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Abstract

Background: It is well known that temperature has a major influence on the transmission of malaria parasites to their
hosts. However, mathematical models do not always agree about the way in which temperature affects malaria
transmission.

Methods: In this study, we compared six temperature dependent mortality models for the malaria vector Anopheles
gambiae sensu stricto. The evaluation is based on a comparison between the models, and observations from
semi-field and laboratory settings.

Results: Our results show how different mortality calculations can influence the predicted dynamics of malaria
transmission.

Conclusions: With global warming a reality, the projected changes in malaria transmission will depend on which
mortality model is used to make such predictions.
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Background
Since the 1950s, near-surface global temperatures have
increased by about 0.5-0.6°C [1], and it is likely that tem-
peratures will continue to increase over the next century
[2]. Model predictions, reported widely in climate policy
debates, project that a warmer climate could increase
malaria caused by the parasites Plasmodium falciparum
and P. vivax in parts of Africa [3]. Malaria is transmitted
by mosquitoes of the Anopheles genus, with Anopheles
gambiae s.s., An. arabiensis and An. funestus being the
dominant vector species in Africa [4,5].
These projections rely on knowledge about how the

malaria parasite and anopheline vectors respond to
changes in temperature. While a lot is known [6] about
how parasite development is influenced by temperature
[7], the same cannot be said for mosquitoes. In addition to
temperature, humidity [8,9], breeding site formation [10],
and competition between mosquitoes [11,12] are impor-
tant factors controlling the number of vectors at any time.
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Climate predictions about humidity and precipitation
are more uncertain than temperature projections. There-
fore, it is of interest to see if a consensus exists between
different malaria models about how temperature alone
influences malaria transmission. In the past, studies
have suggested that the optimal temperature for malaria
transmission is between 30 and 33°C [13-15].
Here, we compare six mortality models (Martens

1, Martens 2, Bayoh-Ermert, Bayoh-Parham, Bayoh-
Mordecai and Bayoh-Lunde) to reference data (control)
for Anopheles gambiae s.s., and show how these models
can alter the expected consequences of higher tem-
peratures. The main purpose of the study is to show if
there are any discrepancies between the models, with
consequences for the ability of projecting the impact of
temperature changes on malaria transmission.
We have focused on models that have been designed to

be used on a whole continent scale, rather than those that
focus on local malaria transmission [10,16,17].

Methods
Survival models
Six different parametrization schemes have been devel-
oped to describe the mortality rates for adult An. gambiae
s.s.. These schemes are important for estimating the
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temperature at which malaria transmission is most effi-
cient. The models can also be used as tools to describe the
dynamics of malaria transmission. In all of the equations
presented in this paper, temperature, T and Tair are in °C.

Martens 1
The first model, which is called Martens scheme 1 in
Ermert et al. [18], and described by Martens et al.
[19-21], is derived from three points, and shows the rela-
tionship between daily survival probability (p) and tem-
perature (T). This is a second order polynomial, and is,
mathematically, the simplest of the models.

p(T) = −0.0016 · T2 + 0.054 · T + 0.45 (1)

Martens 2
In 1997 Martens [21] described a new temperature-
dependent function of daily survival probability. This
model has been used in several studies [13,14,22,23].
In the subsequent text this model is named Martens 2.
Numerically, this is a more complex model than Martens
1, and it increases the daily survival probability at higher
temperatures.

p(T) = e−
1

−4.4+1.31·T−.03·T2 (2)

Bayoh-Ermert
In 2001, Bayoh carried out an experiment where the sur-
vival of An. gambiae s.s. under different temperatures
(5 to 40 in 5°C steps) and relative humidities (RHs) (40 to
100 in 20% steps) was investigated [24]. This study formed
the basis for three new parametrization schemes. In the
naming of these models, we have included Bayoh, who
conducted the laboratory study, followed by the author
who derived the survival curves.
In 2011, Ermert et al. [18] formulated an expression

for Anopheles survival probability; however, RH was not
included in this model. In the text hereafter, we name
this model Bayoh-Ermert. This model is a fifth order
polynomial.
Overall, this model has higher survival probabilities at

all of the set temperatures compared with the models
created by Martens.

p(T) = − 2.123 · 10−7 · T5 + 1.951 · 10−5 · T4

− 6.394 · 10−4 · T3 + 8.217 ·−3 ·T2

− 1.865 · 10−2 · T + 7.238 · 10−1
(3)

