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Abstract

Background: The genetic characterization of Cryptosporidium and Giardia has important implications for
investigating their epidemiology and underpins their control. We undertook the first molecular epidemiological
survey of domestic bovids in selected regions of Sri Lanka to establish whether they excreted Cryptosporidium
and/or Giardia with zoonotic potential.

Methods: Faecal samples were collected from dairy calves (n =340; Bos taurus; < 3 months of age; weekly
sampling for six weeks) and water buffaloes (n = 297; Bubalus bubalis; <6 months and 26 months of age; one
sampling) from seven different farms in Sri Lanka. Genomic DNAs were extracted from individual faecal samples
and then tested for the presence of parasite DNA using a PCR-based mutation scanning-targeted sequencing-
phylogenetic approach, employing genetic markers within the small subunit of nuclear ribosomal RNA and 60 kDa
glycoprotein genes (designated pSSU and pgp60, respectively) for Cryptosporidium, and within the triose phosphate
isomerise (ptpi) gene for Giardia.

Results: Based on pSSU sequence data, C. bovis, C. ryanae and six new genotypes that were genetically similar but
not identical to C. andersoni (n=1), C. bovis (n=1), C. ryanae (n=3) and C. suis (n=1) were recorded in cattle.

For pSSU, two other, new genotypes were defined in water buffalo, which were genetically most similar to
Cryptosporidium genotypes recorded previously in this host species in other countries including Australia. Consistent
with the findings for pSSU, no species or genotypes of Cryptosporidium with zoonotic potential were detected
using pgp60. Based on ptpi sequence data, G. duodenalis assemblages A and E were detected in four and 137
samples from cattle, respectively, and assemblage E in two samples from water buffaloes.

Conclusions: The present study showed that C. parvum, the most commonly reported zoonotic species of
Cryptosporidium recognised in bovine calves globally, was not detected in any of the samples from pre-weaned
calves tested in the present study. However, eight new genotypes were recorded. Future studies of different host
species in various regions are required to investigate the molecular epidemiology of cryptosporidiosis and giardiasis
in Sri Lanka and neighbouring countries in South Asia.
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Background

Cryptosporidium and Giardia are two parasitic protists
that mainly infect the gastrointestinal tract and cause en-
teric disease in humans and various other animals [1,2].
These protozoa are global in their distribution and ad-
versely impact on human health in both developed and de-
veloping countries [3,4]. Infections are usually transmitted
via the faecal-oral route, following direct or indirect con-
tact with infective stages (oocysts or cysts) [2,3]. Although
infections are often self-limiting in immuno-competent
individuals [3,5], they can become severe and chronic
in infants, elderly people or immuno-compromised
or -suppressed individuals [6-8]. Key risk factors for
cryptosporidiosis and giardiasis of humans include con-
tact with individuals with diarrhoea, swimming in public
pools, travel to developing countries and, importantly,
direct contact with animals (e.g., [9-12]).

Cryptosporidiosis and giardiasis can be transmitted
from human to human (anthroponotic) or from animal
to human (zoonotic) [13]. Ruminants often have been
implicated as a major source of human cryptosporidiosis
and giardiasis based on the findings of many molecular
epidemiological studies (reviewed in [14,15]). For in-
stance, investigations of outbreaks and case—control
studies [16-20] have demonstrated that there is a strong
link between human cryptosporidiosis/giardiasis and
the direct or indirect contact with cattle, particularly
pre-weaned calves [15,21]. To date, seven species (i.e. C.
andersoni, C. bovis, C. felis, C. hominis, C. parvum, C.
ryanae and C. suis) and two genotypes of Cryptosporidium
(ie. “pig genotype II” and a new “C. suis-like genotype”)
have been recorded in cattle [22,23]. For Giardia duo-
denalis, assemblage E is the most commonly reported
genotype in cattle, followed by assemblages A and B
[24-26]. An appraisal of the literature shows that the
majority of molecular studies of Cryptosporidium and
Giardia of cattle and other animals relates mainly to a
limited number of countries in the developed world [3,27],
but there is little published information for developing
countries, including Sri Lanka. In addition, although there
have been numerous studies of cattle (Bos taurus) in many
developed regions of the world [27], there have been
few investigations of the molecular epidemiology of
cryptosporidiosis and giardiasis in related bovids, such
as water buffaloes (Bubalus bubalis) [28,29], which are
common domesticated animals in many countries, par-
ticularly in Asia.

