the genomes of Ae, aegypti, a vector of dengue fever, An. gambiae,
a primary vector of Plasmodium falciparum that causes malaria, and Pe. humanus, a vector of epidemic typhus fever,
using a novel GPCR classifier, Ensemble*, designed for insect vector species. We identified 30 additional putative
GPCRs, 19 of which we validated. Expression of the newly discovered Ae. aegypti GPCR genes was confirmed via

Conclusion: A novel GPCR classifier for insect vectors, Ensemble*, was developed and GPCR predictions were
validated. Ensemble* and the validation pipeline were applied to the genomes of three insect vectors (Ae. aegypti,
An. gambiae, and Pe. humanus), resulting in the identification of 52 GPCRs not previously identified, of which 11 are
predicted GPCRs, and 19 are predicted and confirmed GPCRs.

Background

G protein-coupled receptors (GPCRs) are a class of
seven transmembrane (7TM) proteins involved in signal
transduction [1,2] that respond to a diverse assemblage
of stimuli. These proteins play roles in essential inverte-
brate functions and are highly “drugable”, being targets
for roughly 30% of drugs on the human pharmaceutical
market [3]. The relative specificity of ligand binding
combined with their abundance in metazoan genomes
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(1% of Drosophila melanogaster genome, 1.6% of Anoph-
eles gambiae genome [4,5]) makes these proteins attract-
ive targets for insecticide development. The availability
of insect genomes enables the identification of novel
targets such as GPCRs and rational drug design pro-
cesses which can produce insecticides, repellents, and
other products for the control of vectors such as An.
gambiae [6,7].

We present a new genome-wide search for GPCRs in
three important insect vectors responsible for the spread
of diseases such as malaria (An. gambiae), dengue and
yellow fever (Aedes aegypti) and typhoid fever (Pediculus
humanus) [6,8,9]. Fredrikkson, et al. and Hill, et al. have
identified GPCRs in the proteome of An. gambiae [5,10],
Nene, et al. studied the GPCRs in Ae. aegypti [11], and
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Kirkness, et al. performed an initial analysis of the
GPCRs in Pe. humanus as part of sequencing the gen-
ome [12]. Our analysis resulted in the identification of
52 additional GPCRs.

There are multiple in silico strategies for identifying
potential GPCRs. Similarity based searches (e.g., BLAST)
are limited in their ability to identify seven transmem-
brane (7TM) proteins, GPCRs included, due to the low
degree of sequence conservation [1,13]. GPCRs have also
been identified using short conserved sub-sequences, or
motifs [13]. These GPCR “fingerprints” are defined by
sets of motifs localized to transmembrane helices and
intra and extracellular loops [14-16]. Fingerprints have
been useful in identifying GPCRs and their associated
classes and subfamilies. In addition, fingerprints can be
used for screening out false positive GPCR predictions
by requiring that an identified sequence contains all of
the appropriate GPCR motifs. However, GPCR finger-
prints have proven difficult to identify due to low se-
quence conservation as more GPCRs in each family are
discovered and tend to be poor at identifying atypical or
novel GPCRs with low homology to known GPCR family
members.

Methods that rely on predicted sequence topology have
proven more useful in the identification of GPCRs than
those relying on primary sequence alone. Classifiers such
as HMMTOP [17] and TMHMM [18] predict transmem-
brane helices and intracellular and extracellular loops
using Hidden Markov Models (HMM) and filter se-
quences based on the number of predicted transmem-
brane helices to identify potential 7TM proteins. Phobius
[19,20] offers more functionality than either HMMTOP
or TMHMM by including the identification of signal pep-
tides for use in screening out false positive predictions.
Signal peptides are composed of a hydrophobic region
flanked by hydrophilic regions followed by a cleavage site
motif and are often incorrectly categorized as membrane
spanning regions when not taken explicitly into account
[18-21]. Although these 7TM protein classifiers have been
used to identify GPCRs, they are not able to distinguish
between GPCRs and other types of 7TM proteins, such as
ion channels, aquaporins, and ATPases [22].

GPCRHMM uses an HMM specific to GPCRs [21]. In
addition to predicting the topology and number of trans-
membrane helices, GPCRHMM uses the predicted loop
lengths (it assumes a median of 22-24 amino acids per
loop) and amino acid composition as additional filters.
GPCRHMM produces two numbers, a global score and
a local score, and a Boolean

prediction based on default cutoffs for each score.
Whereas the global score is based on the HMM match
of the entire protein, the local score excludes the signal
peptide and N- and C-termini models and is used to im-
prove discrimination between GPCRs and false positives
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such as cysteine-rich proteins. By utilizing these character-
istics specific to GPCRs to distinguish between GPCRs
and other 7TM proteins, GPCRHMM is able to more
accurately classify input sequences than HMMTOP,
TMHMM, and Phobius.

PredCouple was originally designed to predict the fam-
ily of G-proteins with which a given GPCR will bind
[23,24]. PredCouple utilizes a preliminary step based on
HMMs from the Pfam database [25,26] to screen out
non-GPCRs, a filtering capability on par with other
methods such as GPCRHMM, thus making PredCouple
useful as a GPCR classifier.

