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Abstract

Background: Identification of the microflora of the sand fly gut and the environmental distribution of these
bacteria are important components for paratransgenic control of Leishmania transmission by sand flies.

Methods: Biotic and abiotic bacterial communities of four compartments of a hyper-endemic focus of Zoonotic
Cutaneous Leishmaniasis (ZCL) were investigated using 16S ribosomal DNA sequencing and phylogenetic tree
construction. These compartments include Phlebotomus papatasi’s gut, skin and intestinal tract of great gerbil
Rhombomys opimus, the gerbil nest supplies, and plant food sources of the vectors and reservoirs.

Results: Sequence homology analysis using nine available 16S rDNA data bases revealed 40, 24, 15 and 14 aerobic
bacterial species from the vector guts, the gerbil bodies, the gerbil nests, and the plants, respectively. The isolated
bacteria belong to wide ranges including aerobic to facultative anaerobic, pathogen to commensals, sand fly
oviposition inducers, land to air and ocean habitats, animal and human probiotics, and plant growth-promoting
rhizobacteria. Matching data analysis suggested that the adult P. papatasi gut bacteria could be acquired from three
routes, adult sugar feeding on the plant saps, adult blood feeding on the animal host, and larval feeding from nest
supplies. However, our laboratory experiment showed that none of the bacteria of the reservoir skin was transmitted to
female sand fly guts via blood feeding. The microflora of sand fly guts were associated with the sand fly environment
in which the predominant bacteria were Microbacterium, Pseudomonas, and Staphylococcus in human dwellings, cattle
farms, and rodent colonies, respectively. Staphylococcus aureus was the most common bacterium in sand fly guts.
Presence of some sand fly ovipoisition inducers such Bacillus spp. and Staphylococcus saprophyticus support association
between gut flora and oviposition induction.

Conclusions: Results of this study showed that Bacillus subtilis and Enterobacter cloacae particularly subsp. dissolvens are
circulated among the sand fly guts, the plants, and the sand fly larval breeding places and hence are possible
candidates for a paratransgenic approach to reduce Leishmania transmission.
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Background
Leishmaniases are worldwide distributing sand fly-borne
parasitic diseases with 1.4 million new cases and 20–30
thousand deaths annually. Due to complexity of life
cycle of Leishmania spp. multifaceted intervention strat-
egies are needed to prevent and control of the disease
[1,2]. From the leishmaniasis spectrum, Zoonotic Cuta-
neous Leishmaniasis (ZCL), a neglected tropical disease,
is a public health problem with a clear and disturbing in-
crease in the number of cases in some areas of the world
[3,4]. Leishmania major is widely distributed in various
populations of rodents in arid and savannah regions
[4,5] and transmitted by the Afro-Asian vector of ZCL,
Phlebotomus papatasi Scopoli 1786, one of the most
prevalent species among the Phlebotomus genus in in-
door and outdoor places [6-10].
The disease is endemic in many rural districts of Iran,

in 17 out of 31 provinces [11], so that it is still a great
health problem and of research interest to many investi-
gators. Rodents belonging to the subfamily Gerbillinae
are the main reservoir hosts of ZCL in Iran and other
countries where ZCL is endemic [12,13]. In general, ger-
bils are the most abundant mammals reported from nat-
ural ecosystems of Old World deserts [14].
The great gerbil, Rhombomys opimus (Cricetidae:

Gerbillinae), is widely distributed in arid and semi arid
habitats, mostly in sandy or clay desert areas throughout
Central Asia, including Northwestern China, Mongolia,
Russia, Kazakhstan, Iran, Afghanistan and western Pakistan
[15-17]. In Iran it is widely distributed in central and
northeast parts of the country [16,18,19]. Based on mito-
chondorial DNA cytochrome B (cytB) gene, at least two
subspecies R. opimus sodalis and R. opimus sargadensis
have been reported in Iran [20]. Because their burrows are
a long-standing and important feature of the landscape,
many other animal species such as Phlebtominae sand
flies use them for shelter. Three coexisting Leishmania
parasites, L. major, L. turanica, L. gerbilli and the bacter-
ium Yersinia pestis have been isolated from this rodent
and its corresponding insect vectors, which indicate that
the great gerbil is a major reservoir that can maintain nat-
ural infection of leishmaniasis or plague [5,10,18,21,22].
The rate of infection of R. opimus by L. major is normally
high and may vary from 55.8% to 92.5% in endemic areas
[5,18]. The parasite can persist in the great gerbils for up
to 25 months [23].
The primary diet of great gerbils is herbivorous (Folivore,

Frugivore, and Granivore) and they cache these foods in
complex tunnel systems. Living in desert habitats, this ger-
bil must rely on metabolic water found in succulent plants
of family Chenopodiaceae (Climacoptera spp., Salsola
spp., Suaeda spp.) [24,25]. Although their diet may vary
according to the changes of plant species and coincides
with the variations in the plants’ phenology [26], in central
Iran, gerbils are commonly folivorous on Haloxylon spp.
and Salsola spp. These plants constitute the main source
of gerbil food because they have higher levels of water and
mineral salts compared with other plants [27].
The insect alimentary canal is the main colonizing site

of many microorganisms. Sand flies acquire bacteria at
the larval stage from food and the breeding soil, and at
the adult stage through contaminated sugar meals de-
rived from plant leaves and fruits or aphid honeydew
[28]. Sand fly females may also ingest bacteria while
feeding on a blood meal; however, blood meals are usu-
ally sterile, while sugar meals from different sources may
contain a variety of contaminating microorganisms [29].
These microbes are involved in many aspects of the host
life including nutrition, reproduction, tolerance to envir-
onmental perturbations, maintenance and/or enhance-
ment of host immune system homeostasis, defense,
speciation, mucosal barrier fortification, xenobiotic metab-
olism, and pathogen transmission ability [29-35]. Among
these, the role of midgut-associated bacteria in food diges-
tion has been demonstrated in several insect species [34].
These indigenous bacteria are essential sources of carbo-
hydrates improving digestion efficiency of plant-derived
polymers such as lignin, hemicellulose and cellulose, xylan
and pectin [36] and may also contribute to lipid and pro-
tein digestion [37].
Female sand flies need blood for egg production, but

sugar is their main source of energy and the only food
taken by males [38]. The sugar feeding behavior of sand
flies, therefore, influences longevity and fecundity, dis-
persal, host seeking behavior and ultimately blood feed-
ing and disease transmission [39-42]. According to the
literature, sand flies obtain sugar meals mainly from
honeydew excreted by aphids and coccids [43,44] and by
feeding directly on tissues of plants in the field [45,46].
Generally, vector control is an effective and the sim-

plest method to control vast majority of vector-borne
diseases [47]. However in recent years, application of
pesticides have been problematic because of their envir-
onmental toxicity, adverse effects on human health and
the emergence of insecticide resistance in many coun-
tries [48].
Paratransgenesis is a Trojan-horse approach in which

symbiotic bacteria, fungi, or viruses of the vector insect
are genetically manipulated to deliver effector proteins
that block development or transmission of the pathogen
(vector competence). This approach attempts to de-
crease pathogen transmission without adverse effects on
vectors themselves. Further, it is considered as a gene
delivery mechanism to the host and indigenous bacterial
flora of the host vector [34]. Bacterial symbionts of
blood sucking bugs [49], tsetse flies [50], mosquitoes
[51-55], American cockroach [56] and sand flies [57,58],
as well as symbiotic viruses of An. gambiae [59] and



Maleki-Ravasan et al. Parasites & Vectors  (2015) 8:63 Page 3 of 22
Aedes aegypti [60], have been identified and in some
cases successfully used to reduce or eliminate carriage of
pathogens by host arthropods.
Multitrophic interactions are now recognized as being

very important in understanding the complexity of the
natural world. For example, during phytophagy or hae-
matophagy, insects encounter microbiota on the surface
of the host and their released metabolic products; like-
wise, the host is also exposed to microbial products re-
leased from both sides of the insect alimentary canal
[34]. The role of microbiota as a fourth partner in be-
havioral aspects of vector-parasite-host interactions has
been neglected for long time. Information gained from
the study of these interactions can form the interface be-
tween biological control and restoration, which should
be considered as part of biological control.
In this study, the presence and distribution of gut

microbiota of male and female P. papatasi, the main
vector of ZCL, were investigated from the following
sources in the hyper-endemic focus of ZCL, Isfahan
province, Iran: the exposed areas of skin surface, faeces
and viscera of the great gerbil, R. opimus, the animal’s
nest materials which include soil, vegetarian food resi-
dues, and two plants of Hyloxylon sp. and Salsola sp. as
the food sources of both vector and reservoir. The re-
sults of this study may lead to identification of an appro-
priate bacterial candidate for genetic manipulation and
delivery of effector molecules to diminish leishmaniasis
transmission, using a paratransgenic strategy.