Although Cryptosporidium and Giardia are known to
present clinical problems in humans [30-32] and animals
[33-35] in Sri Lanka, there is no detailed epidemiological
information on the species and genotypes/assemblages
of these parasites present in humans or any other ani-
mals. These knowledge gaps relate to the fact that suitable
molecular methods have not yet been used previously to
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identify and characterise such species and genotypes/as-
semblages in this country. Therefore, in the present study,
we conducted the first molecular epidemiological survey
in Sri Lanka to establish whether domestic bovids might
harbour Cryptosporidium and/or Giardia with zoonotic
potential. We used a PCR-based approach employing gen-
etic markers in the small subunit of ribosomal RNA
(SSU), 60 kDa glycoprotein (gp60) genes for Cryptosporid-
ium and in the triose phosphate isomerase (pi) gene for
Giardia, which have been widely used for the genetic
characterization of members of these genera [3,27]; we
were particularly focussed on identifying zoonotic geno-
types of these protozoa.

Methods

Sample collection

Faecal samples were collected rectally from pre-weaned
dairy calves (Bos taurus; < 3 months of age) and water
buffaloes (Bubalus bubalis; <6 months and >6 months of
age) from seven different farms (designated AB, NZ and
DY; BR, HA, NK and MR) in Sri Lanka between August
2012 and February 2013. The three dairy cattle farms
(AB, NZ and DY) studied were large, intensive farms,
located in the highland wet zone (average >2000 mm of
annual rainfall and>900 m altitude), and maintained
Ayrshire, Holstein Friesian and Jersey breeds, respectively.
Faecal samples were collected weekly for six weeks from
these three dairy farms. At the first visit, faeces were
collected from 20 pre-weaned calves (1-12 weeks) from
each farm, and individual calves were sampled weekly
for 6 weeks, providing a total of 340 samples for mo-
lecular testing. In addition, a total of 297 faecal samples
were collected once from the two different age groups
of water buffalo. The four riverine buffalo herds (BR,
HA, NK and MR) studied were in two different climatic
zones, with an average of 1,750-2,500 and 1,850-5,000 mm
of annual rainfall at altitudes of <300 and 300-900 m,
respectively.

Cattle and buffaloes were born and raised on the farms
studied, and fed whole milk (twice a day) until weaning
at 3 months of age. Dairy calves were reared in individual
pens, whereas buffalo calves were maintained as groups
(n =3-10) in pens. Therefore, there was no direct contact
between calves and adult cattle or buffaloes. Herd man-
agement practices on these dairy and water buffalo farms
are typical of large-scale, intensive farms in Sri Lanka.

Isolation of genomic DNA from faecal samples, and PCR
amplification

Genomic DNA was isolated from individual faecal sam-
ples using the PowerSoil DNA isolation kit (MoBIO,
USA) [29], and then frozen at —20°C until molecular test-
ing. Each genomic DNA sample was tested by PCR for
Cryptosporidiumm DNA employing markers (designated
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pSSU and pgp60) within the small subunit nuclear riboso-
mal RNA and 60 kDa glycoprotein genes, and for Giardia
DNA using a region (ptpi) within the triose phosphate
isomerase gene [29,36]; pgp60 is employed specifically for
the detection and assignment of Cryptosporidium species,
genotypes or subgenotypes that are infective to humans
(cf. [2]). Some genomic DNAs (n = 50) were also tested for
inhibition of the enzymatic reaction in PCR using a DNA-
spiking approach [37]. In brief, aliquots (2 pl) of individual
genomic DNA samples that had been test-negative in
PCR were individually spiked with 1 pg of C. parvum
DNA and subjected to PCR-based mutation scanning to
demonstrate the amplification of a specific product. There
was no evidence that samples tested contained constitu-
ents inhibitory to PCR.