Several “alignment-free” methods exist that do not de-
pend on comparing the primary sequence or the top-
ology to known GPCRs [27]. One such example is the
Quasi-periodic Feature Classifier (QFC) that utilizes a
sliding window approach to scan the entire proteome
and identify membrane-associated proteins based on
quasi-periodic physiochemical properties of amino acids
[28]. Lapinsh and colleagues also developed an alignment-
free method that utilizes physiochemical properties of
proteins [29].

The performance of individual classifiers has been im-
proved by combining multiple classifiers into a pipeline
or ensemble. The whole-proteome and subset GPCR rep-
ertoires of multiple organisms including Homo sapiens
(human), Mus musculus (mouse), Danio rerio (zebra fish),
Ratus norvegicus (rat), Canis familiaris (dog), Gallus
gallus (chicken), and Tetraodon nigroviridis (puffer fish)
have been identified or extended using a combination of
BLAST with known GPCRs (often from Ho. sapiens or
Dr. melanogaster) or HMMs trained from known GPCRs
or from the Pfam database [10,30-40]. Inoue, et al. dem-
onstrated that the combination of the HMMTOP and
TMHMM 7TM classifiers can be used to more accurately
distinguish between GPCRs and the larger class of 7TM
proteins than either classifier individually [22]. Moriyama,
et al. identified 394 7TM proteins in the Arabidopsis
thaliana proteome by combining multiple 7TM classifica-
tion methods, including alignment-based and alignment-
free methods [41]. Gookin, et al. developed and applied a
pipeline utilizing the classifiers QFC, HMMTOP, Phobius,
TMHMM, and GPCRHMM to perform a proteome-wide
computational analysis of GPCRs in Ar. thaliana, Oryza
sativa, and Populus trichocarpa [42]. Previous studies have
identified GPCRs in the An. gambiae proteome using
QFC [5] and a combination of BLAST against known
GPCRS and HMMs derived from GPCRs [10]. GPCRs in
the Ae. aegypti proteome have been identified with a com-
bination of QFC and tBLASTn queries against known
GPCRs from An. gambiae, Dr. melanogaster, and Bombyx
mori [11]. In the Pe. humanus proteome, GPCRs were
identified using tBLASTn queries against known GPCRs
from Ae. aegypti, An. gambiae, and Dr. melanogaster [12].
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We began by evaluating existing GPCR classifiers such
as GPCRHMM [21] and PredCouple [23,24]. The sensi-
tivity and accuracy of these classifiers was reduced for
vector species, which was expected considering they
were not trained on these organisms. We developed a
novel ensemble classifier, Ensemble*, for insect vector
GPCRs that combines and improves upon the prediction
capabilities of GPCRHMM and the Pfam A GPCR Clan
Hidden Markov Models (HMMs) [26]. When evaluated
against GPCRHMM and PredCouple, Ensemble* demon-
strated higher sensitivity and accuracy. Putative GPCRs
were identified in the vector predicted proteomes using
Ensemble*, while a novel pipeline was used to validate and
confirm the predictions. Expression of the newly discov-
ered Ae. aegypti GPCR genes was confirmed in head and
body tissues via quantitative RT-PCR.

These results will be of interest to the research com-
munity due to their potential applicability to insect vec-
tor population control via insecticide development [43].
Furthermore, Ensemble* identified a high number of
previously unidentified GPCRs in vector species. The
availability of better tools for the identification of signal
transduction proteins such as GPCRs will be valuable as
more insect genomes are sequenced.
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Results and discussion

Multiple classification methods exist for identifying GPCRs.
Two particular classification methods, GPCRHMM and the
Pfam A GPCR clan hidden Markov models (HMMs), are
both accurate and sensitive on their own but do not neces-
sarily predict the same set of sequences as GPCRs. We
developed a new classifier, Ensemble*, that combines the
prediction capabilities of GPCRHMM and the Pfam A
GPCR clan Hidden Markov Models (HMMs) to improve
the accuracy and sensitivity of predicting GPCRs from in
silico peptide translations of vector genomes. Discrete likeli-
hood score functions were developed incorporating likeli-
hood scores from the GPCRHMM global scores and
logarithms of Pfam HMM e-values. The discrete likelihood
scores were combined using a linear weighting to produce
an overall likelihood score (Figure 1).

Formation of test sets

For training and validation of the classifiers, we assem-
bled test sets that contained validated GPCR sequences
(Table 1). Ae. aegypti, An. gambiae, and Pe. humanus
were chosen as representative vector organisms. Pub-
lished GPCR sequences from An. gambiae [5,44], Ae.
aegypti [11], and Pe. humanus [12], VectorBase [45,46]

Ensemble*

]
|
| GPCRHMM*
I m=====-==

GPCRHMM

Probability
Distribution
Function

Input
Sequences

Pfam
HMMs

Pfam*
Probability
Distribution
Function

h

1 h

1 h

Training 1
h
h

h

h

h

h

h

h

h

h

h

1
1
1
1
1
| GPCRHMM*
1
1
1
1
1

Linear Combination
L(x) = af(x) + (1 - a) g(x)

f———— e — e —————————

Likelihood
Scores

Figure 1 Flowchart describing the Ensemble*, GPCRHMM?*, and Pfam* classifiers. The diamonds represent sequences, while the rectangles
represent steps of the classifiers. The dashed rectangles describe to which classifiers the components belong. The input sequences are the
sequences to be classified, while the training sequences are sequences which have known designations of either GPCR or not GPCR.
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searches for GPCR annotations and GO terms, and
GPCRDB [47,48] searches were used as sources for com-
piling the test sets for these organisms.