Bayoh-Parham
In 2012, Parham et al. [25] (designated Bayoh-Parham in
subsequent text) included the effects of relative humidity
and parametrized survival probability using the expres-
sion shown below. This model shares many of the same
characteristics as the Bayoh-Ermert model. The mathe-
matical formulation is similar to the Martens 2 model,

but constants are replaced by three terms related to RH
(β0,β1,β2).

p(T ,RH) = e−
(
T2·β2+T ·β1+β0

)−1
(4)

where β0 = 0.00113 · RH2 − 0.158 · RH − 6.61, β1 =
−2.32 ·10−4 ·RH2+0.0515 ·RH+1.06, and β2 = 4 ·10−6 ·
RH2 − 1.09 · 10−3 · RH − 0.0255.
For all models reporting survival probability, we can

rewrite p to mortality rates, β according to:

β = − ln (p) (5)

Bayoh-Mordecai
Recently, Mordecai et al. [26] re-calibrated the Martens
1 model by fitting an exponential survival function to a
subset of the data from Bayoh and Lindsay [24]. They used
the survival data from the first day of the experiment and
one day before the fraction alive was 0.01. Six data points
were used for each temperature.

p(T) = −0.000828 · T2 + 0.0367 · T + 0.522 (6)

Bayoh-Lunde
From the same data [24], Lunde et al. [27], derived an age-
dependent mortality model that is dependent on temper-
ature, RH, and mosquito size. This model assumes non-
exponential mortality as observed in laboratory settings
[24], semi-field conditions [28], and in the field [29]. In the
subsequent text we call this model Bayoh-Lunde. The four
other models use the daily survival probability as the mea-
sure, and assume that the daily survival probability is inde-
pendent of mosquito age. The present model calculates a
survival curve (� ) with respect to mosquito age. Like the
Bayoh-Parham model, we have also varied the mosquito
mortality rates according to temperature and RH.
Because mosquito size is also known to influence mor-

tality [8,9,30,31], we applied a simple linear correction
term to account for this. In this model, the effect of size is
minor compared with temperature and relative humidity.
The survival curve, � , is dependent on a shape and
scale parameter in a similar manner as for the probabil-
ity density functions. The scale of the survival function is
dependent on temperature, RH, and mosquito size, while
the scale parameter is fixed in this paper.
The mortality rate, βn(T ,RH , size) (equation 7) is

fully described in Additional file 1, with illustrations in
Additional files 2, and 3.

βn(T ,RH , size) =
ln

(
�N ,mt2
�N ,mt1

)
�t

(7)

Biting rate and extrinsic incubation period
The equations used for the biting rate, G(T), and the
inverse of the extrinsic incubation period (EIP, pf )
are described in Lunde et al. [27]. For convenience,
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these equations and their explanations are provided in
Additional file 1. The extrinsic incubation period was
derived using data from MacDonald [7], while the bit-
ing rate is a mixture of the degree day model by Hoshen
and Morse [32], and a model by Lunde et al. [27]. Since
our main interest in this research was to examine how
mosquito mortality is related to temperature in models,
we used the same equation for the gonotrophic cycle
for all of the mortality models. If we had used different
temperature-dependent gonotrophic cycle estimates for
the fivemodels, we would not have been able to investigate
the effect of the mortality curves alone.

Malaria transmission
We set up a system of ordinary differential equations
(ODEs) to investigate how malaria parasites are trans-
mitted to mosquitoes. Four of the mortality models
(equations 1, 2, 3, and 4) are used in a simple compart-
ment model that includes susceptible (S), infected (E) and
infectious mosquitoes (I) (equation 8):

dS
dt

= −(β + G(T) · Hi) · S
dE
dt

= (G(T) · Hi) · S − (β + pf ) · E
dI
dt

= pf · E − β · I

(8)

where Hi is the fraction of infectious humans, which was
set to 0.01. G(T) is the biting rate, and pf is the rate at
which sporozoites develop in the mosquitoes. The model
is initialized with S = 1000, E = I = 0 and integrated for
150 days with a time step of 0.5. As the equations show,
there are no births in the population, and the fraction of
infectious humans is held constant during the course of
the integration. This set-up ensures that any confound-
ing factors are minimized, and that the results can be
attributed to the mortality model alone.
Because the Lunde et al. [27] (Bayoh-Lunde) mortal-

ity model also includes an age dimension, the differential
equations must be written taking this into account. Note
that the model also can be used in equation 8 if we allow
β to vary with time.
We separate susceptible (S), infected (E) and infectious

(I), and the subscript denotes the age group. In total there
are 25 differential equations, but where the equations are
similar, the subscript n has been used to indicate the age
group.
Formulating the equation this way means we can esti-

mate mosquito mortality for a specific age group.We have
assumed that mosquito biting behaviour is independent
of mosquito age; this formulation is, therefore, compara-
ble to the framework used for the exponential mortality
models.