Mutation scanning-based sequencing and phylogenetic
analyses of sequence data
For pSSU amplicons, single-strand conformation poly-
morphism (SSCP) analysis [38] was carried out as de-
scribed previously [39]. For ptpi amplicons, restriction
endonuclease fingerprinting was employed, using the
enzyme Rsal (Promega) [40-42]. Amplicons representing
each banding profile were selected and treated with exo-
nuclease I and shrimp alkaline phosphatase (Fermentas),
according to the manufacturer’s instructions, and then
sequenced in both directions by direct, automated se-
quencing (BigDye Terminator v.3.1 chemistry, Applied
Biosystems, USA), using the same primers employed in
secondary PCR. The quality of each sequence was assessed
based on the corresponding electropherogram using the
program BioEdit [43], and the sequences determined were
compared with known reference sequences using the
Basic Local Alignment Search Tool (BLAST; http://www.
ncbinlm.nih.gov/BLAST). Phylogenetic analysis of se-
quence data was performed using the Bayesian inference
(BI) tree building method in MrBayes 3.1.2 [44,45]. Pos-
terior probabilities (pp) were calculated via 2,000,000
generations, utilizing four simultaneous tree-building
chains, with every 100th tree being saved. At this point,
the standard deviation of split frequencies was <0.01,
and the potential scale reduction factor (PSRF) approached
one. A 50% majority rule consensus tree for each analysis
was constructed based on the final 75% of trees generated
by BL

Phylogenetic analysis was conducted to assess the rela-
tionships of the sequences from the present study to
those available from public databases for species or ge-
notypes of Cryptosporidium, and published in the peer-
reviewed literature. In brief, species were determined
based on 100% sequence homology to known species of
Cryptosporidium. Phylogenetic analysis was used to pro-
vide unequivocal support for the classification of species
and genotypes of Cryptosporidium; new genotypes were
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designated using sequential numbers, according to a pre-
vious study [29]. In addition, statistical analysis of pro-
portional difference was performed using the Fisher’s
exact test [46].

Results

Cryptosporidium species/genotypes in cattle

Although pgp60 was not amplified from any of the 340
genomic DNA samples tested, the pSSU region was
amplified from 211 (62.1%) of them. SSCP-based analysis
of all amplicons revealed eight unique banding profiles.
In total, 60 amplicons representing these eight profiles
were sequenced (5-10 per profile). No sequence vari-
ation was detected among all sequences representing
each SSCP profile, such that, ultimately, eight unique
pSSU sequences (GenBank accession nos. KF891285-
KF891292) were defined. These eight sequences differed
by 72-99% upon pairwise comparison. Phylogenetic ana-
lysis (Figure 1) of these eight as well as 70 reference
sequences (Additional file 1) included for comparative
purposes revealed C. bovis (accession no. KF891286), C.
ryanae (KF891285) and six new records (genotypes) that
were genetically similar (72-99%) but not identical to C.
andersoni (n = 1; accession no. KF891291), C. bovis (n =
1; KF891290), C. ryanae (n = 3; KF891287-KF891289) or
C. suis (n=1; KF891292), respectively (see Additional
files 2 and 3). In the epidemiological context (Table 1),
C. bovis and C. ryanae were detected in 5.6% and 7.4%
of all samples only from farm AB, respectively, and the
six new Cryptosporidium sequence types (accession nos.
KF891287-KF891292) were detected in 0.3-27.6% of
samples from farms AB, DY and/or NZ (Table 1).

Cryptosporidium species/genotypes in water buffaloes

Although pgp60 was not amplified from any of the 297
genomic DNA samples tested, the pSSU region was
amplified from 29 (9.8%) of them. SSCP-based analysis
of amplicons revealed three unique banding profiles. In
total, nine amplicons representing these three profiles
were sequenced. No sequence variation was detected
among all three sequences representing each SSCP pro-
file, such that, finally, three unique pSSU sequences
(GenBank accession nos. KF891292-KF891294) were de-
fined. These three new sequence types differed by 84-97%
upon pairwise comparison. Based on the phylogenetic
analysis, two sequence types (accession nos. KF891293
and KF891294) were genetically most similar but not
identical to Cryptosporidium genotypes reported previ-
ously from water buffaloes (see Figure 1). The other se-
quence type defined was the same as the pSSU sequence
of Cryptosporidium with accession no. KF891292 re-
corded in cattle in the present study (see section on
Cryptosporidium species/genotypes in cattle). In the
epidemiological context (Table 1), the Cryptosporidium
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Figure 1 Phylogenetic analysis of pSSU sequence data for Cryptosporidium using Bayesian inference (Bl) analysis. The ten distinct pSSU
sequences determined in the present study and 36 reference sequences representing Cryptosporidium (accession nos. listed in Additional file 1) were
included in the analysis. Eimeria necatrix, E. acervulina, E. brunetti, E. praecox and E. maxima sequences were used as outgroups. Accession numbers of
publicly available sequences are indicated at the ends of the branches. Accession numbers linked to sequences determined in the present study are in

bold-type; the numbers of samples with particular sequence types are in parentheses. Posterior probabilities (pp) for major nodes are indicated.