For further validation, the GPCR datasets of the honey
bee, Ap. mellifera, the fruit fly, Dr. melanogaster, and
humans were chosen because they are well annotated
and used as the basis of other GPCR studies [10,30-40].
GPCRDB was used to find GPCRs from Ap. mellifera
and Dr. melanogaster. Additional GPCRs from Dr.
melanogaster were found by searching Flybase [4,50-53]
for GO terms. The positive test set for Ho. sapiens
consisted of GPCRs identified through a search of
Ensembl [54] for GO terms and sequences identified by
Zhang et al. [49].

Design of the ensemble* classifier

After evaluating the existing classifiers, we designed a
new classifier, Ensemble*, that improves prediction sen-
sitivity and accuracy on vector organisms. An ensemble
approach which combines multi-classifiers was chosen.
Several of the best-performing existing classifiers use dif-
ferent methods for predicting GPCRs which results in
recognizing different but overlapping sets of GPCRs.
The identification of the same sequence by multiple
classifiers provides more confidence (increases accuracy)
in the prediction, while the ability of any classifier to
identify a sequence not found by the other increases the
number of predictions (sensitivity). We required that the
Ensemble* classifier provides a discrete likelihood score
between 0 and 1 for each sequence, indicating the confi-
dence level of the prediction. Thus, we chose classifiers
for the ensemble that provided discrete scores that could
be used to determine prediction confidence.

We determined that the two best pre-existing classi-
fiers were GPCRHMM and PredCouple.

GPCRHMM outputs a “raw” global score that fits our
requirements for a meaningful discrete confidence score.
We designed GPCRHMM* as an intermediate classifier
that maps GPCRHMM’s global score to a likelihood
score between 0 and 1 based on the known status of pro-
teins in the combined training set. Unlike GPCRHMM,
PredCouple only provides a boolean prediction indicator
and not a discrete score [23,24]. As PredCouple uses Pfam

Table 1 Data set sources and construction
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Hidden Markov Models (HMMs) for seven transmembrane
and GPCR proteins, we utilized the Pfam HMMs as the
second classifier in the ensemble. HMMER [55] is used to
match input sequences against the Pfam HMMs and pro-
vides an expectation value (e-value) for each sequence giv-
ing the probability that a sequence would match the HMM
if the sequence had been generated randomly. A lower e-
value indicates a better match. We used the default e-value
given by HMMER [55] as the threshold; sequences with e-
values above the threshold were not considered to be
GPCRs. In a manner similar to GPCRHMM?*, we developed
Pfam* as an intermediate classifier that maps the logarithm
of the e-values to likelihood scores.

Ensemble* was developed by combining GPCRHMM*
and Pfam* (Figure 1). A simple linear-weighting was used:
Ensemble*s likelihood scores are computed by multiply-
ing and then adding the likelihood scores of GPCRHMM*
and Pfam* by the weights 1 - a (GPCRHMM?*) and «
(Pfam®), respectively.

The Ensemble* classifier offers several features that
make it advantageous when compared with the other
classifiers. First, the confidence of each prediction for
each sequence is represented as a discrete likelihood
score normalized to a value between 0 and 1. Inexperi-
enced users can easily interpret the discrete likelihood
score, while experienced users can use the information
provided by the discrete likelihood score to provide
more advanced analysis. For example, we found it was
useful to identify a threshold value such that only se-
quences with predicted likelihood scores higher than or
equal to that threshold value were classified as predicted
GPCRs. However, a user may choose to sort predictions
into more nuanced categories such as high, neutral, and
low confidence predictions. The discrete likelihood score
also allows the Ensemble* classifier to be more easily
incorporated into a pipeline or other analysis tools.
Secondly, Ensemble* can be “tuned” for different needs
through the choice of training set and the relative
weights given to different component classifiers, i.e.,
GPCRHMM?* and Pfam*. See the Additional file 1 for
discussion concerning the choice of test sets and value,
which determine the relative weights of GPCRHMM*
and Pfam*.

Organism Predicted proteome source and version Training set source

Ae. aegypti VectorBase, v. AaeglL1.2 VB and GPCRDB annotations
An. gambiae VectorBase, v. AgamP3.5 [5], VB and GPCRDB annotations
Ap. mellifera Beebase, v. Pre-Release 2 OGS GPCRDB annotations

Dr. melanogaster Flybase, v. 5.29

Ho. sapiens Ensembl, v. 37.59

Pe. humanus VectorBase, v. 1.2

Flybase and GPCRDB annotations
[49], Ensembl and GPCRDB annotations
VB and GPCRDB annotations
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Ensemble* classifier improves prediction performance on
combined dataset

Ensemble®’s overall classification performance was evalu-
ated on the combined inferred proteomes of the organisms
Ae. aegypti, An. gambiae, Ap. mellifera, Dr. melanogaster,
Ho. sapiens, and Pe. humanus. GPCRHMM?*, Pfam*, and
Ensemble* were trained using the combined data set, while
GPCRHMM, Pfam, and PredCouple were used as provided
by their authors. By training and evaluating the classifiers
on the same data set, we are able to test the ability of the
classifiers to exactly reproduce the classifications of the se-
quences. The Ensemble* classifier achieved a higher true
positive rate than the other classifiers for the same false
positive rates (Figure 2). For this evaluation, we considered
a sequence predicted as a GPCR by a classifier but not in
the test set to be a “false positive,” while a “true positive” is
when a sequence in the test set is correctly predicted to be
a GPCR.