The number of infectious mosquitoes is the sum of In,
where n = 2, . . . , 9.

dS1
dt

= − (β1 + a1) · S1
dSn
dt

=an−1 · S1 − (βn + an + G(T) · Hi) · Sn
n = 2, 3, ..., 9

dSn
dt

=G(T) · Hi · S2 − (β2 + a2 + pf ) · E2
dEn
dt

=G(T) · Hi · Sn + an−1 · En−1

− (βn + an + pf ) · En
n = 3, 4, ..., 9

dI2
dt

=pf · E2 − (β2 + a2) · I2
dIn
dt

=pf · En + a2 · In−1 − (βn + an) · In
n = 3, 4, ..., 9

(9)

Age groups for mosquitoes (m) in this model are m1 =
[ 0, 1], m2 = (2, 4], m3 = (5, 8], m4 = (9, 13], m5 =
(14, 19], m6 = (20, 26], m7 = (27, 34], m8 = (35, 43],
m9 = (44,∞] days, and coefficients an, where n =
1, 2, . . . , 9, are 1.000, 0.500, 0.333, 0.250, 0.200, 0.167,
0.143, 0.125, 0.067. The rationale behind these age groups
is that as mosquitoes become older, there is a greater
tendency of exponential mortality compared to younger
mosquitoes.
This model has initial conditions S1 = 1000, and all

other 0.
A note on the use of ODEs and rate calculations can be

found in Additional file 4.

Validation data
To validate the models, we used the most extensive data
set available on mosquito survival [24] under different
temperatures (5 to 40 by 5°C) and RHs (40 to 100 by 20%)
[24]; it is the same data that the Bayoh-Ermert, Bayoh-
Parham and Bayoh-Lunde models were derived from.
These data describe the fraction of live mosquitoes (fa)
at time t, which allows us to validate the models over a
range of temperatures. Because three of the models used
the Bayoh and Lindsay data to develop the survival curves,
this comparison is unrealistic for Martens models.
Hence, to account for this we have used three inde-

pendent data sets to validate the fraction of infectious
mosquitoes and the mosquito survival curves.
Scholte et al. (Figure two in [33]) published a similar

data set, but this was based on a temperature of 27 ± 1°C
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and a RH of 80 ± 5%, whereas Afrane et al. (Figure two
in [28]) used mean temperatures of 21.5 to 25.0 and RHs
of 40-80%. Use of these data sets will allow us to com-
plement the validation to determine if the patterns of
malaria transmission are consistent with that of the con-
trol (Table 1). In addition to the data from Scholte et al.
[33], we also found the following data set, which is suitable
for validation of the survival curves but not the trans-
mission process itself, because the data does not show
the survival curve until all of the mosquitoes are dead
[Kikankie, Master’s thesis (Figures three to eight, chapter
3, 25°C, 80% RH) [34]]. These results are also shown in
Table 1. The additional validation only gives information
about the model quality between 21, and 27°C; however, it
serves as an independent model evaluation to determine if
the results are consistent and independent of the data set
used to validate the models.
Using the data from Bayoh and Lindsay, Afrane et al.

or Scholte et al. [33], we can calculate the fraction of
mosquitoes that would become infectious at time t, using
equation 8. We replace β with the time-dependent β(t),
which is a time varying mortality rate. This approach was
used for the data from [24] and [33].

β(t) = −ln
(
fa

(
t + 1

2
)

fa
(
t − 1

2
)
)

(10)

β(t) is linearly interpolated at times with no data. The
reference data from Bayoh and Lindsay [24] are here-
after designated as the control data in the subsequent text,
whereas data from Scholte et al. [33] is called Scholte in
Table 1. Table 1 also shows the skill scores of the mortality
model alone (for the figures in Additional file 3).
Because some of the schemes do not include RH,

we have displayed the mean number of infectious
mosquitoes, I, for schemes that do include it. For the
validation statistics, RH has been included. However, for
schemes where the RH has not been taken into account,
single realization at all humidities has been employed.