Table 1 Cryptosporidium species/genotypes and Giardia duodenalis assemblages detected in faecal samples from dairy
cattle from three farms in Sri Lanka

Farm Total Cryptosporidium species or genotypes* Giardia duodenalis assemblages*

C. ryanae C. bovis  Genotype 4 Genotype 5 Genotype 6 Genotype 7 Genotype 8 Genotype 9 Assemblage A Assemblage E
(KF891285) (KF891286) (KF891287) (KF891290) (KF891288) (KF891289) (KF891291) (KF891292)  (KF891295) (KF891296-

KF891310)
AB 117 25 19 22 9 1 0 0 0 0 60
NZ 120 0 0 31 38 0 0 0 2 0 39
DY 103 0 0 41 14 3 5 1 0 4 38
Total 340 25 19 94 61 4 5 1 2 4 137

*GenBank accession nos. are given in round parentheses.
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Table 2 Cryptosporidium genotypes and Giardia duodenalis assemblage E detected in faecal samples from buffaloes

from four farms in Sri Lanka

Farm Total Cryptosporidium genotypes* Giardia duodenalis
Genotype 9 Genotype 10 Genotype 11 assemblage E*
(KF891292) (KF891293) (KF891294) (KF891311 and KF891312)

HA 51 0 0 9 1

BR 58 0 4 0 0

NK 82 0 2 0 0

MR 106 5 1 8 1

Total 297 5 7 17 2

*GenBank accession nos. are given within round parentheses.

sequence types with accession nos. KF891293, KF891294
and KF891292 were detected in 2.4% (farms BR, NK and
MR), 5.7% (farms HA and MR) and 1.7% (farm MR) of
the 297 samples tested, respectively.

Cryptosporidium was detected on all four water buffalo
farms (Table 2). Samples test-positive for Cryptosporidium
were detected in 25 (8.4%) and four (1.3%) of 297
samples from animals in the categories of <6 months
and > 6 months of age, respectively (Table 3). The lowest
(2.4%) and highest (17.6%) percentages of samples test-
positive for Cryptosporidium were detected on farms
NK and HA, respectively, but there was no significant
difference in numbers of test-positive samples between
the two different climatic regions in which samples were
collected. The total number of calves (< 6 months) that
were test-positive for Cryptosporidium was significantly
lower for water buffaloes than for cattle in the study
population (P < 0.001).

Detection of Giardia duodenalis in cattle

All 340 faecal genomic DNA samples were subjected to
genetic analysis for Giardia. The ptpi locus was ampli-
fied from 141 (41.5%) of these samples. SSCP analysis of
all 141 amplicons displayed 16 distinct profiles. The direct
sequencing of 60 amplicons representing all 16 profiles
defined 16 distinct sequence types (GenBank accession
nos. KF891295-KF891310). These 16 sequences differed
by 86-99% upon pairwise comparison. All sequences
(~530 bp) representing the 16 profiles were compared
with publicly available sequences. One of the 16 sequences

was identical to the reference sequence (accession number
L02120) for G. duodenalis assemblage A. The 15 other se-
quences were identified as G. duodenalis assemblage E
(Table 4). Three of the 15 sequences were identical to G.
duodenalis assemblage E sequences with accession nos.
JN162349, IN162348 and EF654688, respectively. Twelve
other sequences were 99% similar to G. duodenalis assem-
blage E sequences with GenBank accession nos. IN162349
(n=5), IN162348 (n =2), IN162347 (n = 3) and GQ444455
(n=2). A comprehensive phylogenetic analysis (Figure 2)
supported their classification; the 15 and one sequences de-
termined in this study clustered, with strong nodal support
(pp = 1.00), with G. duodenalis assemblages E and A, res-
pectively (Figure 2).