To enable direct comparison of the classifiers, we eval-
uated each classifier at the false positive rates generated
by GPCHMM (0.0061), Pfam (0.0067), and PredCouple
(0.0064) on the combined training set, and 0.01, the false
positive rate at which Ensemble*’s true positive rate plat-
eaus (Table 2). Ensemble* had a true positive rate (87%)
at least 6% higher than GPCRHMM (81%), GPCRHMM*
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(81%) and Pfam* (80%) at GPCRHMM'’s false positive
rate (0.0061). Using Pfam’s false positive rate (0.0067),
Ensemble* had a true positive rate (89%) at least 7%
higher than GPCRHMM?* (81%), Pfam (82%), and Pfam*
(80%). When compared at PredCouple’s false positive
rate (0.0064), Ensemble* had a true positive rate (89%) at
least 3% higher than GPCRHMM?* (81%), Pfam* (80%),
and PredCouple (86%). At 0.01, where Ensemble*’s true
positive rate plateaus at 91%, Ensemble* performed at
least 11% better than GPCRHMM* at 83% and Pfam* at
80%. When comparing the highest true positive rates
found by each of the classifiers, Ensemble* (91%) had a
true positive rate at least 5% higher than that of
GPCRHMM (81%), GPCRHMM* (81%), Pfam (82%),
Pfam* (80%), and PredCouple (86%). Overall, Ensemble*
correctly identified more GPCRs and with greater accur-
acy than any of the other classifiers.

Prediction performance improvement is more marked for
vector sequences

Efficacy was evaluated in two ways. First, a per organism
hold-out validation was performed to simulate realistic
use cases where the classifiers will be used to identify
GPCRs in the predicted proteomes of novel organisms
after being trained on proteomes of organisms for which
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Table 2 Classifiers’ true positive rates for different false positive rates

Classifier True Positive Rate (TPR)*
GPCRHMM'’s FPR PredCouple’s FPR Pfam’s FPR FPR where Ensemble*'s Best for all FPRs < 0.01
(0.0061) (0.0066) (0.0067) TPR plateaus (0.01)

Ensemble* 87% 89% 89% 91% 91%

GPCRHMM 81% - - - 81%

GPCRHMM* 81% 81% 81% 83% 83%

Pfam - - 82% - 82%

Pfam* 80% 80% 80% 80% 80%

PredCouple - 86% - - 86%

*Percentage of training set GPCRs correctly predicted (true positive rates) for fixed percentages of sequences misclassified as GPCRs (false positive rates) are given.
The false positive rates (FPR) of GPCRHMM, PredCouple, Pfam, and at which Ensemble*'s true positive rate plateaus were chosen to provide the most direct

comparisons between the classifiers.

the GPCRs are known. Six validation trials were per-
formed where sequences from one species was designated
as the validation holdout set, while sequences from the
remaining five organisms were used to train the classifiers.
Ensemble* showed marked improvement in sensitivity of
at least 13%, 6%, 7%, and 8%, respectively, for Ae. aegypti
(89%), An. gambiae (89%), and Pe. humanus (91%) GPCRs
when compared with GPCRHMM (54%, 77%, 70%), Pfam
(83%, 84%, 86%), PredCouple (75%, 82%, 83%), Pfam*
(76%, 82%, 83%), and GPCRHMM* (60%, 79%, 75%)
(Figure 3).

It is particularly interesting to note that GPCRHMM
performed particularly poorly on the Ae. aegypti (54%)
and Pe. humanus (70%) sequences - Ensemble* identified
at least 35% more of the test set sequences for Ae. aegypti
and 21% more for Pe. humanus. As GPCRHMM uses a
number of specific features (e.g., length, amino acid com-
position, sequence similarity in transmembrane regions)
and was trained on sequences from Dr. melanogaster and
Ho. sapiens, it is likely that the internal model used by
GPCRHMM is too specific to the features of the GPCRs
of those organisms that GPCRHMM is excluding valid
sequences from other organisms. In contrast, the Pfam
HMMs depend on sequence similarity which rewards
similarity rather than penalizing differences. By combining
the two approaches, Ensemble* is able to take advantage
of their strengths while overcoming their disadvantages to
identify more GPCRs than any other classifier individually.

Secondly, we compared the number of test set sequences
that Ensemble*, GPCRHMM, Pfam, and PredCouple failed
to predict as GPCRs (“false negatives”) by species (Table 3).
GPCRHMM, Pfam, and Predcouple were run with the
default settings, while a positive likelihood score was
considered a prediction for Ensemble*. Ensemble* missed
fewer sequences than all of the other classifiers for all six
species and was able to find all of the Ap. mellifera test set
sequences.