Methods
Study area
The study was conducted in five locations of four dis-
tricts of the Isfahan province, a well-known hyper en-
demic ZCL focus in central Iran (Figure 1). Biological
and non-biological samples were collected from different
Figure 1 Map of study area in the hyperendemic ZCL focus of
Isfahan province, central of Iran. Locations are, A: Abbas Abad
(Badrood), P: Parvaneh (Habibabad), S: Sejzi and V: Varzaneh. Solid
dot: Isfahan city.
biotypes including excavated rodent colonies, semi-
desolated cattle farm, uninhabited home, and deserts in
the vicinity of villages and cities of the district.

Sample collection
Sand fly collection
Initially funnel traps and sticky traps were used to evalu-
ate the sand fly populations in the region. In order to
study the sand fly gut mirobiota, live sand flies were col-
lected using different methods including CDC light
traps, car traps, and aspirator during the months of June
and July 2012. The traps were set adjacent to rodent
burrows and animal shelters between the hours of
20:00 PM to 4:00 AM next day. Car traps involved a just
parked vehicle used to attract sand flies in the vicinity of
rodent burrows at nighttime. By this method the sand
flies landing on the car were collected using a mouth as-
pirator and battery operated torch. Mouth aspirator and
battery operated torch also were used to collect sand
flies from bathrooms and toilets within human dwell-
ings. Sand flies were transferred alive to the National In-
stitute of Health Research, Isfahan Health Research
Station (NIHR-IHRS) laboratory. The specimens were
divided into two groups: 1) sand flies were immediately
microdissected and transferred into brain heart infusion
(BHI) broth culture medium, and 2) sand flies were of-
fered blood meals on their natural host, R. opimus, that
were reared in the animal unit of the center. The guts of
the second group were microdissected and cultured in
the medium 24 hours after blood meal ingestion. The
specimens were identified after microdissection and only
P. papatasi specimens were tested for gut microbiota.

Rodent collection
Active colonies of gerbils were identified and animal
collections were performed in summer season using a
Sherman live-trap (30 cm × 15 cm × 15 cm wire mesh)
baited with a sliced cucumber. Approximately 15–20 live
traps per day were used in each location. The traps were
set close to a burrow entrance 2–3 h before the initi-
ation of diurnal activity in the morning and in the even-
ing when the temperature was not very hot. The traps
were checked at noon and in the late evening before
sunset. Collected rodents were fed sliced carrots until
microbiological studies.

The nest materials
To examine acquirement, association, and probable cir-
culation of bacteria among the sand fly gut, rodent skin,
and food sources within the rodent nest, the soil, food
supplies, and wool fibres within the nest were collected
from the same colony where sand flies and rodents were
trapped. For this purpose the rodent burrows that were
built on clay hills were selected for excavation. Sampling
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was performed from different parts of the nest for bac-
terial investigation.

Plants: hyloxylon sp. and salsola sp
Sampling of the plants was confined to the available
plants of Haloxylon sp. and Salsola sp., the two preva-
lent plants in the central desert of Iran. The whole plant
of Salsola sp. (bushes) and the leaves and green branches
of Haloxylon sp. were cut and placed in a sterile clean
plastic bag and labeled with the given rodent colony.

Isolation of bacteria
Sand fly guts
Isolation of sand fly guts was conducted in a sterile envir-
onment under a microbiological lab hood on a sterile glass
slide. Before dissection, individual flies were surface steril-
ized for 2 min in 70% ethanol. The gut from each sand fly
was micro-dissected and homogenized in test tubes with
screw tops containing 5 cc brain heart infusion (BHI)
broth medium. The rest of the dissected insect body was
mounted on a slide for morphological identification.

The nest materials
The nest materials comprising the plant pieces, wool fi-
bres, and soil samples were collected and transferred to
the lab. Plant pieces and wool fibres were gathered in
sterile bags and then were immersed in the BHI broth
medium. For the soil samples, 0.7 ml of soil sample was
collected using 0.7 ml micro tubes and then homoge-
nized in the same medium.

The rodent body
The live field captured rhomboids and the laboratory
reared R. opimus in the NIHR-IHRS animal unit, were
anesthetized using intramuscular ketamine hydrochlor-
ide (60 mg/kg) and xylazine (5 mg/kg). Sterile cotton
swabs (presented in a sterile sealed test tube) were used
to swab the exposed area around the auricle, eyelid,
muzzle or footpads of the animal, where sand flies
choose to take blood meals. The swabs were then placed
in BHI broth. Single rodent faeces were collected from
the colonies in 0.7 ml micro tubes and then homoge-
nized in the BHI medium. Also a rodent was dissected
for swabbing throughout its alimentary canal. All experi-
ments on the rodents were performed in accordance
with the guidelines of the Ethical Board of Tehran Uni-
versity of Medical Sciences, Iran.
To test whether the rodent skin bacteria can enter/in-

fect the sand fly gut via blood feeding, a group of unfed
female sand flies were allowed to feed on laboratory R.
opimus specimens mentioned above. The gut microflora
of the fed sand flies were tested 24–48 hours post-blood
meal as this coincides with the highest growth rate of
bacteria as suggested in the literature [30,35].
Plants: Hyloxylon sp. and Salsoa sp.
To examine the surface bacterial flora of the diet plants
(Epiphytes), portions of collected samples, were placed
into the screw top tubes containing liquid medium. For
isolation of the potential bacteria present in the tissue
and sap (Endophytes) of the given plants, first about 10
grams of the these plants were surface sterilized with
70% alcohol for two minutes and then their juice was ex-
tracted by mortar. Finally the plant juice was poured dir-
ectly into the BHI broth culture medium.

Bacteriological methods
Culture media
In this research we initially used BHI broth medium. It
is a versatile liquid infusion medium, and was chosen as
an enriched non-selective medium to promote growth of
a diverse range of microbes including nutritionally fas-
tidious and nonfastidious bacteria, aerobic and faculta-
tive anaerobic bacteria, from a variety of clinical and
nonclinical materials. The transparent test tubes were
incubated aerobically at 37°C overnight. After 24–48
hours, opaque test tubes considered as positive were sub
cultured in BHI agar medium overnight at the same
condition. A test tube containing BHI broth opened near
the dissection area constituted our sterility control dur-
ing the dissection process.

Purification of bacterial isolates
To obtain individual pure colonies, the grown bacteria
were serially diluted or streaked on agar plates. After
18–24 hours incubation at 37°C area well-isolated discrete
colonies were seen. Colonies with different phenotype and
morphology were isolated and sub-cultured successively.
Pure isolates were partially preserved and partially used
for further identification procedures like Gram staining
and molecular studies.

Molecular identification
16S rRNA gene amplification
The purified bacterial colonies isolated from different
specimens were tested using sequence analysis of the
16S rRNA gene for molecular identification after initial
classical phenotyping and biochemical identifications.
Each purified colony was subjected to genomic DNA ex-
traction using either a boiling method (STET buffer)
and/or routine phenol/chloroform DNA extraction
method for the isolates with hard cell walls that had not
yielded proper DNA by the boiling method. The 16S
rRNA universal primers 16suF: 5′-GAGTTTGATCCT
GGCTCAG-3′ and 16suR: 5′-GTTACCTTGTTACGAC
TT-3′ [61] were used to amplify a 1.5 kilo base (kb) partial
sequence of the 16S rRNA gene. The PCR amplification
was performed using Maxime PCR PreMix Kit (i-Taq)
Cat. No. 25026 in 20 μl reaction mixtures containing 1 μl



Maleki-Ravasan et al. Parasites & Vectors  (2015) 8:63 Page 5 of 22
of 10 μM both forward and reverse primers and 1–2 μl
(~0.1 μg) of extracted genomic DNA. Double-distilled
water and BHI agar medium were used as DNA extraction
and PCR negative controls. The PCR conditions were set
as an initial denaturation at 94°C for 10 min, followed by
35 cycles of denaturation at 95°C for 30 s, annealing at
57.5°C for 40 s, and extension at 72°C for 30 s, followed by
a final extension at 72°C for 8 min. PCR products were vi-
sualized on a 1% agarose gel containing ethidium bromide
and using an UV transilluminator.

