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Abstract

Background: Lutzomyia gomezi (Nitzulescu, 1931) is one of the main Leishmania (Vianna) panamensis vectors in
Panama, and despite its medical significance, there are no population genetic studies regarding this species. In this
study, we used the sequences of the mitochondrial gene cytochrome b/start of NADH1 and the nuclear elongation
gene α-1 in order to analyze genetic variation and phylogeographic structure of the Lu. gomezi populations.

Methods: A total of 86 Lu. gomezi individuals were captured in 38 locations where cutaneous leishmaniasis
occurred. DNA was extracted with phenol/chloroform methods and amplification of genes was performed using
PCR primers for mitochondrial and nuclear markers.

Results: We found a total of 37 and 26 haplotypes of mitochondrial and nuclear genes, high haplotype diversity (h)
for all three populations were detected with both molecular markers. Nucleotide diversity (π) was estimated to be
high for all three populations with the mitochondrial marker, which was opposite to the estimate with the nuclear
marker. In the AMOVA Φst recorded moderate (mitochondrial) and small (nuclear) population structure with
statistical significance among populations. The analysis of the fixation index (Fst) used to measure the
differentiation of populations showed that with the exception of the population located in the region of Bocas del
Toro, the other populations presented with minor genetic differentiation. The median-Joining network of the
mitochondrial marker reveled three clusters and recorded four haplotypes exclusively of localities sampled from
Western Panama, demonstrating strong divergence. We found demographic population expansion with Fu´s Fs
neutrality test. In the analysis mismatch distribution was observed as a bimodal curve.

Conclusion: Lu. gomezi is a species with higher genetic pool or variability and mild population structure, due to
possible capacity migration and local adaptation to environmental changes or colonization potential. Thus,
knowledge of the genetic population and evolutionary history is useful to understand the implications of different
population genetic structures for cutaneous leishmaniasis epidemiology.

Keywords: Panamá, Sandflies, Leishmania panamensis, Cutaneous leishmaniasis, Genetic variability and
phylogeographic
Background
Cutaneous leishmaniasis is the most common form of
leishmaniasis reported in the Republic of Panama; its
clinical manifestations range from minor lesions to severe
skin ulcers [1-3]. In Panama it was first recorded in 1910
[4], an overall of 15 cases occurred during 1910–1944;
but there has been a sharp increase since 2000 [5].
According to the Epidemiology Department of the Health
Ministry of Panama, a total of 26,163 cases of cutaneous
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leishmaniasis occurred during 2000–2010 and the distribu-
tion of occurrence of CL was in regions of the provinces of
Bocas de Toro (28%), Panama West (20%), Coclé (17%),
Colón (11%), Panama East (5%), Veraguas (3%). The disease
is mainly caused by Leishmania (Vianna) panamensis and
Lutzomyia ylephiletor, Lu. sanguinaria, Lu. panamensis,
Lu. trapidoi, Lu. gomezi were identified as the transmission
vectors [6-8].
In Panama, recent research has show that Lutzomyia

(Lutzomyia) gomezi (Nitzulescu, 1931) is the most abun-
dant species with wide geographical distribution and
their abundance has been associated with cases of clinical
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CL acquired in households of rural communities [9].
Alongside Lu. gomezi other Lutzomyia species vectors
have been caught in the same place and associated with a
focus of cutaneous leishmaniasis infection in other
American countries, incriminating this species with high
potential in the transmission of the disease [2,10-14].
Lutzomyia (Lutzomia) gomezi in Central America is

present from Mexico to Panama and Trinidad Tobago
(Caribbean), also recently reported in Guatemala [14]. In
South America, it has been reported in Colombia,
Venezuela, Ecuador, Peru, French Guiana and Brazil,
specifically in Amapá, Acre, Pará, Mata Grosso, Goiás,
Bahia, Maranhão and Rondônia [15-17].
In general, its natural environment is a humid and

dark place, such as nests, rock crevices, animal burrows
and tree bark in the tropical rainforest [2]. However, it is
also reported in forest gaps and the canopies were light
availability produces humid change [2,18]. The foraging
and blood feeding behavior occurs at twilight and at
night from 18:00–20:00 hours [18]. Nevertheless, the
deforestation and loss of natural habitat have caused its
adaptation to peridomestic areas, perhaps changing the
hourly activity and feeding on a large variety of domestic
animals [19,20]. In the focus of leishmaniasis, this spe-
cies is predominant near peridomestic or outdoor areas
more than indoors households, which is difficult to con-
trol [2,19,21-23].
Despite of the potential significance of Lu. gomezi as a