Independent validation confirms prediction of putative
GPCRs

A multi-step validation process combining database an-
notations, similarity searches, domain identification, and
structure prediction of the Ensemble* classifier predictions
was performed (Figure 4). A total of 1,369 arthropod se-
quences, of which 697 belong to the vector species, had
positive likelihood scores. Using a threshold value of 0.085,
416 (148 for Ae. aegypti; 148 for An. gambiae; and 120 for
Pe. humanus) sequences were predicted as putative vector
GPCRs. Of the 416 predicted sequences, 329 were in the
original training set, confirming them as known GPCRs,
(Figure 4). Eighty-seven predicted sequences were not in
the training set and required further validation and
confirmation. Of these 87 predicted sequences, 12 se-
quences were false positives: either their database annota-
tion or identification of domains by ScanPROSITE [56]
indicated the sequences as something other than a GPCR.
From their respective database annotations, 23 predicted
sequences were identified as previously-known GPCRs. Of
the remaining 52 sequences, 27 were validated as having
GPCR domains by ScanPROSITE but did not have a data-
base GPCR annotation and 25 could be neither confirmed
by their respective database annotation nor validated by
ScanPROSITE as containing a GPCR domain (Additional
file 1: Table S1).

The 52 predicted but unconfirmed sequences were val-
idated using a combination of a BLAST search of the
NCBI nr database, ScanPROSITE, and I-TASSER [57].
Due to the high divergence among GPCR protein se-
quences, I-TASSER was employed to identify putative pro-
tein structure similarity of the 52 predicted sequences to
known GPCR protein structures. Five of the sequences
were homologs to known GPCRs from the same organ-
isms and are therefore likely to be duplicate sequences.
Seventeen sequences are not likely to be GPCRs as their
closest homolog was either confirmed as something
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explicitly other than a GPCR or sequences which were not
likely to be GPCRs. Thirty predicted GPCR sequences that
have no homologs within the same organism were consid-
ered to be newly-discovered (previously-unidentified) vec-
tor GPCRs (Table 4). Nineteen of the 30 predicted GPCRs
have been confirmed as putative GPCRs by at least two of
the in silico methods. The independent validation results
for the 416 predicted sequences have been summarized in
Figure 5. The previous studies may have missed these
GPCRs due to use an older version of the official gene set.

Forty-seven, or 11%, of the vector training set se-
quences were not identified as GPCRs as they did not
have likelihood scores above the threshold. There are
several possible reasons for the omission of the 47

sequences, including sequences that were too short to
accurately determine if they were GPCRs, too much
divergence from known GPCR sequences and structural
features, and positive likelihood scores less than the
threshold value.

Thirty previously-unidentified vector GPCRs were
predicted by the classifier

Ensemble* predicted 30 previously-unidentified putative
vector GPCRs of which 19 were confirmed (2 for Ae.
aegypti, 11 for An. gambiae, and 6 for Pe. humanus).
While GPCRs from Ae. aegypti and An. gambiae se-
quences were used as part of the training sets for the
Pfam HMMs, Pe. humanus sequences were not. Most of
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Table 3 Number of test set sequences found / missed by
species

Species
(Total sequences)

Number of sequences found / Missed*

GPCRHMM Pfam Predcouple Ensemble*

Ae. aegypti (134) 73 /61 111/23 101/33 122/12
An. gambiae (137) 105/ 32 115722 113/24 122/ 15
Ap. mellifera (56) 45/ 11 54/2 54/2 56/0
Dr. melanogaster 176 /19 156/39 180/15 185/ 10
(195)

Ho. sapiens (892) 759/133  712/180 778/114  807/85
Pe. humanus (103) 72/ 31 89/14 86/17 95/8
Vectors (374) 250/124  315/39 300/74 339/35
Total (1517) 1230 /287 1237/ 1312/205 1387/

280 130

* The number of test set sequences each classifier identified (found) and was
unable to identify (missed) as GPCRs are given by species, vectors, and total.
GPCRHMM, Pfam, and Predcouple were run using default settings. For
Ensemble*, sequences with a positive likelihood score were considered to
predicted GPCRs. The best results are in bold.

the Pe. humanus predicted GPCR sequences (Table 4)
were confirmed as GPCRs by using motif identification
(ScanPROSITE) and protein modeling (I-TASSER); only
one of the six Pe. humanus GPCR predictions lacked a
good match in the NCBI nr database. The identification
of Pe. humanus putative GPCRs that had no close ho-
mologs in the NCBI nr database indicated the improved
ability of Ensemble* to identify GPCRs in a novel organ-
ism. The usefulness of Ensemble* to identify new GPCRs
in already well-studied organisms was demonstrated by
the prediction of 13 new GPCRs in the two mosquito
species: Ae. aegypti and An. gambiae. The remaining 11
(4 for Ae. aegypti, 5 for An.

gambiae, and 2 for Pe. humanus) putative GPCRs
could not be confirmed due to low levels of similarity to
known GPCR structures or sequences. The identification
of additional GPCRs by Ensemble* is likely due to the
improved sensitivity in comparison with other classifiers
and the use of newer gene sets with improved gene an-
notations. As the gene sets for Ae. aegypti, An. gambiae,
and Pe. humanus improve, Ensemble* may be able to
identify more GPCRs.