16S rRNA gene sequencing and analysing
All successfully amplified 16S rRNA amplicons were
bidirectionally sequenced via the same amplification
primers by Bioneer Company (S. Korea). The probable
chimeric sequences were checked with Mallard program
[62] for all acquired sequences and the specimens with
suspicious sequences removed from data. The consensus
of confident sequences was analyzed using nine data-
bases available for 16S rRNA genes of prokaryotes in-
cluding Greengenes [63], EzTaxon-e [64], NCBI (16S
rRNA sequences) [65], NCBI (Nucleotide collection)
[66], EMBL [67], DDBJ [68], leBIBI [69], RDP [70] and
Blast2Tree [71]. Sequence homology analysis was based
on the number and quality of nucleotides in a given se-
quence and hence appropriate settings and defaults such
as cultivable and or non-cultivable, type specimens and
or non-type specimens were selected. In case of discrep-
ancies among different databases, species identifications
were based on either the most common nomenclature
among the results of the nine databases or on the basis
of the highest percentage similarity.
The MEGA5 software was used for phylogenetic ana-

lyses and tree construction. Position verifications were
done using distance (neighbor joining) and parsimony
(1000 bootstrap replicates) analyses. The sequences were
deposited in GenBank database.
The DNA gyrB PCR method as described by Wang

et al. [72], followed by RFLP using suitable restriction
enzyme/s were used for identification of the isolates for
which 16S rRNA sequences represented more than a
single species such as Shigella flexneri/Escherichia coli,
Stenotrophomonas maltophilia/Pseudomonas geniculata,
closely related Bacillus species that share a similar gen-
etic background but occupy different ecological niches
(B. thurengiensis, B. anthracis and B. cereus), and sub-
species of Bacillus subtilis. Those bacteria for which 16S
rRNA sequences were identical were normally deter-
mined by the EzTaxon database.

Contamination controls
In order to verify the findings, bacterial contamination
of other parts of the dissected sand flies (except for gut),
rodent skin used for sand fly blood feeding, rodent
viscera, and environmental bacterial contamination of
culture media were examined.
Results
Collected samples
In total, 476 biotic and abiotic specimens of the ZCL
compartments originated from five locations of Isfahan
province were collected and their microflora were exam-
ined. They included 390 sand fly guts, 28 rodent skins,
11 rodent feces, 11 rodent nest soils, 12 plant pieces col-
lected within the rodent nest, 2 wool fibre samples, 14
Haloxylon sp. samples and 8 Salsola sp. samples. Details
of the collected samples are given in Table 1.
Identification of isolated bacteria
Initially, all isolates were identified according to their
morphological characteristics. On the basis of the cell
morphology (Gram staining) the isolates fell into two
main categories of Gram-negative (n = 24) and Gram-
positive (n = 45) bacteria. On the basis of the colony
morphology (form, elevation, margin, surface, opacity,
and chromogenesis) a large variation of bacterial isolates
was described. Finally, sequence analysis of 16S rRNA
gene revealed 12 isolates from male sand fly guts, 162
isolates from female sand fly guts, 47 isolates from the
internal and external parts of rodent bodies, 31 isolates
from rodent nest materials, 14 isolates from Haloxylon
sp. and 7 isolates from Salsola sp. plants.
In total 273 16 rRNA PCR products were sequenced

and the consensus data were deposited in GenBank.
[GenBank: JX661713-JX661718 and GenBank: KF254489-
KF254756] (Table 2). Molecular identification was per-
formed according to the 16S rRNA gene sequence
similarity rates between the amplified specimens and the
available data in the nine data banks (Table 2). Molecular
identification revealed presence of 40, 24, 15, and 14 bac-
terial species from vector midgut, reservoir host body, ro-
dent nest supplies, and the vegetarian diet sources,
respectively. Phylogenetic relationships of the bacteria
species are shown in a diagrammatic representation in
Figure 2. They belonged to 4 phyla, 16 families, and 28
genera of bacteria (Table 2). The relative abundance of
the bacteria genera is shown in Figure 3. Herein we re-
port 69 bacterial species from four phyla comprising
44% Firmicutes, 34% Proteobacteria, 20% Actinobac-
teria and 2% Bacteroidetes from the four main com-
ponents of the hyper-endemic ZCL focus. From 476
biotic and abiotic specimens that were investigated,
most specimens contained culturable bacteria; some
had two or more species, but in sand fly vectors, 75%
of females and 68% of males were gnotobiotic while
four plant specimens and one wool fibre of nest mater-
ial were sterile.



Table 1 Details and number of specimens used for microbiota analysis

Specimen Location

Varzaneh city Abbas-abad village, Badrood city Parvaneh village,
Habib-Abad city

Sejzi city Total

Rodent colony Cattle farm

Male sandfly — 7 6 28 — 41

Female sandfly — 170 92 87 — 349

R. opimus 16 3 — — 8* 27

Meriones libycus 1 — — — — 1

Rodent feces 8 3 — — — 11

Nest soil 8 3 — — — 11

Nest plant pieces 8 4 — — — 12

Nest wool fibers 2 — — — — 2

Epiphyte of Hyloxylon 4 3 — — — 7

Endophyte of Hyloxylon 4 3 — — — 7

Epiphyte of Salsola 1 3 — — — 4

Endophyte of Salsola 1 3 — — — 4

Total 53 202 98 115 8 476

*The origin of R. opimus reared in the Isfahan Health Research Station animal house was Sejzi city.
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Sand fly gut bacteria
We isolated 170 bacterial isolates from the guts of P.
papatasi which included 40 distinct species (Table 3).
The bacteria comprised pathogens, e.g. Acinetobacter
calcoaceticus-baumannii complex, Escherichia coli, En-
terobacter cloacae complex, Pseudomonas aeruginosa,
Staphylococcus aureus, and Stenotrophomonas spp,
whereas others were non-pathogenic or rare–pathogenic
organisms. Members of families Microbacteriaceae, Sta-
phylococcaceae and Xanthomonadaceae were the most
prevalent bacteria in the sand flies guts. Also Microbac-
terium paraoxydans was generally found in the greatest
abundance.
Results showed bacterial diversity among sand fly gut

in the three regions studied where we found 24, 18, and
12 bacterial species from rodent colony, cattle farm and
human dwellings, respectively. Staphylococcus aureus
was the only common bacterium in guts of sand flies of
three regions. Comparison of the bacteria isolated from
guts of the three locations indicated that species of
Microbacterium, Pseudomonas, and Staphylococcus gen-
era were dominant in human dwellings, cattle farms,
and rodent colonies, respectively.

Bacteria circulation in micro- and macroclimate levels
In this study we simultaneously identified microflora of
all wild components of ZCL cycle presented in and
around a single rodent colony (microclimate) located be-
tween the Abbas Abad village and the Agha-ali Abbas
shrine. 83 aerobic bacterial strains were isolated from
the biotic and abiotic parts of the colony where 59 iso-
lates were from the sand fly guts and 24 isolates were
from other compartments (Table 4, data shown in par-
entheses). Both Pseudomonas geniculata and Staphylo-
coccus aureus were present in male and female guts.
These two bacteria were also found on the surface of
Haloxylon plants and internal tissues of Salsola plants.
Staphylococcus epidermidis were found in the female
midguts, the rodent faeces and the nest soils. Bacillus
mojavensis was found in the female sand fly guts and in-
ternal tissues of Salsola plants. Different strains of Bacil-
lus subtilis were found in the female sand fly guts as
well as in the nest plant pieces, and as epiphytes on both
Salsola and Haloxylon plants. Details of spatial distribu-
tion of the bacteria isolated from different partners of
the rodent colony are shown in Table 4 (data shown in
parentheses).
At the macroclimate level, analyses were performed on

all isolates found in the whole area of study and the bac-
teria were assembled in Table 4 according to their isola-
tion origins. Comparative analysis revealed that in 16
cases the bacterial isolates were present in both micro-
and macroclimates (Table 4).
Analyses of bacteria at the macroclimate level sim-

ulated bacterial circulation pattern among four ZCL
operators. In this way selection of suitable candi-
dates and their possible application routes were dis-
closed. This model demonestrates how bacteria are
circulated among other ZCL partners by sand flies
(Figure 4).