Leishmania vector, few researches have targeted genetic
aspects or interrelationship of host-vector species. For
instance, [24] detected a natural infection of Lu. gomezi
with the Le. braziliensis in Venezuela, in order to establish
a methods for determine the circulation of Leishmania
parasites in leishmaniasis endemics areas. On the other
hand, [25] analyzed the changes to the primary and
secondary structures of tRNAser of the species; Lu.
trinidadensis (Oswaldoi group), Lu. (Psychodopygus)
panamensis, Lu. (Micropygomyia) cayennensis cayennensis,
Lu. dubitans (Migonei group), Lu. (Lutzomyia) gomezi, Lu.
rangeliana (ungrouped) and Lu. evansi (Verrucarum
group) for taxonomic purposes, considering that morpho-
logical identification can be difficult. Also, [26] detected
with ITS-1 a pool of Lu. gomezi infected with Le. naiffi in
Panama, the first report for the country which prompted
several hypotheses on the introduction of this parasite into
this country.
Attempts to understand the role that arthropod vectors

play in disease dynamics and pathogen transmission of
leishmaniasis, several studies over genetic population of
sandfly vectors has been performance in the Latin America,
Iran, Turkey, Palestine, Israel and Egypt [27-30]. Many of
these studies are focused in two principal species, Lu.
longipalpis and Phlebotomus papatasi to determinate
their genetic variation, structures and differentiation of
populations [27,28,31,32]. Thereby, molecular evidence for
divergence of vectors has been found and an assessment of
the impact on leishmaniasis epidemiology. For instance,
the taxonomic status of the Lu. longipalpis complex has
been fundamental to the understanding of leishmaniasis
epidemiology. Symptoms observed for transmission of
Leishmania infantum chagasi by Lu. longipalpis in Brazil
and Colombia results in visceral infections, whereas the
transmission of the same parasite by Lu. longipalpis in
Costa Rica results in non-ulcerative lesions [33,34].
Thus, it becomes important to analyze the population

genetics and demographic history of this vector species
to assess the genetic pool, gene flow and colonization po-
tential, consequently known as the population changes
and genetic variation affecting the vector competence
and resistance to insecticides [35,36]. On the other hand,
the population genetics analysis can provide information
about migration capacity, reproduction, and adaptation
to the conditions of the new habitat, favoring the emer-
gence of vector diseases [37]. In addition to this, the
determination of cryptic vector species and their ability to
transmit pathogens are even more relevant to understand
their implications in the epidemiology of vector diseases
and to suggest appropriate and effective prevention and
control programs without any environmental risks [36].
Due to the lack of population genetics information of Lu.

gomezi species in Panama and the Americas as a whole,
the goal of this research was to evaluate and compare the
intra- and inter-population variability of Lu. gomezi from
localities with a high incidence of cutaneous leishmaniasis
in Panama. Also to identify the barriers that may influence
gene flow among Lu. gomezi populations. Moreover, to
infer the historical processes that defines actual geographic
distributions of the species. These results may contribute
on the knowledge of leishmaniasis epidemiology and im-
prove the development of focal or large-scale programs
control for leishmaniasis vectors in Panama.

Methods
Study sites
The study was performed in the Republic of Panama be-
tween the coordinates 7º11′-9°39′N and 77º10′-83º03′
W. The most prevalent climatic regime in Panama is
tropical humid, with the dry season (January-March) pre-
senting an average temperature of 31.5ºC and relative
humidity of 75%. In other months (April-December), the
average temperature is 27ºC and the relative humidity
averages 90%. The vegetation in Panama varies according
to climate zones and consists mainly of tropical humid
forest or savannahs resulting from agricultural activity.