Predicted GPCR genes are expressed

Expressed sequence tags (ESTs) represent fragments of
cDNA that were generated by reverse transcribing mRNA
available in the cells or organisms being analyzed. A
match against an EST sequence in a database indicates the
sequence is expressed and the organism at some point is
likely synthesizing the equivalent protein in its lifetime. In
the current study, matches against the VectorBase respect-
ive EST datasets were found for only two of the three
vector species of interest: An. gambiae and Ae. aegypti,
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respectively. One hundred and forty six (146, 35%) of the
416 vector GPCRs predicted by the Ensemble* classifier
had EST matches in VectorBase. No EST matches were
found for Pe. humanus, likely due to the smaller number
of EST studies that have been performed on the species.

Sixty-three Ae. aegypti sequences were validated as
GPCRs but had no EST matches in VectorBase, including
10 sequences that were not part of the original training
set. These ten, plus an additional 28 randomly-selected se-
quences were assessed by quantitative RT-PCR. All but
one of these 38 selected sequences were expressed in ei-
ther the mosquito head, body, or both (Additional file 1:
Table S2).

Conclusions

Ensemble*, a novel GPCR classifier for insect vectors,
was developed. A validation pipeline was described and
used to validate the predictions of Ensemble*. As the
genomes of more vector species are sequenced, the
availability of better tools for predicting and validating
GPCRs such as the Ensemble* classifier and the valid-
ation pipepline presented here will continue to be of
great interest.

We also provided a new analysis of the GPCR reper-
toires of the three vector species, Ae. aegypti, An.
gambiae, and Pe. Humanus, which resulted in the discov-
ery of 30 new vector GPCRs. Annotations for newly-
discovered GPCRs were submitted to VectorBase. EST
expression analysis were used to demonstrate that the se-
quences predicted by Ensemble* and validated by the
pipeline corresponded with expressed genes. Given the
importance of arthropod vectors to human health, we be-
lieve the identification of these additional vector GPCRs
should be useful to the research community.

Methods

Data sets

Positive training sets of known GPCRs were built from
multiple sources, including published GPCR sequences
from An. gambiae [5/44], Ae. aegypti [11], and Pe.
humanus [12], searching VectorBase [45,46] for GPCR
annotations and GO terms G-protein coupled receptor
activity (GO:0004930), G-protein coupled receptor sig-
naling pathway (GO:0007186), and receptor activity
(GO:0004872), and querying GPCRDB [47,48]. Dupli-
cate entries were identified and removed using BLAST.
For Ap. mellifera, we obtained the pre-release 2 in silico
peptide translations of the genome from Beebase [58,59].
A positive training set of known GPCRs was then com-
piled from a search of GPCRDB. A positive training set of
GPCRs for Dr. melanogaster was compiled by searching
GPCRDB and Flybase [4,50-53] for sequences annotated
with the above GO terms. The in silico peptide transla-
tions of the Ho. sapiens genome were obtained from
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Figure 4 GPCR Validation pipeline. Diamonds indicate input and output sequences. Rectangles represent the validation programs and filters.
Arrows indicate the movement of sequences and are labeled with the number of sequences that passed from one validation step to the next.
Numbers for sequences that were identified as something other than GPCRs are not shown. The first filter identifies sequences which are
annotated as GPCRs in the database and removes any sequences which were annotated as something other than GPCRs or were identified by
ScanPROSITE as having non-GPCR domains. The second filter uses a combination of the BLAST hits, I-TASSER results, and identification of GPCR
domains by ScanPROSITE to categorize the final 52 predicted but unconfirmed sequences.
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Table 4 Newly-discovered GPCRs identified by ensemble*t
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Sequence ID Species Prediction Evidence BLAST sequence name
likelihood value

AAEL013430-PA Ae. aegypti 0.346 ScanPROSITE and BLAST and I-TASSER putative GPCR class a orphan receptor 5

AAEL000818-PA Ae. aegypti 0.188 ScanPROSITE and BLAST class C metabotropic glutamate-like G-
protein coupled receptor GPRmgl4,
putative

AGAP002229-PA An. gambiae 0.691 ScanPROSITE and BLAST serotonin receptor

AGAP004930-PA An. gambiae 0.658 ScanPROSITE and BLAST and I-TASSER G protein coupled receptor

AGAP000383-PA An. gambiae 0480 ScanPROSITE and BLAST G protein coupled receptor

AGAP005229-PA An. gambiae 0440 ScanPROSITE and BLAST and I-TASSER G protein coupled receptor

AGAP000606-PA An. gambiae 0411 ScanPROSITE and BLAST alpha-2 adrenergic receptor

AGAP013324-PA An. gambiae 0409 ScanPROSITE and BLAST G protein-coupled receptor

AGAP008703-PA An. gambiae 0.278 ScanPROSITE and BLAST and I-TASSER G protein-coupled receptor

AGAP008237-PA An. gambiae 0.250 BLAST and |- TASSER G protein-coupled receptor 143

AGAPO11320-PA An. gambiae 0.236 ScanPROSITE and BLAST and I-TASSER Beta-3 adrenergic receptor