Sand fly oviposition inducing bacteria
In this study we found 12 isolates of soil bacteria compris-
ing eight bacilli and four coagulase-negative staphylococci



Table 2 Details of the isolated bacteria from biotic and abiotic compartments of Isfahan ZCL focus based on 16S rRNA sequences

Classification
(Family)

Isolation
source*

AN of the closest relative
according to consensus
of 9 data bases and BLAST
servers** (T = Type strain)

Reported sources based on the closest relative
and GenBank searching

Name of the closest
relative according
to consensus of
9 data bases and
BLAST servers

The highest
similarity
score %

Genbank AN

Micrococcocaceae 8 [EzTaxon-e: AJ609630] cheese; rhizosphere of wheat, tomato; endophyte
of wheat, rice; air; soil; rabbit stool; mushroom
compost; subsurface water from the China Sea

Arthrobacter bergerei 98.30% [KF254744]

6 [EzTaxon-e: FQ311875] Arthrobacter arilaitensis 99.22% [KF254745]

3 [EzTaxon-e: X80739] rhizosphere of wheat, tobacco; soil; air; lake;
cold desert; dust; vermicompost; as plant
growth-promoting rhizobacteria (PGPR)

Arthrobacter nicotianae 99.22% [KF254746]

Microbacteriaceae 2 [EzTaxon-e: HQ219727] (T) deep-sea sediment Microbacterium sediminis 98.39% [KF254679]

2 [EzTaxon-e: X77442] vermicompost; endophyte of tobacco; air,
plant roots

Microbacterium imperiale 99.93% [KF254682]

2 [Greengenes: EU714342] human clinical specimens; bovine rumen;
raw milk; industrial effluent, rhizoplane of
wheat, eucalyptus

Microbacterium
paraoxydans

100% [KF254680-81,683-729]

Streptomycetaceae 2 [EzTaxon-e: AB184327] (T) rhizosphere of sugar beet, wheat, corn,
soybean; soil

Streptomyces roseofulvus 100% [KF254735]

Flavobacteriaceae 3,4 [EzTaxon-e: CM001437] habitat-specific organisms; wet environments;
bats; vermicompost; coastal water

Myroides odoratus 99.50% [KF254739-43]

3 [Greengenes: FM162560] soil; polluted sediment; clinical samples Wautersiella falsenii 99.67% [KF254733]

Bacillaceae 2 [EzTaxon-e: AM747813] (T) arid soil; rhizosphere of elymus, carrot, maize,
saffron, tea; endophyte of soybean

Brevibacterium
frigoritolerans

100% [KF254755]

2 [EzTaxon-e: AF295302] endophyte of cotton, wheat; PGPR; salt lake;
sediment; soil; coast; desert; root of glycine
max, grapevine; Bemisia tabaci honeydew

Bacillus endophyticus 99.65% [KF254667]

1,2 [EzTaxon-e: AB021185] maize; seaweed, coral; mine; freshwater pond;
fish gut; poultry waste; vermicompost

Bacillus flexus 100% [KF254668-69]

2 [Greengenes: EF032672] PGPR; saltmarsh sediment; Marine black sponge Bacillus firmus 100% [KF254670]

2 [EzTaxon-e: AY724690] (T) milk powder; soil; hot spring water; as probiotic
bacterium in aquaculture

Bacillus circulans 100% [KF254671-72]

2,6,9 [Greengenes: FJ549019] slaughterhouse waste; extremophile; a PGPR with
antibacterial and antifungal activity; oil; soil; roots;
milk powder

Bacillus pumilus 99.74% [KF254673-76]

1 [EzTaxon-e: AJ831842] (T) upper atmosphere; spring soil; rhizosphere of
wheat,rice, nut, tobacco

Bacillus altitudinis 100% [KF254585]

M
aleki-Ravasan

et
al.Parasites

&
Vectors

 (2015) 8:63 
Page

7
of

22



Table 2 Details of the isolated bacteria from biotic and abiotic compartments of Isfahan ZCL focus based on 16S rRNA sequences (Continued)

2,3,8 [Greengenes: GU568185] larvicidal activity against culicidae; biocontrol
activity against plant pathogens; great industrial
application for production of enzymes, antibiotics,
fermented foods and vitamins; Human, veterinary
and aquaculture; probiotic; fermented soybean;
Dioscorea zingiberensis; soil; hami-melon juice,
slaughterhouse soil

Bacillus amyloliquefaciens 100% [KF254566,71,77,
JX661713]

2,6,7,9 [leBIBI: AB325584] (T) Bacillus subtilis
subsp spizizenii

100% [KF254562,64,65,67,69]

11 [NCBI,16S: NR_027552] (T) Bacillus subtilis
subsp subtilis

99% [KF254580]

8,9,11 [Greengenes: HM210636] Bacillus subtilis 99.77% [KF254563,68,70,82]

2 [NCBI,NC: HE993550] Bacillus licheniformis 100% [KF254572]

1,2 [NCBI,16S: NR_024696] (T) Bacillus vallismortis 100% [KF254573,74]

2,12 [Greengenes: FJ907189] Bacillus mojavensis 100% [KF254575,79,81]

3 [NCBI,NC: JQ917920] Bacillus atrophaeus 100% [KF254576]

3 [NCBI,NC: AB681416] (T) Bacillus sonorensis 99% [KF254578]

2 [NCBI,NC: JX290089] insect to human pathogens Bacillus cereus group 100% [KF254677-78]

6 [NCBI,16S: NR_042072] (T) soil; sediment; sspoiled coconut; vermicompost;
gut of estuarine fish

Lysinibacillus fusiformis 99% [KF254734]

2 [EzTaxon-e: FJ386524] salt lake; a moderately halophilic bacterium Terribacillus aidingensis 100% [KF254730-31]

XII. Incertae Sedis 2 [Greengenes: AJ846291] psychrophilie and alkaliphile; water;
Anopheles stephensi

Exiguobacterium indicum 99.86% [KF254737]

Paenibacillaceae 3 [Greengenes: AY359885] blood culture, Phlebotomus papatasi; Apis melifera Paenibacillus
dendritiformis

98.34% [KF254756]

12 [EzTaxon-e: EU014873] (T) sugar cane Saccharibacillus sacchari 97% [KF254732]

Planococcaceae 9 [NCBI,NC: HM854242] endophyte of Populus euphractica Planomicrobium
okeanokoites

99% [KF254583]

2 [leBIBI: EU036220] (T) glacier Planomicrobium glaciei 99.86% [KF254584]

10 [NCBI,NC: JX290556] soy sauce Sporosarcina luteola 99% [KF254736]

Staphylococcaceae 3 [Greengenes: DQ361017] commensal of the skin of humans and animals;
meat fermentator, animal opportunistic infections,
Musca domestica, Calliphora spp

Staphylococcus xylosus 100% [JX661717]

1,2,10,12 [NCBI,NC: CP003194] skin and respiratory tract of human,
Phlebotomus argentipes

Staphylococcus aureus 100% [KF254613,20,
26,34,38-57]

6 [Greengenes: HM113469] human urinary tract infections, Phlebotomus papatasi,
Phlebotomus argentipes, Musca domestica

Staphylococcus
saprophyticus

100% [KF254614-16,22]

2,4,8 [DDBJ: L37605] animal and human skin/mucous; nosocomial
pathogen associated with infections of
implanted medical device

Staphylococcus
epidermidis

100% [KF254617,19,23,25,
30,32,35,37]
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Table 2 Details of the isolated bacteria from biotic and abiotic compartments of Isfahan ZCL focus based on 16S rRNA sequences (Continued)

3 [EzTaxon-e: AJ421446] human; farm animals; pets; wild animals;
food products of animal origin

Staphylococcus sciuri 100% [KF254618,28]

2,6,8 [EzTaxon-e: AF004220] cheese; sausages; skin of healthy wild animals;
human clinical specimens; Dominican amber

Staphylococcus succinus 99.93% [KF254621, 24, 29]

2 [Greengenes: L37601] commensal on human and animal skin; human
pathogens in immunocompromised patients

Staphylococcus hominis 99.86% [KF254627]

2 [EzTaxon-e: L37603] commensal on human and animal skin; human
pathogens in immunocompromised patients

Staphylococcus warneri 100% [KF254631]

2 [EzTaxon-e: EU888120] viscera of common voles Staphylococcus microti 100% [KF254633]