Sandfly collections and identification
Lu. gomezi samples were collected from the thirty-eight
localities in Panama, during the dry season (January-April)
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and rainy season (May-June) of 2010. Thirty-four sites
were chosen, representing incidence with cases of cutane-
ous leishmaniasis in humans during the 2006–2009 period,
according to data from the Department of Epidemiology of
the Ministry of Health of Panama; four sampling sites were
in Panamanian tropical forests. The geographic distribution
of the samples locations are indicated in Figure 1.
The characteristic of the thirty-four collecting sites

according to the landscape was fragmented environment
(secondary vegetation and areas used for agricultural
activities) or rural (an area without a large concentration
of people). The Coiba National Park, San Lorenzo Park,
Oil Pipeline Road Park, and the Serrania Filo del Tallo
Park represent natural reserves (forests) protected by the
National Environment Authority of Panama (ANAM).
The samples localities are listed in Table 1.
Specimens of Lu. gomezi used in the study were

caught using CDC light traps and octenol solution uti-
lized to attract hematophagous insects [38]. The traps
were positioned in the fragmented and rural locations,
near peridomestic areas, with the presence of domestic
animal (dogs, chickens, pigs, and cats) and ornamental
vegetation. In the forest, traps were placed next of stone
crevices and tree barks.
A total of nine CDC light traps were exposed at a

height of 1.5 m in each locality and were installed at ap-
proximately 50 m intervals. The collection period was of
12 h (18:00 h-06:00 h) for two consecutive days at each
point. The specimens were sacrificed with chloroform
Figure 1 Map of the Panama isthmus and distribution of the samplin
Central and line (−) represents the Panama Canal. The numbers inside the
National Environmental Authority (ANAM), used as control.
and stored in 95% ethanol at −20°C. Adult Lu. gomezi
were identified by morphology and genital structure
using the identification keys of [16].

DNA extraction and amplification
The DNA of 86 individual sandflies was isolated by a
standard phenol/chloroform technique, precipitated
with ethanol and resuspended in Tris-EDTA (TE) buffer
according to [39], with some changes and stored at −20°C
until used.
Two mitochondrial and nuclear genes were analyzed

to estimate the structure and geographic genetics
within and among populations of Lu. gomezi. The
region of mitochondrial genes analyzed was final Cytb
gene, inter-genetic region IGS-1, tRNA-Ser, inter-genetic
region IGS-2, and start of the NADH1 (CB3-NIN), and
amplified using primers CB3-PDR: 5′CAYATTCAAC
CWGAATGATA3′/N1N-PDR:5′GGCAYWTTGCCTC
GAWTTCGWTATGA3′ [27]. Nuclear region elongation
factor alpha-1 (EF α-1) coding an intron region were amp-
lified with primers EF-F03 5′CCTGGACATCGTGATTT
CAT3′/EF-R04 5′AGTGCTTCGTGGTGTAT(C/T)TC3′
[40].
PCR amplification of genes were performed in a volume

of 25 μl containing 1× buffer, 1.5 mM MgCl2++, 0.2 mM
of each dNTPs, 0.4 μM of each primer, 1.5 units of Taq
polymerase and approximately 2 μl of DNA (≈50 ng/μl)
template. The details of thermal cycling conditions were
outlined by [27] for CB3-N1N and [41] for EF α-1. A
g sites of Lutzomyia gomezi. The arrow indicates the Cordillera
square symbolize four natural reserves (forest) protected by the



Table 1 List of sampling sites with information on landscape features, CB3-N1N and EF α-1 haplotypes identified in
each location