Validation statistics
Skill scores (S) are calculated following Taylor [35]:

Ss = 4 · (1 + r)4

(σ̂f + 1/σ̂f )2 · (1 + r0)4
(11)

where r is the Pearson correlation coefficient, r0 = 1 is
the reference correlation coefficient, and σ̂f is the vari-
ance of the control over the standard deviation of the
model (σf /σr). This skill score will increase as a correla-
tion increases, as well as increasing as the variance of the
model approaches the variance of the model.
The Taylor diagram used to visualize the skill score takes

into account the correlation (curved axis), ability to rep-
resent the variance (x and y axis), and the root mean
square.
Another important aspect is determining at which tem-

peratures transmission is most efficient. If mosquitoes
have a peak of infectiousness at, for example, 20°C in
one model, temperatures above this will lead to a smaller
fraction of mosquitoes becoming infectious. A different
model might set this peak at 27°C, so that at tempera-
tures from 20-27°C, the fraction of infectious mosquitoes
will increase, followed by a decrease at higher tempera-
tures. Isolating the point at which the mosquitoes are the
most efficient vectors for malaria parasites is important
for assessing the potential impacts of climate change. To
show the differences between the models, we report the
temperature where the maximum efficiency for producing
infectious mosquitoes was observed. This can be done by
maximizing equation 12.

arg max
T∈[10,40]

∫ ∞

t=0
Idt (12)

For the transmission process we also report Akaike
information criterion (AIC) [36] from a generalized linear
model with normal distribution. Since the observations
are not independent, and residuals do not follow a normal
distribution, we sample 100 values from the simulations
1000 times. We set the probability of sampling yi,j equal

Table 1 Skill scores

Control AIC Control Scholte AF BL mortality model SK mortality model

Martens 1 0.01 76 (56, 96) 0.00 0.03 0.36 0.25

Martens 2 0.38 9 (-14, 30) 0.55 0.37 0.54 0.45

Martens 3 0.65 -38 (-75, -9) 0.53 0.77 0.65 0.52

Bayoh-Ermert 0.27 30 (1, 58) 0.16 0.43 0.79 0.56

Bayoh-Parham 0.16 26 (-11, 55) 0.05 0.31 0.79 0.59

Bayoh-Lunde 0.90 -111 (-148, -81) 0.83 0.94 0.90 0.81

Bayoh-Mordecai 0.62 -53 (-82, -29) 0.58 0.70 0.57 0.49

Skill scores as defined in equation 11. “Control” represents the validation of infectious mosquitoes using the data from Bayoh and Lindsay [24], “Scholte” [33]
represents the validation of infectious mosquitoes using the data from Scholte, “AF” represents the validation of infectious mosquitoes using the data from Afrane, “BL
mortality model” represents the validation of the mortality model using the data from Bayoh and Lindsay [24], and “SK mortality model” represents the validation of
the mortality model using data from Scholte [33] and Kikankie [34]. “AIC control” is Akaike information Criterion for “Control” (95 % confidence interval).
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to normalized (sum = 1) fraction of infected mosquitoes
of the control. This method allow us to generate a model
with normally distributed, non-correlated errors. Median
AIC, with 95% confidence intervals are reported in
Table 1.

Results
Figure 1 shows the percentage of infectious mosquitoes
plotted against time (days) (x) and temperature (y).
The control shows that the most efficient transmission
occurs at 25°C, while the maximum percentage of infec-
tious mosquitoes at any time is 1.1. We found that the
Martens 1 and 2 models both underestimate the fraction
of infectious mosquitoes, while the Bayoh-Ermert and
Bayoh-Lunde models had comparable values. While the
Bayoh-Parham model affords similar values at 40% RH,

it overestimates the fraction of infectious mosquitoes at
higher RHs (Additional file 3). There are also substantial
differences at which the temperatures for transmission are
most efficient.
While Martens 1 has the most efficient transmission

at 20.4°C, Martens 2 and Bayoh-Ermert show the trans-
mission efficiency peaking at 26.8 and 27.5°C. Both the
control and Bayoh-Lunde models peak at 25°C, as mea-
sured according to equation 12, Bayoh-Parham peaks at
26.3°C, and Bayoh-Mordecai peaks at 24.4°C (Figure 2).
The numerical solution of the Bayoh-Ermert mortal-

ity model also reveals that it has problems related to
enhancedmosquito longevity at all of the selected temper-
atures; this effect was especially pronounced around 20°C.
We also found that the Bayoh-Parham model has issues
with prolonged mosquito survival.
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Figure 1 The percentage of infectious mosquitoes over time and temperature.
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To evaluate the skill of the models, with emphasis on
spatial patterns and variance, we investigated the skill
score that was defined in equation 11. The standard devi-
ation, root mean square and correlation coefficient are
summarized in a Taylor diagram (Figure 3). Skill scores
closer to 1 are a sign of better performance from a model
(Table 1).
When validating the transmission process using the data