Enterococcaceae 4,6,7,8,9,10,11 [Greengenes: FJ378679] gastrointestinal tract colonizers with lifestyles
ranging from intestinal symbiont to environmental
persister to multidrug-resistant nosocomial pathogen

Enterococcus faecium 100% [KF254533,34,36-41,
43-50,56,57,60,61,
JX661714]

1,3 [Greengenes: FJ607291] Enterococcus faecalis 99.86% [KF254542,51,54,55]

2,3 [Greengenes: FJ915740] Enterococcus gallinarum 99.93% [KF254535,52,53,59]

4 [NCBI,NC: AB680105] Enterococcus casseliflavus 100% [KF254558]

Brucellaceae 10 [EMBLE: FJ950543] soil; oxytetracycline production wastewater Ochrobactrum grignonense 99% [KF254738]

Alcaligenaceae 2 [NCBI,NC: JN575638] environment; pet birds; human
opportunistic infections

Alcaligenes faecalis 99% [KF254754]

Enterobacteriaceae 3 [EzTaxon-e: AJ233408] soil, water; sewages; mammals; birds; reptiles;
amphibians; biodegradator of tannic acid

Citrobacter freundii 99.93% [KF254749]

2 [RDP: AF025369] human clinical samples and food Citrobacter murliniae 99.13% [KF254750-52]

2,3 [Greengenes: FJ463820] gut of humans and other warm-blooded animals Escherichia coli 99.72% [KF254747, 48]

2,3,5 [Greengenes: HM362787] terrestrial and aquatic environments; as normal
flora of plants; insects; humans

Enterobacter ludwigii 99.02% [KF254586,
590,593,596,600,753]

3,6,10,11 [Greengenes: HM058581] Enterobacter hormaechei 99.79% [KF254587,88,94,97,
JX661718]

3,6 [Greengenes: GU549440] Enterobacter cloacae 100% [KF254589,91,95]

3 [Greengenes: AY335554] Enterobacter aerogenes 100% [KF254592,601]

3 [NCBI,NC: JQ795788] Enterobacter asburiae 100% [KF254598]

6 [EzTaxon-e: Z96078] Enterobacter cancerogenus 99.15% [KF254599]

1 [NCBI,NC: Z96079] (T) soil; candidate for 2,3-butanediol production;
pathogen of maize and mulberry; endophyte of
Populus euphratica; indigenous bacterium of
zebrafish gut; PGPR of Tripterygium wilfordii’s;
rhizosphere of symptomatic and asymptomatic
plants of maize for Fusarium verticillioides;
moderately halophilic bacterium from marine
sediment; rhizosphere of rice and soybean;
hutti gold mine water

E. cloacae dissolvens 99.93% [KF254602]
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Table 2 Details of the isolated bacteria from biotic and abiotic compartments of Isfahan ZCL focus based on 16S rRNA sequences (Continued)

3,4,5 [NCBI,16S: NR_041749] (T) a zoonose agent; nosocomial infections Klebsiella oxytoca 100% [KF254664-66]

2 [EMBLE: AP012032] PGRP of potato and pepper; epiphyte and
entophyte of plants, is capable of infecting
humans; occurs in diverse ecological niches

Pantoea ananatis 100% [KF254658-61]

2 [NCBI,NC: JF799896] part of the normal flora of the human
gastrointestinal tract; when entering, causes
urinary tract infections and the formation of
stones; interkingdom swarming signals attract
blow flies; melanoidin and heavy metals
degrading bacterium; urine; fishmeal sample

Proteus mirabilis 100% [KF254662,63]

Moraxellaceae 2,3 [DDBJ: JN644621] soil, water; wastewater; as nosocomial pathogen;
Effluent of treatment plant laden with
hydrocarbons; PGPR; Mushroom compost

Acinetobacter calcoaceticus 100% [KF254603-4,607,609,611]

2 [EzTaxon-e: ACQB01000091] Acinetobacter baumannii 100% [KF254608,10]

3 [NCBI,16S: NR_044454] (T) soil; raw milk; wastewater; nosocomial pathogen;
midgut of culex quinquefasciatus, mealybug; of
ficus deltoidea Jack

Acinetobacter soli 100% [KF254605,606,612]

Pseudomonadaceae 1,2 [EzTaxon-e: Z76651] (T) human clinical speciments; rhizosphere of Nicotiana
glauca; endophyte of black pepper; soil; coastline

Pseudomonas aeruginosa 99.93% [KF254520-25,27-32,
JX661716]

8 [EzTaxon-e: GQ161991] (T) soil Pseudomonas bauzanensis 99.72% [KF254526]

Xanthomonadaceae 2,9 [EMBLE: GQ360071] rhizosphere of common bean, Nicotiana glauca;
human sputum

Stenotrophomonas
maltophilia

99.72% [KF254498,502,506,510,
512,514-519]

1,2,9 [EzTaxon-e: AB021404] PGPR; endophtic bacteria of invasive and stress
resistant plants; chironomid egg masses; rhizosphere
of rice, tobacco, maize; cow manure; endosymbionts
of cotton leaf hopper and aphids; shrimp
Penaeus merguiensis

Pseudomonas geniculata 100% [KF254489-97,499-501,
503-505,507-509,511,513,
JX661715]

AN: Accession Number, *Isolation source: 1) Male sandfly midgut, 2) Female sandfly midgut, 3) Rodent skin, 4) Rodent feces, 5) Rodent viscera, 6) Imported diet plants, 7) Imported wool fiber, 8) Nest soil, 9) Epiphyte of
Hyloxylon, 10) Endophyte of Hyloxylon, 11) Epiphyte of Salsola and 12) Endophyte of Salsola.
**Data bases: Greengenes, EzTaxon-e, NCBI (16 s rRNA sequences), NCBI (Nucleotide collection), EMBLE, DDBJ, leBIBI, RDP and Blast2Tree.
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Figure 2 Phylogenetic relationship of the bacteria isolated from the partners of the ZCL Hyper-endemic focus of Isfahan province, Iran.
Common and similar colors point out groups, complexes and close relatives. Solid and hollow signs represent the source of isolation and
numbers around circles indicate bacterial phyla. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary
distances used to infer the phylogenetic tree. Numbers at the nodes indicate percent bootstrap values (1000 replicates).

Maleki-Ravasan et al. Parasites & Vectors  (2015) 8:63 Page 11 of 22



Figure 3 Categorization and relative abundance of the identified isolated bacteria from the partners of the ZCL Hyper-endemic focus
of Isfahan province, Iran. Pseudomonas geniculata isolates are grouped with Genus Stenotrophomonas.
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that are known to be involved in the inter-kingdom com-
munication of eukaryotic sand flies/plants and prokaryotic
bacteria. Details of the bacteria that may be considered to
enhance the oviposition response of gravid P. papatasi
females are shown in Table 5.

Potential routes of bacterial acquisition by sand flies
Adult P. papatasi midgut bacteria might be acquired
from three general routes: adult sugar feeding on the
plant saps, adult blood feeding on the animal host and
larval feeding in their breeding places that would be
transmitted transstadially from larvae to adult. There
were five common bacteria present in both male and
female guts: Pseudomonas geniculata (male = 3, female =
17), P. aeruginosa (1, 12), Bacillus vallismortis (1, 1), B.
flexus (1, 1), and Staphylococcus aureus (3, 19). The habits
of feeding on plant saps by both adult female and male
sand flies and of feeding on organic materials by larvae
can explain the presence of those common bacteria in
their digestive tracts. Comparison of the bacterial content
of the nest soil, rodent feces, the imported plant diets, and
the wool fibres specimens with the bacteria found in the
gut of adult sand flies verified the possibility of a transsta-
dial transmission mode of 7 isolates during transition from
breeding places materials (immature midgut) to adult
midgut (Table 6).
Concerning the sand fly midgut bacteria and the routes
that allow them to enter during insect feeding, it was re-
vealed that 5 species of Acinetobacter calcoaceticus, Entero-
bacter ludwigii, Bacillus amyloliquefaciens, Enterococcus
gallinarum and Escherichia coli might be acquired when
blood feeding on the reservoir host and 7 species of B.
pumilus, B. mojavensis, B. subtilis, S. aureus, Stenotropho-
monas maltophilia, Pseudomonas geniculata and Planomi-
crobium spp. might be obtained when feeding on the plant
saps (Table 6).
The bacterium Microbacterium paraoxydans was iso-

lated from different physiological states (unfed, fed, semi-
gravid and gravid) of female sand flies caught from an
uninhabited home in the Parvaneh village of Habib-abad
district, indicating that the isolate bacterium could tolerate
blood digestion and gonotrophic processes (Table 7). Bac-
terial flora comparisons before and after blood feeding
showed that some bacterial strains remain after blood di-
gestion but in general there were variations in bacterial
compositions (Table 8).