AGAPQ12824-PA An. gambiae 0.167 ScanPROSITEand BLAST and I-TASSER tachykinin receptor

AGAP011646-PA An. gambiae 0.112 ScanPROSITE and BLAST class C metabotropic glutamate-like G-
protein coupled receptor

PHUMO74100-PA Pe. humanus 0375 ScanPROSITE and BLAST Frizzled-7

PHUMO10590-PA Pe. humanus 0.342 ScanPROSITE and I-TASSER PREDICTED: cadherin EGF LAG seven-
pass G-type receptor 3-like

PHUM423330-PA Pe. humanus 0.289 ScanPROSITE and I-TASSER N/A

PHUM447490-PA Pe. humanus 0.250 ScanPROSITE and I-TASSER neuropeptide receptor A31

PHUM618870-PA Pe. humanus 0.208 ScanPROSITE and I-TASSER G protein-coupled receptor

PHUM128700-PA Pe. humanus 0.167 ScanPROSITE and I-TASSER G protein-coupled receptor

AAEL005994-PA Ae. aegypti 0.278 Unconfirmed uridine cytidine kinase i

AAEL002694-PA Ae. aegypti 0.250 Unconfirmed transmembrane protein 87A

AAEL000851-PA Ae. aegypti 0217 Unconfirmed N/A

AAELO10852-PA Ae. aegypti 0214 Unconfirmed Transmembrane protein 145

AGAP000130-PA An. gambiae 0430 Unconfirmed PREDICTED: latrophilin 2-like

AGAP005356-PA An. gambiae 0423 Unconfirmed PREDICTED: alpha-1A adrenergic
receptor-like

AGAPO11701-PA An. gambiae 0400 Unconfirmed GPRmgl4

AGAP004783-PA An. gambiae 0.227 Unconfirmed neuropeptide receptor A16

AGAP007896-PA An. gambiae 0.141 Unconfirmed sprinter

PHUM596180-PA Pe. humanus 0476 Unconfirmed transmembrane protein 145

PHUM288590-PA Pe. humanus 0.136 Unconfirmed N/A

1 Sequences were predicted using the Ensemble* classifier. Independent validation was performed using ScanPROSITE, I-TASSER, and homology to GPCRs in other
organisms as determined by a BLAST search of the NCBI nr database. Status as a newly-discovered GPCR was contingent upon identification by the Ensemble*
classifier and the existence of no contrary evidence, while confirmed GPCRs also had to be validated by at least two independent methods.

Ensembl [54]. The positive training set for Ho. sapiens
consisted of GPCRs identified through a search of
Ensembl for GO terms (see above) and sequences iden-
tified by Zhang et al. [49].

The in silico peptide translations of the genomes for
all of the organisms were current as of August 2010. For
the purposes of this study, we assumed that odorant re-
ceptors were not GPCRs [60-62] and removed them
from the positive training sets. The negative training sets

for each organism were defined as the remaining se-
quences in the peptide translations from each organism.

Development of the ensemble* classifier

Ensemble* combined the prediction capabilities of
GPCRHMM and the Pfam A GPCR clan Hidden Markov
Models (HMMs). Discrete likelihood score functions were
used to map the GPCRHMM global scores and logarithms
of the Pfam HMM e-values to likelihood scores. The
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discrete likelihood scores were combined using a linear
weighting to produce an overall likelihood score.

GPCRHMM*

GPCRHMM* extends the functionality of GPCRHMM by
mapping GPCRHMM’s global scores to likelihood scores
using a discrete likelihood score function.

GPCRHMM was run on the combined data set se-
quences to compute global and local scores. Analysis of
the global and local scores indicated that the global
score is an effective predictor of a given input sequence’s
known classification but the correlation did not fit a
simple function (Additional file 1: Figure S1).

GPCRHMM’s classification algorithm is as follows:
GPCRHMM was run on training set sequences with
known classifications (GPCR / non-GPCR). The discrete
likelihood score function was computed (trained) using
the global scores for the training set sequences. The
discrete likelihood score function was represented by
partitioning the range of global scores into 100 intervals
of equal width. A likelihood score was computed for
each interval by dividing the number of known GPCRs
in each interval by the total number of sequences with
global scores in each interval. During the classification
stage, a global score was computed for each sequence
using GPCRHMM. The sequences’ global scores were
mapped to likelihood scores by identifying the interval
with the appropriate range.

The computation of GPCRHMM?*’s discrete likelihood
score function (Lgpcruamars) for a sequence x can be
expressed using the following formula:

Lepcrpmm (% 1s aGPCR’xglobul_score)
# of GPCRs in bin (Xgobar_score)

# of all sequences in bin (Xgobar_score )
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Pfam* classifier

Pfam* maps whole-protein expectation value (e-value)
computed using Pfam A GPCR clan HMMs (retrieved
from the Pfam database [26] (Additional file 1: Table S3) to
likelihood scores using a discrete likelihood score function.