from Bayoh and Lindsay (Table 1, column 1), the major-
ity of the penalty for the Martens 1 and 2 models was due
to the low variance, indicating that the mortality is set too
high compared with the reference. Further analysis found
that the Bayoh-Ermert model correlated poorly with the
reference, and the variance, σ̂f , was too high. The Bayoh-
Parham model also suffered from low correlation, as well
as too high variance. Overall, the Bayoh-Lunde model has
the highest skill score, followed by the Bayoh-Mordecai
model. The patterns are consistently independent of the
data used to validate the models with respect to the
malaria transmission process. Validation of the survival

curves alone, and their relationship with the transmission
process, is discussed in the next section.
The relatively simple Martens 2 model ranked third

among the models. We re-calibrated [37,38] the model
using the data from Bayoh and Lindsay. The re-calibrated
model (equation 13) generated a skill score of 0.65 (for the
transmission process). In addition, Martens 2 was most
efficient at 24.5°C. The Martens 3 model can be used for
temperatures between 5 and 35°C.

p(T) = e−
1

−4.31564+2.19646·T−0.058276·T2 (13)

The newly calibrated Martens 2 model (hereafter called
Martens 3), can be seen in Figure 2; the skill scores are
reported in Table 1.
To investigate how sensitive the results of the Mordecai

et al. [26] analysis are to the choice of mortality model,
we calculated the optimal temperature for malaria trans-
mission using their full temperature-sensitive malaria R0
model (equation 2 in [26]). The mortality rate, μ(T), was
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replaced with −ln(p(T)) from the exponential models.
Population density (N), and recovery rate, r, were set to 1,
since these do not influence the optimal temperature for
malaria transmission. The results can be seen in Table 2.
Relative differences between the two methods is in the
range from 1–11% (Table 2). Figure 4 shows R0 according
to temperature (with N = 1, r = 1) for the exponential
models. The maximum R0 ranges from 10 (Martens 1) to
206 (Bayoh-Parham).

Table 2 Optimal temperature for malaria transmission

This paper R0 fromMordecai Relative

et al. difference %

Martens 1 20.4 23.0 11.98

Martens 2 26.8 27.0 0.74

Martens 3 24.7 26.0 5.13

Bayoh-Ermert 27.5 27.2 1.10

Bayoh-Parham 26.3 26.9 2.26

Bayoh-Lunde 25.2

Bayoh-Mordecai 24.4 25.6 4.80

Optimal temperature calculated using the methods in this paper, and by using
methodology in Mordecai et al. [26].

Discussion and conclusions
The relationship between sporozoite development and the
survival of infectious mosquitoes at different tempera-
tures is poorly understood; therefore, any model projec-
tions relating the two should be interpreted with care. The
Martens 2 and Bayoh-Ermert models suggest that areas of
the world where temperatures approach 27°C could expe-
rience more malaria. Martens 3, Bayoh-Mordecai, and
our model (Bayoh-Lunde) suggests that transmission is
most efficient at around 25°C. TheMartens 1 model peaks
at 20.4°C, and Bayoh-Parham at 26.3°C (Figure 1). None
of the models, except Bayoh-Lunde, capture all of the
characteristics of the reference data, however.
Table 1 also shows the skill score for the mortality

model alone. Both the Bayoh-Parham and the Bayoh-
Ermert models have good representations of the survival
curves. However, the nature of the exponential mortality
curves gives them the choice of rapid mortality giving
a reasonable, but underestimated, transmission process
(Martens 2), or a good fit to the survival curves, which
in turn makes the mosquitoes live too long, resulting
in a poor transmission process (Bayoh-Parham and
Bayoh-Ermert). Because the Bayoh-Lunde model offers
a fair description of the survival curves as well as an age
structure in the differential equations, we consider that
the transmission process is well described. The Martens
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et al. [26].