Possible bacterial acquirement of sand fly gut via blood
feeding
A group of sand flies were allowed to feed on rodents
and 24 hours after blood ingestion their gut contents
were examined for the presence of the bacteria originally



Table 3 Frequency of the bacteria isolated from P. papatasi guts based on their habitats

Rodent colony Cattle farm Human dwelling No.

Female Male Female Male Female Male

Acinetobacter calcoaceticus 1 — — — — — 1

Alcaligenes faecalis 1 — — — — — 1

Microbacterium sediminis 1 — — — — — 1

Staphylococcus warneri 1 — — — — — 1

Staphylococcus succinus 1 — — — — — 1

Microbacterium paraoxydans 1 — — — 45 — 46

Pseudomonas geniculata 8 2 9 1 — — 20

Staphylococcus aureus 13 2 6 — — 1 22

Staphylococcus epidermidis 5 — — — 1 — 6

Stenotrophomonas maltophilia 5 — 5 — — — 10

Exiguobacterium indicum 1 — — — — — 1

Proteus mirabilis 2 — — — — — 2

Bacillus flexus 1 — — — — 1 2

Bacillus mojavensis 1 — 1 — — — 2

Enterococcus gallinarum 2 — — — — — 2

Enterobacter ludwigii 3 — 1 — — — 4

Pseudomonas aeruginosa 1 — 11 1 — — 13

Bacillus licheniformis 1 — — — — — 1

Bacillus cereus group 1 — 1 — — — 2

Bacillus amyloliquefaciens 1 — 1 — — — 2

Bacillus subtilis subsp spizizenii 1 — — — — — 1

Streptomyces roseofulvus 1 — — — — — 1

[Brevibacterium] frigoritolerans 1 — — — — — 1

Citrobacter murliniae 1 — 2 — — — 3

Pantoea ananatis — — 4 — — — 4

Bacillus vallismortis — — 1 1 — — 2

Escherichia coli — — 1 — — — 1

Bacillus endophyticus — — 1 — — — 1

Terribacillus aidingensis — — 1 — 1 — 2

Planomicrobium glaciei — — 1 — — — 1

Staphylococcus hominis — — 1 — — — 1

Acinetobacter baumannii — — 2 — — — 2

Microbacterium imperiale — — — — 1 — 1

Staphylococcus microti — — — — 1 — 1

Bacillus firmus — — — — 1 — 1

Bacillus circulans — — — — 2 — 2

Bacillus pumilus — — — — 2 — 2

Bacillus altitudinis — — — 1 — — 1

Enterobacter cloacae dissolvens — — — — — 1 1

Enterococcus faecalis — — — — — 1 1

Total 55 4 49 4 54 4 170
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Table 4 Details of the isolated bacteria arranged by their sources

Isolation source MM FM RS RF RV NP NF NSo EH NH ES NS No.

Bacteria

Arthrobacter bergere (1) 1

Arthrobacter arilaitensis 1 1

Arthrobacter nicotianae 1 1

Microbacterium sediminis (1) 1

Microbacterium imperiale 1 1

Microbacterium paraoxydans 48(1) 49

Streptomyces roseofulvus (1) 1

Myroides odoratus 4 (1) 5

Wautersiella falsenii 1 1

Brevibacterium frigoritolerans (1) 1

Bacillus endophyticus 1 1

Bacillus flexus 1 (1) 2

Bacillus firmus 1 1

Bacillus circulans 2 2

Bacillus pumilus 2 1 1 4

Bacillus altitudinis 1 1

Bacillus amyloliquefaciens 1(1) 1 1 4

Bacillus subtilis subsp spizizenii 1(1) (1) 1 (1) 5

Bacillus subtilis subsp subtilis (1) 1

Bacillus subtilis 1 2 1 4

Bacillus licheniformis (1) 1

Bacillus vallismortis 1 1 2

Bacillus mojavensis 1(1) (1) 3

Bacillus atrophaeus 1 1

Bacillus sonorensis 1 1

Bacillus cereus group 1(1) 2

Lysinibacillus fusiformis (1) 1

Terribacillus aidingensis 2 2

Exiguobacterium indicum (1) 1

Paenibacillus dendritiformis 1 1

Saccharibacillus sacchari 1 1

Planomicrobium okeanokoites 1 1

Planomicrobium glaciei 1 1

Sporosarcina luteola 1 1

Staphylococcus xylosus (1) 1

Staphylococcus aureus 1(2) 6(13) 1 (1) 24

Staphylococcus saprophyticus (4) 4

Staphylococcus epidermidis 1(5) (1) (1) 8

Staphylococcus sciuri (2) 2

Staphylococcus succinus (1) 1 1 3

Staphylococcus hominis 1 1

Staphylococcus warneri (1) 1

Staphylococcus microti 1 1

Enterococcus faecium 5 3 2 6(1) 2 1 1 21

Enterococcus faecalis 1 3 4

Enterococcus gallinarum (2) 2 4
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Table 4 Details of the isolated bacteria arranged by their sources (Continued)

Enterococcus casseliflavus 1 1

Ochrobactrum grignonense 1 1

Alcaligenes faecalis (1) 1

Citrobacter freundii 1 1

Citrobacter murliniae 2(1) 3

Escherichia coli 1 1 2

Enterobacter ludwigii 1(3) 1 1 6

Enterobacter hormaechei 2 1 (1) (1) 5

Enterobacter cloacae 2 (1) 3

Enterobacter cloacae dissolvens 1 1

Enterobacter aerogenes 2 2

Enterobacter asburiae 1 1

Enterobacter cancerogenus 1 1

Klebsiella oxytoca 1 (1) 1 3

Pantoea ananatis 4 4

Proteus mirabilis (2) 2

Acinetobacter calcoaceticus (1) 4 5

Acinetobacter baumannii 2 2

Acinetobacter soli 2(1) 3

Pseudomonas aeruginosa 1 11(1) 13

Pseudomonas bauzanensis 1 1

Stenotrophomonas maltophilia 5(5) 1 11

Pseudomonas geniculata 1(2) 9(8) (1) 21

Total 12 162 36 9 2 15 3 13 9 5 4 3 273

Numbers in the parenthesis indicate presence of all four partners (vector, reservoir, nest materials and food sources) of ZCL in the micro-climate.
MM Male sandfly midgut, FM Female sandfly midgut, RS Rodent skin exposed area, RF Rodent feces, RV Rodent viscera, NP Nest imported diet plants, NF Nest
imported wool fiber, NSo Nest soil, EH Epiphyte of Hyloxylon, NH Endophyte of Hyloxylon, ES Epiphyte of Salsola and NS Endophyte of Salsola.
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isolated on the rodent skin. None of the rodent skin bac-
teria was found in the female gut. Details of the bacteria
that were isolated from the control specimens are shown
in Table 9. Comparison of skin surface bacteria of field
and lab rodents showed no resemblance except for the
presence of Enterococcus faecalis.