These results were then put into an epidemiological
context. Giardia was detected molecularly in 141 (22.1%)
samples originating from all three cattle farms. Assem-
blages A and E were identified in four and 137 of these
samples. The highest percentage of test-positive samples
was detected in cattle on farm AB (51.3%), followed by
farms DY (40.8%) and NZ (32.5%). Each cattle farm had
19 calves that were test-positive for Giardia at some stage
during the sampling period. Mixed infections of Crypto-
sporidium and Giardia were detected in 98 (28.8%) of 340
samples. Of 60 cattle from all three farms, 57 had mixed
infections of Cryptosporidium and Giardia at least once
during the 6-week sampling period. The total number of
calves (< 6 months) that were test-positive for Giardia
was significantly higher for cattle than for water buffaloes
(P <0.001).

Table 3 Cryptosporidium genotypes and Giardia duodenalis assemblage E detected in faecal samples collected from

two different age groups of water buffaloes in Sri Lanka

Age group Total Cryptosporidium genotypes* Giardia duodenalis assemblage E*
Genotype 9 Genotype 10 Genotype 11 (KF891311 and KF891312)
(KF891292) (KF891293) (KF891294)

<6 months 108 5 5 15 1

26 months 189 0 2 2 1

Total 297 5 7 17 2

*GenBank accession nos. are given in round parentheses.
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Table 4 Fifteen different ptpi sequences representing assemblage E of Giardia duodenalis detected in cattle and
buffaloes in Sri Lanka

Farm Host Numbers of samples (accession nos.)* Subtotal
AB Cattle (Bos taurus) 47 (KF891296), 3 (KF8912967), 3 (KF891298), 2 (KF891299), 2 (KF891300), 2 (KF891301), 1 (KF891302) 60
NZ Cattle 20 (KF891296), 10 (KF891297), 3 (KF891304), 2 (KF891303), 1 (KF891305), 1 (KF891306), 1 (KF891307), 1 (KF891298) 39
DY Cattle 29 (KF891298), 4 (KF891296), 2 (KF891308), 1 (KF891301), 1 (KF891309), 1 (KF891310) 38
HA Water buffalo (Bubalus bubalis) 1 (KF891311) 1
MR Water buffalo 1 (KF891312) 1
BR Water buffalo 0 0
NK Water buffalo 0 0
Total 139

*GenBank accession nos. are indicated in round parentheses.
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Figure 2 Phylogenetic relationships of ptpi sequences of Giardia duodenalis based on Bayesian inference (Bl) analysis. Sixteen
sequences determined in the present study, and 41 reference sequences representing G. duodenalis assemblages A to G (accession nos. listed in
Additional file 4) were included in the analysis. Sequences representing G. ardeae, G. muris and G. microti were used as outgroups. Accession
numbers linked to sequences determined in the present study are in bold-type; the numbers of samples with particular sequence types are in
parentheses. Posterior probabilities (pp) are indicated at all major nodes.
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Detection of Giardia duodenalis in water buffalo

All 297 faecal genomic DNA samples were subjected to
genetic analysis for Giardia. The ptpi locus was ampli-
fied from two (0.7%) of these samples; the two samples
were from water buffaloes of <1 year of age (farms HA
and MR: 26 months of age on both farms). The two
amplicons were sequenced directly and compared with
publicly available sequences. The sequences (GenBank
accession nos. KF891311 and KF891312) were the same
as two reference sequences (accession nos. JN162348
and JN162349) representing G. duodenalis assemblage E
(Additional file 4). The two samples test-positive for
Giardia also both contained a Cryptosporidium sequence
type with accession no. KF891294.

Discussion

This study genetically characterised, for the first time,
Cryptosporidium and Giardia from Bos taurus and Bubalus
bubalis in Sri Lanka. Cryptosporidium was identified in
62.1% and 9.8% of 340 samples, and Giardia in 41.5% and
0.7% of 279 samples from these two respective bovid hosts.
Overall, two Cryptosporidium species (C. bovis and C. rya-
nae) and eight new genotypes were defined based on their
pSSU sequence (n =5, accession nos. KF891287-KF891291
in cattle; n =2, KF891293 and KF891294 in water buffalo;
and n=1, KF891292 in both cattle and buffalo). C. bovis
and C. ryanae were detected in calves of 10 and 19 days of
age, respectively, time points which are relatively consistent
with the pre-patent periods reported for these species
of Cryptosporidium [47]. Although both C. bovis and
C. ryanae (previously called Cryptosporidium “deer-like
genotype”) have been widely reported in calves from differ-
ent countries throughout the world [48,49], the eight geno-
types characterised here are novel. Consistent with the
findings for pSSU, no zoonotic species or genotypes of
Cryptosporidium were detected using pgp60, in the absence
of any evidence of PCR inhibition.