1 and 2, Bayoh-Ermert, Bayoh-Mordecai and Bayoh-
Parham models all assume constant mortality rates with
age, and would, therefore, not benefit from being solved
in an age-structured framework.
The Martens 1 model has been used in several studies

[19-21], with the latest appearance by Gething et al. in
this journal [39]. Considering the poor skill of theMartens
1 model, the validity, or etiology, of results presented in
these papers should be carefully considered.
It is likely that regions with temperatures below 18°C,

as is typical for the highland areas of East and Southern
Africa, which are too cold for malaria transmission, might
experience more malaria if their temperatures increase.
However, malaria transmission in the future will be
dependent on many other factors such as poverty, hous-
ing, access to medical care, host immunity and malaria
control measures.
Most countries in Sub-Saharan Africa have annual mean

temperatures between 20 and 28°C. In these areas, link-
ing past and future temperature fluctuations to changes
in malaria transmission is challenging. Our data sug-
gest that one way to reduce this uncertainty is to use
age-structured mosquito models. These models produce
results that agree with the observed data, and non-
exponential mosquito mortality has been demonstrated

in several studies [33,40-42], although the true nature
of mosquito survival in the field is not fully elucidated.
The newly calibrated Martens 2 model described here
also produces acceptable results. If simplicity is a goal in
itself [43], models that assume exponential mortality will
still have utility. To believe in projections of the poten-
tial impact of long-term, large-scale climate changes, it
is crucial that models have an accurate representation
of malaria transmission, even at the cost of complexity.
For studies of malaria transmission at village level, other
approaches might be more suitable [10,16,44,45].

Additional files

Additional file 1: Details of the Bayoh-Lundemodel, mosquito biting
rate, and parasite extrinsic incubation period.

Additional file 2: This file shows how ζ can be used to change the
shape of the Bayoh-Lunde survival curve. The black line is the reference
data, while the red line represents the Bayoh-Lunde survival curve.
Temperature, relative humidity (as a fraction from 0 to 1), and ζ are given in
the panel strips.

Additional file 3: Survival curves for all of the models investigated in
this study plotted at different temperatures and relative humidities.
The figure on page two shows the legend as well as an example of
non-exponential mortality.

Additional file 4: A note on the use of ordinary differential equations,
age structure (with an example), and rate calculations.



Lunde et al. Parasites & Vectors 2013, 6:20 Page 9 of 10
http://www.parasitesandvectors.com/content/6/1/20

Abbreviations
BL: Bayoh and Lindsay; EIP: Extrinsic incubation period; ODEs: Ordinary
differential equations; SK: Scholte and Kikankie.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The work presented here was carried out in collaboration between all of the
authors. BL, MNB and TML defined the research theme. MNB provided the
data for the control. TML designed the methods and experiments, did the
model runs, analysed the data, interpreted the results, and wrote the paper. All
authors read and approved the final version of the manuscript.

Acknowledgements
This work was made possible by grants from The Norwegian Programme for
Development, Research and Education (NUFU) and the University of Bergen.
Our thanks go to Asgeir Sorteberg for commenting on the manuscript, and
three anonymous reviewers for their constructive comments, which helped us
to improve the manuscript.

Author details
1Bjerknes Centre for Climate Research, University of Bergen, Norway. 2Centre
for International Health, University of Bergen, Norway. 3KEMRI/CDC Research
and Public Health Collaboration, Kisumu, Kenya. 4Bjerknes Centre for Climate
Research, Uni Research, Norway.

Received: 5 October 2012 Accepted: 15 January 2013
Published: 18 January 2013

References
1. Hansen J, Sato M, Ruedy R: Perception of climate change. Proc Natl

Acad Sci USA 2012, 109:E2415—2423.
2. Intergovernmental Panel on Climate Change: Fourth Assessment Report:

Climate Change 2007: Working Group I Report: The Physical Science Basis.
Geneva: IPCC; 2007.

3. Gething PW, Smith DL, Patil AP, Tatem AJ, Snow RW, Hay SI: Climate
change and the global malaria recession. Nature 2010, 465:342–345.

4. Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T,
Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething
PW, Kabaria CW, Burkot TR, Harbach RE, Hay SI: A global map of
dominant malaria vectors. Parasit Vectors 2012, 5:69.

5. Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J,
Patil AP, Temperley WH, Gething PW, Kabaria CW, Okara RM, Van Boeckel
T, Godfray HCJ, Harbach RE, Hay SI: The dominant Anopheles vectors of
humanmalaria in Africa, Europe and the Middle East: occurrence
data, distribution maps and bionomic precis. Parasit Vectors
2010, 3:117.

6. Paaijmans KP, Blanford S, Chan BHK, Thomas MB:Warmer temperatures
reduce the vectorial capacity of malaria mosquitoes. Biol Lett 2012,
8:465–468.

7. MacDonald G: Dynamics of Tropical Disease. London: Oxford University
Press; 1973.

8. Gray EM, Bradley TJ: Physiology of desiccation resistance in Anopheles
gambiae and Anopheles arabiensis. Am J TropMed Hyg 2005,
73:553–559.