Populations Locations Coordinates Macro
Habitat

Micro
Habitat

CB3-NIN
haplotype

EF α-1
haplotype

Western populations

1-Nance Valle Risco 9.255 −82.470 Fr P H1-H2 H1-H2

2-Bisira 8.899 −81.862 R P H3-H4 H1

3-Parque Nacional Coiba 7.627 −81.730 Fo S H6 H4

4-Altos de Piedra 8.515 −81.087 Fr P H5 H1-H3

Central populations

5-Villa del Carmen 8.800 −80.552 R P H7 H1

6-Coclesito 8.811 −80.550 R P H9-H11 H1

7-Molejón 8.767 −80.513 Fr P H8-H9-H10 H1-H12

8-Cutevilla 8.772 −80.487 Fr P H10-H11-H12 H1-H24

9-Vaquilla 8.699 −80.195 Fr P H10-H12 H1-H23

10-Chirigui Arriba 8.663 −80.187 R P H13-H14 H3-H22

11-Quebrada Leona 9.177 −80.139 Fr P H15-H16-H17 H1-H17-H18-H19

12-Cuipo 9.090 −80.051 R P H10-H15-H22-H23 H1-H6-H9-H20-H21

13-Providencia 9.207 −79.999 R P H9-H15-H21 H1-H9

14-Achiote 9.226 −80.030 R P H12-H19-H20 H1

15-Piña 9.244 −80.040 Fr P H10-H18 H1

16-Unión Piña 9.273 −80.021 Fr P H10-H15-H22-H23 H1

17-Parque Nacional San Lorenzo 9.351 −79.973 Fo S H10 H1

18-Parque Nacional Camino del Oleoducto 9.119 −79.700 Fo S H15 H1

19-Altos de Divisa 9.119 −79.693 R P H10 H1

20-Cacao 8.748 −80.017 Fr P H10-H28 H1-H5

21-Trinidad 8.808 −80.019 Fr P H29 H1

22-Vista Alegre 8.808 −80.014 Fr P H15-H23 H1-H11

23-Valdeza 8.789 −79.965 R P H10-H27 H1-H9-H10

24-Caimito 8.739 −79.937 R P H23-H29 H6

25-Limón 8.697 −79.904 Fr P H24-H25-H26 H1-H7-H8

26-Ollas Arriba 8.804 −79.912 R P H10 H1-H9-H12

Eastern populations

27-Madroño 9.284 −79.134 Fr P H10 H14

28-Gato Real 9.267 −79.119 Fr P H15-H18-H30 H1-H14-H15-H16

29-Buenos Aires (Chepo) 9.239 −78.817 Fr P H10-H15 H1

30-Torti 8.981 −78.571 Fr P H10-H15-H31 H1-H13-H14

31-Arimay 8.694 −78.146 R P H15 H1

32-La Cantera 8.640 −78.169 R P H15-H32 H1-H13-H14

33-Nicanor 8.544 −78.035 Fr P H10-H33-H34 H1-H13

34-Buenos Aires (Darién) 8.530 −77.961 R P H10-H15 H1-H8-H9

35-Parque Serranía Filo del Tallo 8.465 −77.993 Fo S H10 H1

36-Bijagual 8.459 −78.012 Fr P H15-H23-H35 H1-H13

37-Rio Iglesia 8.401 −78.007 R P H15-H36-H37 H8-H14-H25-H26

38-Puerto Obaldía 8.669 −77.429 Fr P H15 H1

Fr: fragmented forest; R: rural; Fo: forest; P: peridomestic; S: selvatic.
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negative control was included in each PCR reaction and
visualization of PCR product using 1.5% agarose gel with a
100 bp ladder.
Sequencing and alignment
PCR products were purified and sequenced directly by
the Macrogen INC., Seoul, Korea Sequencing Service in
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both directions with the same primers used in the amplifi-
cations. The sequences were compared to the nucleotide
BLAST (Basic Local Alignment Search Tool) tool available
in GenBank NCBI (National Center for Biotechnology
Information) in order to verify the similarities between the
sequences of Lu. gomezi stored in the database. The
CodonCode Aligner software was used to edit the nucleo-
tide sequences and identify the heterozygous as double
peaks on the chromatograms of the nuclear region. The
sequences were aligned with the Muscle option included
in the MEGA 5.05 software [42]. The polymorphic sites,
single substitution (singleton) and average base frequen-
cies were computed with MEGA 5.05 software.

Data analysis
To carry out an analysis of population genetics (genetic
diversity, structure and differentiation) to specimens
collected in different localities, we clustered and defined
samples in western, central and eastern populations from
Panama (Table 1). Thus, the specimens collected in Bocas
del Toro, Veraguas and Coiba represented the western
populations, those collected from Coclé, Colon, and west
of the Panama canal were central populations, whereas
specimens from east of the Panama canal, Darién and San
Blas corresponding to the eastern population (Figure 1).

Genetic diversity
We emphasized that heterozygotes detected in the EF α-1
were treated with recombination model in PHASE option,
incorporated in the DnaSP v.5. To estimate the genetic
diversity we used the following indexes: haplotypes num-
ber, haplotype diversity (h), and nucleotide diversity (π)
for each population. DnaSP v.5 [43] and Arlequin 3.11
[44] software was used for this purpose.

Genetic structure and differentiation
The population structure was determined performing an
Analysis of Molecular Variance (AMOVA) [45,46]. The
Arlequin 3.11 [44] software analyzed the variance compo-
nents and significance levels p = 0.01 using non-parametric
permutations of 1,000 times. To estimate levels of genetic
differentiation among the populations a pairwise compari-
son test was performed. Non-parametric permutations of
1,000 times and a significance p = 0.01 was used to esti-
mate Fst-value [45] in Arlequin 3.11 [44] software.