The first new Cryptosporidium genotype represented
by accession no. KF891287, which is distinct in pSSU
sequence by one nucleotide substitution (G ->C at
alignment position 220; Additional file 3) from C. ryanae
(accession no. EU410344), was most commonly detected
(44.5%) amongst the 211 Cryptosporidium test-positive
samples from cattle. This genotype was detected at least
once on all three cattle farms studied and at least once
during the 6-week sampling period. The second most fre-
quent (28.9%), new Cryptosporidium genotype pertaining
to accession no. KF891290 differed in sequence by
one nucleotide substitution (G - > C at position 220;
Additional file 3) from C. bovis (AY741305) and was
also detected on all three cattle farms examined.

The third and fourth new Cryptosporidium genotypes
(accession nos. KF891288 and KF891289), which both dif-
fered by two nucleotides (insertion of T or A at alignment
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positions 73 and 74, and a G ->C at position 220;
Additional file 3) from C. ryanae, were each recorded in
four and five samples, respectively, from farms AB and
DY. These two genotypes differed by only one nucleotide
(G->C) from previously reported C. ryanae variants
(accession nos. KC778534 and KC778535; [50]).

The fifth new genotype (accession no. KF891291),
which differed in sequence by one nucleotide from C.
andersoni, was identified in one sample. Phylogenetic
analysis (Figure 1) revealed that the sequence represent-
ing this genotype formed a monophyletic group, with
five reference sequences representing C. andersoni
(pp = 0.88). Although C. andersoni occurs in adult cattle, it
has been found occasionally in pre-weaned calves [51-55].
The sixth new genotype (accession no. KF891292) was
identified in two faecal samples from one calf on one farm
(NZ) and five samples isolated from water buffaloes from
another farm (MR). This genotype is one nucleotide
different from the pSSU sequence of a new Cryptosporid-
ium genotype described previously in cattle in Australia
(accession no. KC778530; [50]), Denmark (accession no.
DQ182599; [56]), India (accession no. GQ345008; [57])
and the UK (accession no. HQ822134; [58]), and also in
water buffaloes in Australia (accession no. KF019204; [29]).
Published sequence data for the heat shock protein 70
(hsp70) and actin genes also supported the validity of this
new genotype [58]. Therefore, this genotype might repre-
sent a new species, but it remains to be described.

The seventh and eighth new genotypes (represented by
accession nos. KF891293 and KF891294) recorded from
water buffaloes differed in sequence by a single point mu-
tation (G- > C at position 220; Additional file 3) from ge-
notypes 1 and 2 (accession nos. KF019202 and KF019203)
described recently [29] in water buffaloes in Australia, and
they were genetically most similar to those represented by
accession nos. KF019202, KF019203, AB712388 and
JQ002562 [29,59,60] in the phylogenetic analysis. These
results indicate that these two novel genotypes of Crypto-
sporidium are buffalo-affiliated, but these genotypes are
clearly different from C. ryanae from cattle [47].

Most samples (86.2% of 29) test-positive for Crypto-
sporidium in water buffaloes were detected in calves of
<6 months of age. This result is consistent with previous
studies [29,61,62], in which the occurrence of Crypto-
sporidium infection has been reported to be higher in
water buffaloes of <6 months than in those of 26 months
of age. A novel genotype represented by accession no.
KF891294 was most frequently detected (58.6%) among
Cryptosporidium test-positive samples from water buffa-
loes. It was also detected more frequently in samples
collected from calves of <6 months of age group than those
of 26 months age group. All of the eight novel genotypes
identified here in cattle and buffaloes from Sri Lanka had a
unique single-nucleotide (G < — > C) substitution in pSSU
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(Additional file 3) and appear to be autochthonous to this
country.