9. Fouet C, Gray E, Besansky NJ, Costantini C: Adaptation to aridity in the
malaria mosquito Anopheles gambiae: chromosomal inversion
polymorphism and body size influence resistance to desiccation.
PLoS One 2012, 7:e34841.

10. Bomblies A, Duchemin JB, Eltahir EAB: Hydrology of malaria: Model
development and application to a Sahelian village.Water Resour Res
2008, 44:W12445.

11. Paaijmans KP, Huijben S, Githeko AK, Takken W: Competitive
interactions between larvae of the malaria mosquitoes Anopheles
arabiensis and Anopheles gambiae under semi-field conditions in
western Kenya. Acta Trop 2009, 109:124–130.

12. Kweka EJ, Zhou G, Beilhe LB, Dixit A, Afrane Y, Gilbreath TM, Munga S,
Nyindo M, Githeko AK, Yan G: Effects of co-habitation between
Anopheles gambiae s.s. and Culex quinquefasciatus aquatic stages
on life history traits. Parasit Vectors 2012, 5:33.

13. Craig MH, Snow RW, le Sueur D: A climate-based distribution model of
malaria transmission in Sub-Saharan Africa. Parasitol Today 1999,
15:105–111.

14. Parham PE, Michael E:Modeling the effects of weather and climate
change onmalaria transmission. Environ Health Perspect 2010,
118:620–626.

15. Martens W: Health impacts of climate change and ozone depletion. An
eco-epidemiological modelling approach. The Netherlands: Maastricht
University Press; 1997.

16. Depinay JMO, Mbogo CM, Killeen G, Knols B, Beier J, Carlson J, Dushoff J,
Billingsley P, Mwambi H, Githure J, Toure AM, McKenzie FE: A simulation
model of African Anopheles ecology and population dynamics for
the analysis of malaria transmission.Malar J 2004, 3:29.

17. White MT, Griffin JT, Churcher TS, Ferguson NM, Basanez MG, Ghani AC:
Modelling the impact of vector control interventions on Anopheles
gambiae population dynamics. Parasit Vectors 2011, 4:153.

18. Ermert V, Fink AH, Jones AE, Morse AP: Development of a new version
of the Liverpool Malaria Model. I. Refining the parameter settings
andmathematical formulation of basic processes based on a
literature review.Malar J 2011, 10:35.

19. Martens W, Jetten T, Rotmans J, Niessen L: Climate change and
vector-borne diseases: A global modelling perspective. Global
Environmental Change 1995, 5:195–209.

20. Martens WJ, Niessen LW, Rotmans J, Jetten TH, McMichael AJ: Potential
impact of global climate change onmalaria risk. Environ Health
Perspect 1995, 103:458–464.

21. Martens W: Health impacts of climate change and ozone depletion: an
eco-epidemiological modelling approach. PhD thesis. Maastricht,
Netherlands: Maastricht University; 1997.

22. Parham PE, Michael E:Modeling the effects of weather and climate
change onmalaria transmission. Environ Health Perspect 2010,
118:620–626.

23. Ruiz D, Poveda G, Velez ID, Quinones ML, Rua GL, Velasquez LE, Zuluaga
JS:Modelling entomological-climatic interactions of Plasmodium
falciparummalaria transmission in two Colombian
endemic-regions: contributions to a National Malaria Early Warning
System.Malar J 2006, 5:66.

24. Bayoh N: Studies on the development and survival of Anopheles gambiae
sensu stricto at various temperatures and relative humidities. PhD thesis:
University of Durham; 2001.

25. Parham PE, Pople D, Christiansen-Jucht C, Lindsay S, Hinsley W, Michael E:
Modeling the role of environmental variables on the population
dynamics of the malaria vector Anopheles gambiae sensu stricto.
Malar J 2012, 11:271.

26. Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, Ben-Horin T, de Moor E,
McNally A, Pawar S, Ryan SJ, Smith TC, Lafferty KD, Thrall P: Optimal
temperature for malaria transmission is dramatically lower than
previously predicted. Ecol Lett 2013, 16:22–30.

27. Lunde TM, Korecha D, Loha E, Sorteberg A, Lindtjørn B: A dynamic
model of somemalaria-transmitting anopheline mosquitoes of the
Afrotropical region. I. Model description and sensitivity analysis.
Malaria J 2013. in press.

28. Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G: Effects of
microclimatic changes caused by deforestation on the survivorship
and reproductive fitness of Anopheles gambiae in western Kenya
highlands. Am J TropMed Hyg 2006, 74:772–778.