We used HMMER [55] to compute the e-values for
the sequences in the combined training set against the
Pfam A GPCR clan HMMs. We then analyzed the
resulting distribution of e-values with respect to the
known classifications for the sequences in the combined
training set. In the case of matches against multiple
HMMs for a single sequence, we selected the lowest e-
value. (Smaller e-values indicate better agreement.) We
found that the distribution of the logarithms of the e-
values could be used to accurately discriminate between
GPCRs and non-GPCRs. (Additional file 1 Section 2
contains a discussion of the analysis of the e-value distri-
butions). We used HMMER’s default threshold for the e-
values; any sequences for which e-values were not
reported (the e-values were larger than the threshold)
were classified as non-GPCRs.

Pfam’s classification algorithm is as follows: During the
training stage, the Pfam A GPCR clan HMMs were run
on all of the training set sequences. In the case of
matches against multiple HMMs, the lowest computed
e-value for each sequence is used as the e-value for that
sequence. The logarithm of each e-value was then com-
puted. The discrete likelihood score function was repre-
sented by partitioning the range of e-value logarithms
into 100 intervals of equal width. A likelihood score was
computed for each interval as the number of GPCRs di-
vided by the total number of sequences with e-value log-
arithms in that interval. During the classification stage,
the Pfam A GPCR clan HMMs were run against each in-
put sequence, and the lowest computed e-value was
taken. The log of the e-value was then mapped to a
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likelihood score by identifying the interval with the ap-
propriate range.

The computation of Pfam*’s discrete likelihood score
function (Lpg,,+) for a sequence x can be expressed using
the following formula:

Lpfm*(x is dGPCRlxevulufB)
- # GPCRs in bin(log(Xevaiue))
~ # of all sequences in bin(10g(Xeaie))

Ensemble* classifier

Ensemble* computed a discrete likelihood score for each
input sequence as a linear combination of the Ensemble*
Classifier. Ensemble* computed a discrete likelihood
score for each input sequence as a linear combination of
the likelihood scores computed by GPCRHMM* and
Pfam*.

Lysembier (x) = aLPfam* (x) + (1 _a)LGPRCRHMM* (x)

The function Lgysempler (¥) computes the predicted
likelihood score that a given sequence x is a GPCR. The
functions Lpgm+(x) and Lepcramme(x) are the likelihood
scores that x is a GPCR as predicted by the Pfam* and
GPCRHMM* classifiers, respectively. The variable «,
where 0 < a < 1, determines the relative weight of the
two classifiers in computing the overall likelihood. More
complex weighting schemes were not considered, as this
simple linear weighting performed well with a = 0.5.
(Additional file 1 Section 3 contains an analysis of differ-
ent values.)

Prediction and validation pipeline

Potential GPCRs from Ae. aegypti, An. gambiae, and Pe.
humanus were initially identified using Ensemble*. En-
semble* was trained on the combined data set. A multi-
step validation was performed on the GPCRs predicted
by the Ensemble* classifier (Figure 4). First, database an-
notations were obtained for all positive predictions and
ScanPROSITE [63] was used to confirm the presence of
a GPCR domain or profile. A likelihood threshold value
for the Ensemble* likelihood score was chosen after this
step using the Minimum Error Rate method [21] (as de-
termined by ScanPROSITE and database annotation).
The threshold value of 0.085 was chosen independently
for each vector, despite the differences between the vec-
tors. All sequences that contained domains or profiles
other than GPCR domains or profiles, or which were
identified as something other than GPCRs in the data-
base were filtered out. For the remaining sequences, two
other validations were performed: similarity searches
using BLAST against the NCBI nr database [64] and
structure prediction using I-TASSER [57,65], a program
for predicting 3D atomic structures from amino acid
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sequences and function through structural matches to
proteins for which the structures and functions are
known. Lastly, sequences that were predicted as GPCRs
by two out of three other criteria (unambiguous BLAST
results indicating similarity to a known GPCR, presence of
a GPCR domain or profile as identified by ScanPROSITE,
or a high I-TASSER TM-score to a known GPCR) were
considered to be confirmed GPCRs. Annotations for
newly-discovered GPCRs were submitted to VectorBase.

Expression analysis of predicted GPCR genes

Vector sequences predicted as GPCRs with likelihood
values above the threshold and that also had Scan-
PROSITE predicted GPCR domains or that were anno-
tated as GPCRs in VectorBase [46] were selected for
similarity searches against the available Expressed Se-
quence Tag (EST) datasets in VectorBase using the
BLAST search algorithm. Ae. aegypti sequences without
an EST match were then selected for confirmation of ex-
pression by quantitative real-time PCR.

The objective was to assess whether the predicted
GPCRs correspond to expressed genes.

Total RNA was isolated from whole female, and fe-
male heads of Ae. aegypti mosquitoes using the Trizol
reagent (Invitrogen). DNAse treated (Fermentas) total
RNA was used as a template for first strand synthesis
using oligo (dT) and Superscriptlll (Invitrogen). Real-
time PCR was performed using SybrGreen (ABI) with an
ABI 7900 Real-Time PCR System. Real-time PCR was
carried out using primers (Additional file 1: Table S4)
designed to the various GPCRs spanned by introns,
where possible, and the internal control gene, 40S Ribo-
somal Subunit 5. Each GPCR and control was carried
out in quadruplicate for both whole bodies and heads.
Experimental cycle threshold (Ct) values were normal-
ized to 40S Ribosomal Subunit 5 C values.

Additional file

Additional file 1: Supplemental information concerning the
Ensemble* classifier.
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