Surprisingly, C. parvum, the most commonly reported
zoonotic species of Cryptosporidium recognised in cattle
throughout the world [2,15/48], was not detected in the
present study in any of the samples collected from calves of
1 week to 3 months of age using a repeated sampling strat-
egy (every week for six weeks). According to epidemiological
studies conducted in many countries [16,52,55,63-67],
C. parvum is most commonly detected in calves of <3 months
of age. According to a longitudinal survey conducted by
Santin and colleagues [55], C. parvum was detected in
85% of 503 pre-weaned calves, whereas only 1% was
associated with post-weaned calves. For this reason,
pre-weaned calves are recognised as the major reservoir
for human cryptosporidiosis [2]. However, some recent
epidemiological studies have reported an abundance of
C. bovis infection and a limited presence of C. parvum
in calves of 1-60 days of age in China [23,68,69], India
[68] Nigeria [70] and Sweden [71]. Taken together, the
present findings suggest that calves of this age group are
not reservoirs for human C. parvum infection in the
geographical regions studied here in Sri Lanka. A likely
explanation for this unexpected result might relate to
sound husbandry practices on farms in Sri Lanka. The
three cattle farms studied were well-managed, inten-
sive farms, and pre-weaned calves were kept and fed/
watered in individual, elevated wooden calf pens with
slatted floors.

G. duodenalis assemblage A was detected in only
four samples from calves on one dairy farm (DY),
whereas 97% of samples test-positive for Giardia in
cattle related to G. duodenalis assemblage E. This re-
sult is consistent with the previous studies [50,72-76]
reporting that 80-100% of the G. duodenalis isolated
from cattle are in assemblage E. This assemblage was
detected in calves on all three dairy farms and, at least
once, in individual calves during the 6-week period of
sampling. The two samples test-positive for Giardia
in water buffaloes on farms HA and MR contained
G. duodenalis assemblage E, although Giardia was not
detected on the other two farms. Previous molecular
studies conducted in Australia [29] and Italy [28] have
also reported G. duodenalis assemblage E in water buf-
faloes. These findings support the proposal that cattle
and water buffaloes in the geographical areas studied in
Sri Lanka are not significant reservoirs for human infec-
tion with Giardia.

Both Cryptosporidium and Giardia were detected con-
currently in 28.8% of 340 samples from cattle, which is
in accordance with previous studies of cattle [77-79]. For
each genus, the numbers of test-positive samples were
higher in cattle than in water buffaloes, which seems to
be consistent with a prevalence of up to 100% recorded
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in studies of dairy calves [22] compared with 9.5-38.3%
in water buffalo [28,29,61,80-82].

Conclusions

Results of the present study suggest that the epidemiology
of bovine cryptosporidiosis and giardiasis in Sri Lanka is
distinct from those of other parts of the world. Unique nu-
cleotide substitutions in the pSSU region appear to be spe-
cific to Sri Lanka. Expanded studies of domestic and wild
bovids in various regions in Sri Lanka are required to test
this proposal. The apparent absence of C. parvum from cat-
tle and buffaloes and the low occurrence of G. duodenalis
assemblage A in cattle suggest that bovids in the regions
studied here have limited significance as reservoirs for hu-
man infections. Future work should be focused on large-
scale studies to investigate the molecular epidemiology of
cryptosporidiosis and giardiasis in a wide range of animals
in Sri Lanka and in neighbouring countries in South Asia.

Additional files

Additional file 1: Summary of salient information (Cryptosporidium
species/genotypes, host/environmental source, country, GenBank
accession nos. of sequences and associated references) pertaining to
the SSU sequences used in the phylogenetic analysis of pSSU data
(see Figure 1).

Additional file 2: Pairwise comparison of nucleotide sequence
differences in the small subunit of nuclear ribosomal RNA (pSSU)
among Cryptosporidium species or genotypes representing reference
sequences (GenBank accession nos. EU410344, AY741305, EU245042,
EF489038, EU331243 and AB712384) and those from bovids studied
herein (bold-type).

Additional file 3: An alignment of known reference sequences
representing a part of the small subunit of nuclear ribosomal RNA
(pSSU) of Cryptosporidium species or genotypes (GenBank accession
nos. EU410344, AY741305, EU245042, EF489038, EU331243 and
AB712384) with homologous sequences derived from Cryptosporidium
from bovids in the present study. A dot denotes a nucleotide that is
identical to that in the top sequence; a dash represents a gap.

Additional file 4: Summary of salient information (Giardia species/
assemblages, host origins, country, accession nos. of sequences and
associated references) pertaining to the tpi sequences used in the
phylogenetic analysis of ptpi data (see Figure 2).
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