Network haplotypes
A haplotype network for both genes was inferred
through the median-joining network method [47], using
the Network v.4.5 software. In order to obtain the values
of posteriori probabilities among the clades, a Bayesian
analysis was calculated using MrBayes 3.1 [48] program.
MrModelTest [49] software was used to choose the best
model of nucleotide substitution according to the AIC
(Akaike Information Criterion). The model obtained by
MrModeltest for CB3-N1N Bayesian inference analysis
was HKY + I, with the proportion of invariable places (I) =
0.7594. For EF α-1, the model obtained was K80 + I, with a
proportion of invariable places (I) = 0.6725. 10 million gen-
erations of Markov Chain Monte Carlo (MCMC) and
burn-in of 5 million were used.

Demographic history of population
In addition to this, Tajima’s D [50] was used for estimate
deviations from neutrality mutation or selective neutral-
ity of these populations, P-value 0.01 was considered
statistically significant. Also Fu’s Fs [51] were calculated
for neutrality of mutation against population growth,
hitchhiking and background selection, P-value 0.02 as
significant. Both values Tajima’s D and Fu’s Fs were
calculated using the software Arlequin 3.11 [44] with
permutations of 1,000 times.
The mismatch distribution was calculated for CB3-N1N

and EF α-1 as supplementary test to evidence of demo-
graphic expansion of the population, through sudden
expansion model [52]. In Arlequin 3.11 [44] we computed
the sum of square deviations (SSD) and Harpending´s
raggedness index to test the goodness-of-fit of the model
to the data. The time since population expansion was
inferred using CB3-NIN region by means of the equation
t = τ /2 μ, where tau (τ) was obtained on the mismatch
distribution outputs and a mutation rate (μ) of 1.1-1.2%
per million years in Heliconius erato [53].

Results
Sequence characterization
Overall, 86 sequences isolated of CB3-NIN and EF α-1 of
Lu. gomezi individuals from 38 selected localities from
Panama Isthmus were analyzed. Of these, an alignment of
501 nucleotides was obtained of CB3-N1N with thirty-
nine polymorphic sites and nineteen single substitutions
(singleton). The average base frequencies were A = 37%,
C = 15%, G = 10%, and T = 38% recording a sequence rich
in A-T (75%). A fragmented size of EF α-1 was 597 bp, in
this case 166 sequences were obtained by clone generating
with the recombination model algorithm of DnaSP v.5
considering the heterozygous individuals. Of those
sequences, thirty-three polymorphic sites, six singletons
and a larger proportion of G-C (53%): 23%T, 27%C, 23%A,
27%G, were detected.

Genetic diversity
For the analysis of genetic diversity indexes both CB3-NIN
and EF α-1 region demonstrated high haplotype diversity
(h) for all three populations [Table 2]. While the nucleotide
diversity (π) for the mitochondrial region was estimated to
be high for all three populations, nuclear nucleotide diver-
sity was opposite to the estimate with mitochondrial,



Table 2 Genetic diversity data obtained with analysis of
CB3-NIN and EF α-1of the Lu. gomezi

CB3-NIN Western Central Eastern

populations populations populations

Nº individual 7* 51 28

Nº haplotype 6 23 12

h(d) ± SD 0.95 ±0.096 0.89 ± 0.033 0.80 ± 0.061

π(d) ± SD 0.01 ± 0.008 0.01 ± 0.005 0.01 ± 0.006

EF α-1 Western Central Eastern

populations populations populations

Nº individual 7* 51 28

Nº haplotype 4 18 9

h(d) ± SD 0.58 ± 0.137 0.58 ± 0.060 0.63 ± 0.069

π(d) ± SD 0.003 ± 0.002 0.004 ± 0.003 0.003 ± 0.002

H(d): haplotype diversity; π(d): nucleotide diversity; SD: standard deviations.*
We highlight that the collecting sites of Bocas del Toro and Veraguas were
difficult to access therefore have a much smaller sample size.
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showing a low value [Table 2]. The haplotype and the land-
scape features per collection site are showed in [Table 1].