Discussion
In this study we investigated the microbiology of the bi-
otic and abiotic compartments of a natural ZCL cycle,
including the gut of the sand fly vector P. papatasi, skin
and internal organs of the animal reservoir R. opimus,
natural plants normally used as food for both vector and
reservoir, soils and other materials present in rodent
nests and sand fly larval breeding places. Data analyses
showed that bacteria flora encompass a wide range of
aerobic to facultative anaerobic, harmless commensals to
important pathogens, inter-cellular to intra-cellular, en-
vironmental to nosocomial pathogens, skin surface to
gut lumen bacteria, endophytes to epiphytes, extremo-
philes to mesophiles or neutrophiles, land to air and
ocean habitat, animal and human probiotics to plant
growth-promoting rhizobacteria (PGPR) (Table 2).
This study shows an association between the micro-
biota of the sand fly gut and the places they live in; a
number of the isolates identified in the sand fly guts
were also present in the R. opimus nest materials/sand
fly larval breeding places and the plants which were used
by vectors as sugar sources or by rodents for food and
water. The association between the microbiota of the
sand fly gut and larval breeding sites supports transsta-
dial transmission of some bacteria; however, some au-
thors argue against the transstadial route and believe
that full gut turnover occurs during pupation [73]. En-
vironmental acquisition of sand fly gut bacteria has been
reported by other investigators [57,74]. These studies
suggest that the sand fly gut microbiota is a reflection of
both the environment in which the sand fly larvae reside
and the food sources of larvae and adults.
Comparison of bacterial diversity in the sand fly guts

from three regions revealed that the microflora were
largely environmental; the predominant bacteria were
species of Microbacterium, Pseudomonas, and Staphylo-
coccus in the human dwellings, cattle farm, and rodent
colony, respectively. This diversity may be partly due to
the kind and accessibility of sand fly hosts. The available



Figure 4 Natural circulations of bacteria among the partners of ZCL focus in Isfahan, Iran. Operators P. papatasi, R. opimus and plant food
sources (Hyloxylon and Salsola) indicated by graphics. One or two way arrows show how the bacteria are acquired and circulated. Continuous
and non-continuous lines represent proved and doubtful transmission routes respectively. Bacteria phyla engrave close to the isolated source.
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hosts for sand flies of the human dwellings (Parvaneh
village) were pigeons, sheep, and or humans, whereas
available hosts for sand flies trapped from rodent’s colony
and the cattle farm were rodent and cow, respectively.
The effect of blood meal components on the growth and
persistence of some microbes has been proven [75,76].
Other factors such as intestine-specific structure, pH,
redox, digestive enzymes, and food sources are determi-
nants of microbial colonization in insect guts [34,77,78]. It
was noted that in insects with various diets, microbial
growth kinetics are dissimilar and different types of bac-
teria are present in their guts. Dillon et al. [77] showed
that the number of bacteria present in the gut of P. papa-
tasi changes during the lifetime of a female. Volf et al. [29]
showed that the highest bacterial counts occurred two
days after blood ingestion. The protein rich bolus of the
Table 5 Details of the oviposition inducer bacteria were
found in this study [84]

Isolated bacteria Isolation source (n) No.

Bacillus pumilus Epiphyte of Hyloxylon (1) 4

Imported nest plants (2)

Sandfly midgut (1)

Bacillus cereus group Sandfly midgut 2

Bacillus firmus Sandfly midgut 1

Staphylococcus saprophyticus Imported nest plants 4

Bacillus licheniformis Sandfly midgut 1

Total 12
blood presumably caused rapid growth of midgut bacteria
and when digestion is completed (on day 4–5) most bac-
teria were defecated with blood remains. Seven days after
blood feeding the bacterial count returned to the pre-
feeding level. It is suggested that blood digestion, the
development of Leishmania parasites in the competent
vector and bacterial population fluctuations are closely
related to each other. Sant’Anna et al. [79] implied colon-
isation resistance in the Lutzomyia longipalpis and investi-
gated the balance of microbiota and Leishmania in the
insect gut. They found a reduction in the number of flies
harboring a Leishmania population that had been pre-fed
with Pseudozyma sp. and Asaia sp. or Ochrobactrum
intermedium. Also they discovered that L. mexicana pro-
tects Lu. longipalpis from Serratia marcescens infection.
They concluded that Leishmania-vector association might
benefit for both the sand fly and parasite [79].
In the current study we found that Microbacteriaceae

were the most frequently isolated bacteria (27%) in the
P. papatasi digestive tract, which is in agreement with
the previous study of sand fly gut microbiology of P.
papatasi and P. duboscqi [28]. Also we observed pres-
ence of Microbacterium sp in different physiologic states
of P. papatasi indicating resistance to trypsins and
chymotrypsin enzymes during blood digestion (Table 8).
These bacteria have already been found in the adult guts
of P. duboscqi and P. papatasi [28]. Also presence of
Microbacterium in the 2nd and 4th instar larvae, pupae,
male and female adults of P. duboscqi suggested trans-
stadial transmission. Microbacterium species was also



Table 6 Possible routes of bacteria to enter sandfly gut

Isolation source Isolated bacteria

AC EL EC BA EG ECo BP BM BS SS SE SA PGe SM PGl

Female sand fly gut 1 4 1 2 2 1 2 2 2 1 6 19 17 10 1

Exposed area of the rodent skin 4 1 — 1 2 1 — — — — — — — — —

Epi/Endophytes of Hyloxylon and Salsola — — — — — — 1 1 5 — — 2 1 1 1

Larval breeding places

Nest soil — — — 1 — — — — 1 1 1 — — — —

Rodent feces — 1 — — — — — — — — 1 — — — —

Imported diet plants — — 1 — — — 1 — 1 1 — — — — —

Imported wool fibers — — — — — — — — 1 — — — — — —

The first row represents the bacteria found in the female sand fly guts where other rows indicate their correspondence sources. AC: Acintobacter calcoaceticus,
EL: Enterobacter ludwigii, EC: Enterobacter cloacae, BA: Bacillus amyloliquefaciens, EG: Enterococcus gallinarum, ECo: Escherichia coli, BP: Bacillus pumilus, BM: Bacillus
mojavensis, BS: Bacillus subtilis, SS: Staphylococcus succinus, SE: Staphylococcus epidermidis, SA: Staphylococcus aureus, PGe: Pseudomonas geniculata, SM:
Stenotrophomonas maltophilia and PGl: Planomicrobium glaciei.
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reported in the guts of field trapped P. argentipes from
India and of Ixodes ricinus [57,80]. Interestingly, various
strains of Microbacterium isolated from Musca domes-
tica guts have been shown to support its larval develop-
ment [81]. It is demonstrated that gut microbiota also
influence the sand fly immune systems. For example, the
concentration of regulating gut-microbe homeostasis such
as reactive oxygen species (ROS) will change in Lu. longi-
palpis midguts in response to Leishmania parasite or to
insect pathogen Serratia marcescens [82]. Also it is shown
that the rate of defensin expression in Lu. longipalpis upon
bacterial and Leishmania infection will vary based on the
bacterial species and the routes of Leishmania infection
Table 7 Bacteria isolated from the sand fly guts at different a

Source

Female

Individually dissected guts

Unfed

Blood fed (naturall

Semi-gravid

Gravid

Multiple dissected guts

Unfed

Insect whole body

Male Bundles of quintuple dissected guts

Total

*Sand flies captured in an uninhabited home in the Parvaneh village of Habib-abad
[83]. Further studies warrant showing the effect of gut
microbiota on the immune system of P. papatasi the most
important vector of ZCL in the Old World.
It is shown that oviposition by gravid P. papatasi is in-

fluenced by microbial flora of the environment. Radjame
et al. [84] and Mukhopadhyay et al. [74] introduced bac-
teria to breeding sites, thereby attracting sand flies
[74,84]. It was implied that the gravid sand flies found
oviposition sites through attraction cues of four bacillus
species B. pumilus, B. cereus, B. firmus, B. licheniformis
and one Coagulase-negative staphylococcus, Staphylo-
coccus saprophyticus. The current study revealed pres-
ence of these five oviposition-inducing bacteria in the
bdominal stages*

Isolated bacteria No.

Microbacterium paraoxydans 8

Microbacterium imperiale 1

y or laboratory)

Microbacterium paraoxydans 34

Staphylococcus microti 1

Bacillus firmus 1

Terribacillus aidingensis 1

Bacillus circulans 1

Staphylococcus epidermidis 1

Bacillus pumilus 1

Microbacterium paraoxydans 1

Microbacterium paraoxydans 2

Bacillus circulans 1

Bacillus pumilus 1

Bacillus flexus 1

Staphylococcus aureus 1

Enterobacter cloacae dissolvens 1

Enterococcus faecalis 1

58

district.