29. Harrington LC, Vermeylen F, Jones JJ, Kitthawee S, Sithiprasasna R, Edman
JD, Scott TW: Age-dependent survival of the dengue vector Aedes
aegypti (Diptera: Culicidae) demonstrated by simultaneous
release-recapture of different age cohorts. J Med Entomol 2008,
45:307–413.

30. Lyimo EO, Koella JC: Relationship between body size of adult
Anopheles gambiae s.l. and infection with the malaria parasite
Plasmodium falciparum. Parasitology 1992, 104:233–237.

31. Ameneshewa B, Service MW: The relationship between female body
size and survival rate of the malaria vector Anopheles arabiensis in
Ethiopia.Med Vet Entomol 1996, 10:170–172.

32. Hoshen M, Morse A: Amodel structure for estimating malaria risk. In
Environmental Change andMalaria Risk: Global and Local Implications,
Volume 9. Edited by Takken W, Martens P, Bogers RJ. Dordrecht, The
Netherlands: Springer; 2005:10.



Lunde et al. Parasites & Vectors 2013, 6:20 Page 10 of 10
http://www.parasitesandvectors.com/content/6/1/20

33. Scholte EJ, Knols BGJ, Takken W: Infection of the malaria mosquito
Anopheles gambiaewith the entomopathogenic fungus
Metarhizium anisopliae reduces blood feeding and fecundity.
J Invertebr Pathol 2006, 91:43–49.

34. Kikankie C: Susceptibility of laboratory colonies of members of the Anopheles
gambiae complex to entomopathogenic fungi Beauveria bassiana. Master’s
thesis. Johannesburg: University of the Witwatersrand; 2009.

35. Taylor KE: Summarizing multiple aspects of model performance in a
single diagram. J Geophys Res 2001, 106:7183–7192.

36. Akaike H: A new look at the statistical model identification. IEEE Trans
Autom Control 1974, 19:716–723.

37. Byrd RH, Lu-Chen PH, Nocedal J, Zhu CY: A limited memory algorithm
for bound constrained optimization. Siam J Scientific Comput 1995,
16:1190–1208.

38. R Development Core Team: R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing; 2011.

39. Gething PW, Van Boeckel TP, Smith DL, Guerra CA, Patil AP, Snow RW, Hay
SI:Modelling the global constraints of temperature on transmission
of Plasmodium falciparum and P. vivax. Parasit Vectors 2011, 4:92.

40. Dong Y, Morton JC, Ramirez JL, Souza-Neto JA, Dimopoulos G: The
entomopathogenic fungus Beauveria bassiana activate toll and
JAK-STAT pathway-controlled effector genes and anti-dengue
activity in Aedes aegypti. Insect BiochemMol Biol 2012, 42:126–132.

41. Hardstone MC, Huang X, Harrington LC, Scott JG: Differences in
development, glycogen, and lipid content associated with
cytochrome P450-mediated permethrin resistance in Culex pipiens
quinquefasciatus (Diptera: Culicidae). J Med Entomol 2010, 47:188–198.

42. Glunt KD, Thomas MB, Read AF: The effects of age, exposure history
andmalaria infection on the susceptibility of Anophelesmosquitoes
to low concentrations of pyrethroid. PLoS One 2011, 6:e24968.

43. White LJ, Maude RJ, Pongtavornpinyo W, Saralamba S, Aguas R, Van
Effelterre T, Day NPJ, White NJ: The role of simple mathematical
models in malaria elimination strategy design.Malar J 2009, 8:212.

44. Killeen GF, Smith TA: Exploring the contributions of bed nets, cattle,
insecticides and excitorepellency to malaria control: a deterministic
model of mosquito host-seeking behaviour andmortality. Trans R
Soc TropMed Hyg 2007, 101:867–880.

45. Saul AJ, Graves PM, Kay BH: A cyclical feeding model for Pathogen
transmission and its application to determine vectorial capacity
from vector infection rates. J Appl Ecol 1990, 27:123–133.

doi:10.1186/1756-3305-6-20
Cite this article as: Lunde et al.: Howmalaria models relate temperature to
malaria transmission. Parasites & Vectors 2013 6:20.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	Survival models
	Martens 1
	Martens 2
	Bayoh-Ermert
	Bayoh-Parham
	Bayoh-Mordecai
	Bayoh-Lunde

	Biting rate and extrinsic incubation period
	Malaria transmission
	Validation data
	Validation statistics

	Results
	Discussion and conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