Genetic structure and differentiation
In the AMOVA Φst estimated between the three popu-
lations, CB3-N1N region recorded moderate and EF α-1
small population structure with statistical significance
among populations. The total genetic variation found
within the populations was ≈ 86% (CB3-NIN) and ≈ 95%
(EF α-1) as shown in Table 3. Pairwise comparison ana-
lysis of the mitochondrial region revealed strong genetic
differentiation with highly significance between Western
Panama and Central Panama, whereas the Fst-value be-
tween Western and Eastern Panama, showed a moderate
and significant differentiation. However, when popula-
tions were analyzed with nuclear region it revealed weak
differentiation among populations of Western Panama
and Eastern Panama. Also a moderate level of genetic
differentiation was observed among the populations a
Central Panama and Eastern Panama [Table 4].

Network haplotype
The median-Joining network reconstructed with CB3-NIN
region linked a total of 37 different haplotypes with three
defined clusters (A, B, C). The lack of hierarchic structure
Table 3 Analysis of molecular variance (AMOVA) based on CB
Lu. gomezi

CB3-NIN

Source of variation d.f (%) Fixation

variations

Among populations 2 13.7 ΦST=

Within populations 83 86.3

d.f = degrees of freedom; * P < 0.01.
All samples were grouped according to Table 1.
is observed in the cluster “A”, this clade consists of 28 hap-
lotypes, the most frequent, H10, was found in eleven
localities sampled in Central Panama and six in Eastern
Panama. It also included Altos de Piedra and Coiba haplo-
types from Western Panama. Cluster “B” is constituted by
four haplotypes. Of these, H15 was collected from six sites
in Central Panama and nine from Eastern Panama, with
H23 being the most frequent [Figure 2A]. In cluster “C” we
recorded four haplotypes exclusively of localities sampled
from Western Panama, demonstrating strong divergence
support by Bayesian analysis [complementary data]. Thus,
the network is characterized by few mutational steps
[Figure 2A].
On the other hand, analysis linked a total of 26 haplo-

types of the EF α-1 region demonstrating a lack of genetic
structure in the Lu. gomezi populations. The patterns of a
star-like shape as similarly obtained with the mitochondrial
region, showed haplotype H1 as the most frequent in the
center and several haplotypes surrounding it with one and
three mutational steps [Figure 2B].
The Bayesian phylogenetic tree for the CB3-NIN region

showed three clusters with a posteriori probability of
0.99-1.0. Other minor clusters were supported by low a
posteriori probability values. The cluster with a higher a
posteriori probability corroborated the divergences obtained
in the haplotype network, inferred by the median-joining
method [Figure 2A and B]. The Bayesian inference of EF
α-1 region did not show similitude either, this analysis per-
formed for mitochondrial and nuclear genes are supple-
mentary data attached as Additional files 1 and 2.
We found 50% of the haplotypes in the peridomestic

areas of fragmented environments, 40% in rural environ-
ments, and 10% in forest environments. Although this
information is additional and not the main focus of the
research, the predominance of the haplotypes in these
sites is important to highlight due to the anthropogenic
impact on the landscape of Panama [Table 1].

Demographic history population
The results of Tajima D test (CB3-NIN) were negative but
not significant (−0.998; p > 0.01) that indicated neutrality
deviation due to a demographic expansion or not neutral
selection. Nevertheless, Fu´s Fs values were significantly
negative (−19.68; p < 0.02) detecting that a population
3-NIN and EF α-1sequence of the populations of

EF α-1

index d.f (%) Fixation index

variations

0.13* 2 4.5% ΦST= 0.04*

163 95.5%



Table 4 Estimates of pairwise Fst of CB3-N1N and EF α-1
between Lu. gomezi populations

CB3-NIN Western populations Central populations

EF α-1

Western populations *

Central populations 0.23 *

0.02

Eastern populations 0.21 0.10

0.04 0.12

Significance (p < 0.05)*.
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expanded in the past. The assessment of demographic
change with EF α-1 region using both Tajima D and Fu´s
Fs was significantly negative (−2.08; p < 0.01 and −13.65;
p < 0.02) respectively.
Considering that Fu´s Fs are sensitive estimators for de-

tecting demographic population expansion, we included
the analysis of mismatch distribution for characterization of
expansion detected with both genes. A bimodal curve was
observed with CB3-NIN region and smoother curves with
EF α-1 region. SSD value (0.011; p > 0.05) for CB3-NIN did
not reject the sudden expansion model, while SSD value
(0.049; p > 0.05) for EF α-1 region was observed. The
Harpending´s raggedness index determined a good fit of
Figure 2 A haplotype network inferred by a median-joining method u
Lutzomyia gomezi. Circles represent different haplotypes and sizes that ar
indicate number of mutations among haplotypes. Each color of circles sho
Eastern (blue). Values in parentheses showed the a posteriori probability of
data (Additional file 3). The time since expansion of
the population was estimated to be approximately
4,223,825 years ago corresponding to the Pliocene Epoch.