Table 8 The sandfly gut bacteria before and after blood feeding on R. opimus

Collection site Immediately after collection No 24 hrs after blood feeding No

Rodent colony Proteus mirabilis 1 Proteus mirabilis 1

Pseudomonas geniculata 5 Pseudomonas geniculata 3

Stenotrophomonas maltophilia 4 Stenotrophomonas maltophilia 1

Staphylococcus aureus 9 Staphylococcus aureus 4

Staphylococcus epidermidis 4 Staphylococcus epidermidis 1

Enterobacter ludwigii 1 Enterobacter ludwigii 2

Bacillus subtilis subsp spizizenii 1 Bacillus subtilis subsp spizizenii 1

Acinetobacter calcoaceticus 1 Bacillus cereus group 1

Alcaligenes faecalis 1 Bacillus licheniformis 1

Microbacterium sediminis 1 Streptomyces roseofulvus 1

Staphylococcus warneri 1 [Brevibacterium] frigoritolerans 1

Bacillus mojavensis 1 Citrobacter murliniae 1

Staphylococcus succinus 1 Bacillus amyloliquefaciens 1

Microbacterium paraoxydans 1 — —

Exiguobacterium indicum 1 — —

Enterococcus gallinarum 2 — —

Pseudomonas aeruginosa 1 — —

Bacillus flexus 1 — —

Total 37 Total 19

Cattle farm Pantoea ananatis 3 Pantoea ananatis 1

Pseudomonas geniculata 3 Pseudomonas geniculata 6

Stenotrophomonas maltophilia 2 Stenotrophomonas maltophilia 3

Citrobacter murliniae 1 Citrobacter murliniae 1

Staphylococcus aureus 5 Staphylococcus aureus 1

Pseudomonas aeruginosa 1 Pseudomonas aeruginosa 10

Bacillus vallismortis 1 Bacillus amyloliquefaciens 1

Escherichia coli 1 — —

Bacillus endophyticus 1 — —

Enterobacter ludwigii 1 — —

Terribacillus aidingensis 1 — —

Planomicrobium glaciei 1 — —

Bacillus mojavensis 1 — —

Staphylococcus hominis 1 — —

Acinetobacter baumannii 2 — —

Bacillus cereus group 1 — —

Total 26 Total 23

Bold and non-bold spp indicate identical and non-identical isolates respectively. The collection sites were in the Abbas-abad village of Bad-rood city.
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study area (Table 5), however only two species of B.
pumilus and S. saprophyticus were found in the great
gerbil nest materials where sand flies lay eggs.
We found some bacteria in ZCL partners that can

cause super infection in human lesions, which may hin-
der or prevent the healing process of ZCL. In a rural
area of north Isfahan, the bacteria were isolated from
66.8% of ZCL and 64.7% of non-ZCL lesions. The most
common species were Staphylococcus aureus and S. epi-
dermidis followed by Bacillus sp., Streptococcus pyogenes,
Escherichia coli, Klebsiella sp., Proteus sp., Enterobacter
sp. and Pseudomonas aeroginosa [85].
Results of this study established the presence of En-

terobacter cloacae subsp. dissolvens and Bacillus subtilis
in the digestive tract of sand flies as well as at the larval
breeding sites in the great gerbil nest materials and



Table 9 Contamination controls used in this study

Contamination sources Isolated bacteria No.

Sandflies The rest of the body (other than gut lumen) Microbacterium paraoxydans 3

R. opimus Wild Alimentary canal of a dissected R. opimus Enterobacter ludwigii 1

Klebsiella oxytoca 1

Skin surface of R. opimus used for blood feeding of entraped
sandflies from a rodent colony in the Abbas-abad village of Badrood city

Enterococcus faecalis 1

Skin surface of R. opimus used for blood feeding of entraped
sandflies from a semi-desolated cattle farm in the Abbas-abad
village in the Bad-rood city

Escherichia coli 1

Enterococcus faecalis 1

Skin surface of R. opimus used for blood feeding of entraped
sandflies from an uninhabited home in the Parvaneh village
of Habib-abad district

Enterobacter ludwigii 1

Animal house Skin surface of R. opimus reared in the Isfahan Health Research
Station animal house.

Acinetobacter calcoaceticus 1

Bacillus atrophaeus 1

Bacillus sonorensis 1

Bacillus amyloliquefaciens 1

Enterococcus gallinarum 2

Paenibacillus dendritiformis 1

Enterococcus faecalis 1

Environmental Medium contamination due to lab condition Staphylococcus epidermidis 1

Total 18
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plants that were part of rodent and insect diets. The as-
sociation of these organisms with the sand flies makes
them good candidates for use in a model of paratrans-
genesis. The two bacteria are commensal sand fly bac-
teria and could be transformed to deliver antileishmanial
peptides within sand fly guts to prevent or to reduce
Leishmania transmission. The transformed bacteria could
be delivered easily on the plants and or sand fly larval
breeding sites such as great gerbil nests, pigeon nests, and
sheep and cattle sheds. The sand fly would encounter and
be infected with the bacteria either at the larval stage in
their breeding sites while feeding on organic materials or
at the adult stage while taking sugar meals on plants. The
phlebotomine sand flies, require sugar for survival and
several different sources of sugar meals of insect origin
(honeydew), and of plant origin, have been identified
[42,86,87]. These sugar meals are often taken by feeding
directly on tissues of plant organs including stems, leaves,
and flowers [42,45,46]. Hurwitz et al. [88] showed trans-
stadial passage of some bacteria in P. argentipes sand fly
by introducing an engineered Bacillus subtilis expressing
Green Fluorescent Protein (GFP) in sterilized larval chow
and retrieved the glowing bacteria in the adult.
Bacillus subtilis harbour metabolites that exhibit activ-

ity against both the larval and pupal stages of mosqui-
toes [89] as well as plant pathogens [90]. It is one of the
main bacteria used in industrial production of enzymes,
antibiotics, fermented foods and vitamins [91,92]. En-
terobacter cloacae is a member of the normal gut flora
of many insects such as symbiotic or entomopathogenic
and in the surface of vegetables. Several reports have
been made with E. cloacae strains in the biological con-
trol of plant pathogens, such as Phytium spp., Sclerotinia
sp., Rhizopus sp., Fusarium spp. and many others [93].
Also it was shown that the bacterium significantly is able
to block the Plasmodium vivax sporogonic development
in Anopheles albimanus [93]. Currently Eappen et al.
[94] showed that E. cloacae strongly induce expression
of components of the mosquito immune response in the
An. stephensi midgut.
Enterobacter cloacae have already been tested to de-

liver, express, and spread foreign genes in termite col-
onies [95]. Watanabe et al. [96] transformed E. cloacae
with an ice nucleation gene to reduce the mulberry pyra-
lid moth, Glyphodes pyloalis. Also Kuzina et al. [97]
transformed E. gergoviae with the Bacillus thuringiensis
toxin gene to control pink bollworm, (Pectinophora gos-
sypiella) (Lepidoptera: Gelechiidae).
The present study and literature review revealed that

E. cloacae subsp. dissolvens belong to the natural and
stable flora of P. papatasi, and are amenable to isolation,
culture and transformation with foreign genes. Although
some species of Enterobacter, including E. cloacae, are
potential human pathogens, these species have also been
reported from rhizosphere of various crops exhibiting
plant growth promoting abilities; just as E. cloacae
subsp. dissolvens was found associated with rhizosphere
of soybean under natural field conditions [98]. It was
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isolated from orchard soil samples in China, and is a
potential industrial candidate for 2,3-Butanediol produc-
tions, which could produce more than 100 g/liter 2,3-
BD from glucose [99]. E. cloacae subsp. dissolvens was also
found in the endosphere of rice plants without causing
apparent harm to the host plant [100,101]. Study of
Rodrigues Neto et al. [102] showed low level of pathogen-
icity of the type strain of E. cloacae dissolvens on the onion.
Crucial requirements for the application of paratrans-

genesis in control of Leishmania is the ability to transform
the isolate bacteria and to then test their potentially
colonization rates in the sand flies and finally to assess
their antileishmanial effect in laboratory and field condi-
tions. There are some available antileishmanial molecules
such as histatin 5, racemoside A, monoclonal antibodies,
defensin A, and temporins [103-107]. We are currently
started to transform the E. cloacae subsp. dissolvens isolate
with defensin gene to test its efficacy against L. major in
in-vitro condition. Our study is ongoing to enhance the ex-
pression and to assess the efficacy of the antileishmanial
molecule in this genetically modified bacterium (unpub-
lished data; data not shown). We have tested the transsta-
dial situation of the candidate bacteria, and found that E.
cloacae subsp. dissolvens was transstadial and transfer from
larvae to adult stage that would permit delivery of trans-
formed bacteria to the breeding sites of sand fly larvae.

Conclusions
On the basis of our knowledge this study is the first
culture-dependent molecular analysis of four important
partners of ZCL cycle and could be used as an effective
platform for future efforts to prevent leishmaniasis. This
study revealed possible routes of acquisition of sand fly
bacteria, which can provide proper application of trans-
formed bacteria in the field. Also here we introduced
two bacterial species of Entrobacter cloacae subsp. dis-
solvens and Bacillus subtilis, which are good candidates
for paratransgenic control of the ZCL in the hyperen-
demic focus in central Iran.
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