Discussion
The use of the mitochondrial and nuclear marker in ecol-
ogy has provided enough information to allow contrast of
the past population processes of species [54]. The high
content of A-T (74%) of the mitochondrial gene analyzed
in Lu. gomezi is similar to that detected in other sandfly
species: Phlebotomus papatasi and Lu. evansi [30,55]. This
suggests a high rate of substitutions as a result of natural
selection, favorable or unfavorable to populations [56]. A
higher proportion of G-C (53%) observed in the nuclear
gene in Lu. gomezi was comparable to the proportion veri-
fied in Anopheles gambiae (45%) and Culex pipiens (63%),
characteristically of intron region [57,58].
The high haplotype diversity detected among popula-

tions indicated a large polymorphism or gene pool of the
Lu. gomezi. The existence of this polymorphism is im-
portant for the survival and adaptability, considering that
the natural habitat of Phlebotominae sandflies is
destroyed because of anthropogenic factors [20]. How-
ever, we observed discordance in the level of nucleotide
diversity between CB3-NINI and EF α-1 sequences. This
sing CB3-NIN sequences (A) and EF α-1 sequences (B) of
e proportional to haplotype frequencies. The length of the traces
wed the geographical populations: Western (red), Central (yellow),
Bayesian inference.
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may be because the mitochondrial gene is highly variable
due to an elevated mutation rate and inheritence mater-
nally [59]. While the EF α-1 is an intron region of low
copy number of protein coding highly conserved [41].
The result obtained from AMOVA showed mild genetic

structure but greater genetic variation within populations.
The explanation is that gene flow occurs between the
different populations, probably caused by the flying cap-
acity of the species increasing their migratory potential.
Similar results were found from the analysis of popula-
tion genetics of Lu. longipalpis, Lu. intermedia and Lu.
shannoni over a distance between 8 to 15 km, which sug-
gested that individuals from sandfly populations were
capable of flying more than 57 m, as previously recorded
for sandfly species [2,60-64]. Thus, we hypothesized that
Lu. gomezi is able to disperse over long distances, which
could be gradually helped by the winds (adults) or passive
movement of eggs and larvae. Studies across distant
localities using other molecular markers are necessary to
define vector capacity to disperse.
Meanwhile, pairwise Fst-value demonstrated significant

genetic differentiation with the CB3-NIN region of the pop-
ulations from Western Panama and Central Panama. We
think that this genetic differentiation observed is influenced
by the central mountain range with altitudes of 2,468 to
3,475 m. The mountain range represents a geographic
barrier restricting altitudinal distribution of Lu. gomezi,
estimated between 175–300 meters high [65]. Similarly,
strong genetic differentiation was found between
Anopheles albimanus populations from Costa Rica and
Panama, also suggesting that the Central American
mountain range is a physical barrier that limited the
gene pool of malaria vector mosquitoes [66,67].
On the other side, slight genetic differences were de-

tected from CB3-NIN and EF α-1 regions, among the
sandfly populations from Eastern Panama and Central
Panama (separated by the Panama Canal basin) could
be explained because of the variety of climate and vege-
tation in Panama. The climate of Panama is influenced
by the Inter-tropical Convergence Zone, oscillating one
year to other and from one region to another. This vari-
ation allowed three types of tropical climate: Afi (very
humid), Ami (humid), Awi (dry), according to Köppen
Climate Classification [68]. The sampling locations from
Veraguas, Coclé, Colon, and Panama (west of the province
of Panama) registered precipitations and temperatures be-
tween 3,001-3,500 mm and 22°C-24°C, respectively, while
in the region of Eastern Panama, the amount of rain and
the temperature reported varied between 1,000-1,800 mm
and 26°C-27°C, respectively.
As a result, the type of tropical climate of Panama pro-

vides enough conditions to enable vegetation heterogeneity
and refuge for a great diversity of species [69]. Lu. gomezi
samples from Central Panama were collected from
borderline locations of tropical forest vegetation of low
lands. While the Eastern Panama populations were from
areas of vegetation in regeneration with evident an-
thropogenic impact. Thus, both climate and vegetation
defined different ecotypes that can restrict gene flow due
to environmental gradient. Climate changes were also
used by [70] to justify the genetic differences found
among the Brazilian populations of Lu. whitmani.
The star-like shape of network haplotypes, both for CB3-

NIN and EF α-1, reflected a rapid and recent expansion of
Lu. gomezi populations. The haplotypes of CB3-NIN (H-10,
H-15, H-23) and haplotype EF α-1 (H-1) are older alleles or
ancestral haplotypes dispersed in the Isthmus. The network
patterns in clusters A and B for the CB3-NIN region and
network EF α-1 region could be explained due to the
sandflies migration with their hosts, mainly mammals.
Several mammal species (Canidae, Procyonidae, Sciuridae,

Didelphidae, Dasypodidade) that currently are sandfly
hosts established themselves in Panama during the north–
south migration that took place during the closure of the
Isthmus between the Miocene-Pliocene epochs [71-73].
We suggest this event as causal of the dispersal of Lu.
gomezi because fossil records from the Miocene showed
the presence of sandflies in fragments of mammal hair and
in the microstructure of bird plumages in the Dominican
Republic, suggesting their relationship with several hosts
and possibly their transportation mechanism [74].
The H6 of CB3-NIN region from Coiba National Park

(Veraguas) probably derived from the H11 detected in
the populations of Central Panama, which indicates a
possible migration of Lu. gomezi from the continent.
Coiba was a continental island separated from South
America in the Eocene, laying next to the Isthmus of
Panama due to the decrease in the sea level in the last
glaciation. This could have enabled the migration of wild
animals and later, when the sea level increased, Coiba
was isolated [75,76]. These factors could have isolated
this haplotype, and it is also evidence that wild hosts
could help disperse these vectors.
The cluster B clearly showed the divergence in a west

population (Bocas del Toro) and this strengthened
significantly with the Fst-value [Table 4], we suppose
that the population could have become geographically
isolated. However other observations are necessary to
establish phenotypic differences and corroborate this
assumption.
The fragmentation of the forests on Panama is

reported since pre-Columbian times [77,78]. The
prevalence of 10 (CB3-NIN) and 1 (EF α-1) ancestral
haplotypes all types of environment and the percent of
haplotypes found in the fragment and rural environ-
ments could indicate the displacement of Lu. gomezi
because of disturbed areas. However, it is necessary to
establish the consequences of fragmentation forest in
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the population genetics by increasing sampling in local
forests.
The neutrality tests Fu´s Fs results were significantly

negative, and mismatch distribution statistic and network
haplotype support the assumption of population expansion
in the past. Moreover, high haplotype diversity but low nu-
cleotide diversity in EF α- region also suggests population
expansion.
Is it the fact that the closure of the Isthmus of Panama

affected by climate change in the world was the main fac-
tor that enabled the establishment of several species in
America, allowing for faunal exchanges between North
and South [79]. An alternative explanation of the popula-
tion expansion is that conditions later to closure of the
isthmus may have been favorable to its adaptation to the
suitable habitat and different ecological conditions in
Panama territory. According to our estimated date the
Pliocene climate was much cooler, allowing the expan-
sion of plant and animal species into new habitats [80].
The colonization and adaptation into new habitat can be
observed in the star-like shape of network haplotype.

Conclusions
In conclusion, Lu. gomezi is a species with a higher genetic
pool or variability and mild population structure, due to
possible capacity migration and local adaptation to envir-
onmental changes or colonization potential. However the
existence of geographic barriers, such as the central
mountain range separates a subpopulation. The establish-
ment of Lu. gomezi in the Isthmus of Panama could be
interpreted by the exchange of mammals in the American
continent, vegetation and climate conditions of the epoch.
Their relevance as a carrier of cutaneous leishmaniasis in
Panama is important for health schemes, especially if we
consider that sandflies have a wide-spread geographic
distribution in Panama, and this distribution is possibly
associated to the landscape changes caused by deforest-
ation [20]. In this study, mitochondrial and nuclear analysis
has provided important information to allow assembles
about genetic population and evolutionary history useful to
understand the implications of different population
genetic structures for cutaneous leishmaniasis epidemi-
ology. Thereby, proposing new perspectives for the
control of leishmaniasis vectors.
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