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Nitric oxide maintains cell survival of
Trichomonas vaginalis upon iron depletion
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Abstract

Background: Iron plays a pivotal role in the pathogenesis of Trichomonas vaginalis, the causative agent of highly
prevalent human trichomoniasis. T. vaginalis resides in the vaginal region, where the iron concentration is
constantly changing. Hence, T. vaginalis must adapt to variations in iron availability to establish and maintain an
infection. The free radical signaling molecules reactive oxygen species (ROS) and reactive nitrogen species (RNS)
have been proven to participate in iron deficiency in eukaryotes. However, little is known about the roles of these
molecules in iron-deficient T. vaginalis.

Methods: T. vaginalis cultured in iron-rich and -deficient conditions were collected for all experiments in this study.
Next generation RNA sequencing was conducted to investigate the impact of iron on transcriptome of T. vaginalis.
The cell viabilities were monitored after the trophozoites treated with the inhibitors of nitric oxide (NO) synthase
(L-NG-monomethyl arginine, L-NMMA) and proteasome (MG132). Hydrogenosomal membrane potential was
measured using JC-1 staining.

Results: We demonstrated that NO rather than ROS accumulates in iron-deficient T. vaginalis. The level of NO
was blocked by MG132 and L-NMMA, indicating that NO production is through a proteasome and arginine
dependent pathway. We found that the inhibition of proteasome activity shortened the survival of iron-deficient
cells compared with untreated iron-deficient cells. Surprisingly, the addition of arginine restored both NO level
and the survival of proteasome-inhibited cells, suggesting that proteasome-derived NO is crucial for cell survival
under iron-limited conditions. Additionally, NO maintains the hydrogenosomal membrane potential, a determinant
for cell survival, emphasizing the cytoprotective effect of NO on iron-deficient T. vaginalis. Collectively, we determined
that NO produced by the proteasome prolonged the survival of iron-deficient T. vaginalis via maintenance of the
hydrogenosomal functions.

Conclusion: The findings in this study provide a novel role of NO in adaptation to iron-deficient stress in T. vaginalis
and shed light on a potential therapeutic strategy for trichomoniasis.
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Background
Trichomonas vaginalis is a unicellular pathogen that
causes human trichomoniasis, one of the most prevalent
sexually transmitted diseases worldwide [1]. Iron defi-
ciency in the host affects several biological processes in
T. vaginalis, including cell proliferation, cytotoxicity and
immune evasion [2–4]. Iron-containing proteins, such as
lactoferrin and hemoglobin, can be used by T. vaginalis
[5], and these proteins are mainly supplied by menstrual
blood [6]. The constant change in environmental iron
availability might be the major challenge for the protist
to survive in the vaginal region [5]. Therefore, the protist
must adapt to an environment with different iron con-
centrations to establish or maintain an infection. The
iron level has to be tightly controlled because overload
or deficiency can cause cellular damages [7, 8]. However,
the mechanisms that help T.vaginalis cope with iron
stresses remain poorly understood.
Redox homeostasis is an important issue for cellular

functions because excessive free radicals destroy biomol-
ecules [9]. A previous study demonstrated that super-
oxide dismutase (SOD) is required for T. vaginalis
during the initial phase of oxygen stress [10]. The iron-
containing SOD cannot perform its function normally
under iron-deficient situations [11], implying that iron
deficiency may induce oxidative stress. In addition to the
damaging effects of free radicals, reactive oxygen species
(ROS) and reactive nitrogen species (RNS) are also cru-
cial for the signal transduction, that is responsible for
the regulation of cellular processes and metabolic activ-
ities [12]. Therefore, these molecules might be beneficial
for iron-deficient cells. To date, there have been no re-
ports on intrinsic ROS or RNS production or the corre-
sponding signaling pathways involved in iron-deficient
T. vaginalis. Hence, we investigated the cellular events
regulated by these multi-functional molecules.
Hydrogenosome, a mitochondrial homolog, is the

center of energy metabolism as well as the iron-sulfur
cluster assembly machinery [13]. Iron-sulfur cluster con-
taining proteins are key molecules responsible for ATP
production [14]. In an iron-deficient state, the hydroge-
nosomes are impaired, affecting the efficiency of energy
generation [15]. Additionally, iron deficiency reduces
hydrogenosomal membrane potential [16], which is a de-
terminant for the health status of the trichomonad cells
[17]. These evidences imply that iron deficiency might
cause impairments in cells by disrupting the hydrogeno-
somal functions. In mammals, redox molecules are asso-
ciated with the biogenesis and activity of mitochondria
[18]. For instance, nitric oxide (NO) regulates the bio-
genesis of mitochondria via cGMP (cyclic guanosine
monophosphate)-dependent signaling [19]. This suggests
that redox regulators might also participate in the
modulation of hydrogenosomal activity in T. vaginalis.
Until now, the detailed mechanisms modulating the
survival of T. vaginalis in iron-deficient environments
were unclear. In this study, we found that NO dramatic-
ally accumulated in iron-deficient T. vaginalis. More
importantly, we determined that NO production is
dependent on the ubiquitin-proteasome system (UPS)
and arginine, and that the process maintains the hydro-
genosomal membrane potential to enhance the viability
of T. vaginalis in iron-deficient environments.

Methods
T. vaginalis culture and treatments
T. vaginalis ATCC strain 30236 was cultured at 37 °C in
yeast extract, iron-serum (YI-S) medium containing
80 μM ferrous ammonium citrate (FAC, Sigma-Aldrich,
USA) (iron-rich condition) [20]. Iron-deficient cells were
grown in YI-S medium without iron supplementation
and treated with 180 μM of the iron chelator dipyridyl
(DIP, Sigma-Aldrich) at a cell density of 106 cells/ml.
The cells for assays were harvested from the mid-log
phase of iron-rich cells and the iron-deficient cells were
cultured with DIP for 6 h. The trypan blue exclusion
assay was used to monitor the growth of cells.
NO synthase inhibitor NG-monomethyl L-arginine

(L-NMMA, Sigma-Aldrich, 1 and 3 mM), proteasome
inhibitor MG132 (Sigma-Aldrich, 5 and 10 μM), and
arginine (Sigma-Aldrich, 5 mM) were also added in
different experimental groups.

Total RNA extraction
The total RNA of T. vaginalis cultured in iron-rich
and -deficient medium was extracted as follows. The cell
pellets (2 × 107cells) were resuspended by adding 1 ml TRI
Reagent (Life Technologies) and were incubated at room
temperature for 5 min, followed by the addition of 200 μl
chloroform and incubation at room temperature for 15
min. The RNA fraction was collected after 16,750 × g cen-
trifugation at 4 °C for 15 min. Diethylpyrocarbonate
(DEPC)-treated 70 % alcohol was used to wash the RNA
pellets, and the dried RNA was reconstituted after adding
the DEPC-treated water.

Quantitative real-time PCR
The mRNA was reverse-transcribed to cDNA by reverse
transcriptase reactions. The first step contained 5 μg
total RNA, 50 nM RT primer (oligo-dT, Invitrogen, Life
Technologies), and 0.25 mM dNTPs in 10 μl; the mix-
ture was incubated at 65 °C for 5 min. cDNA Synthesis
Mix (0.75 U/μl ThermoScript™ III reverse transcriptase
(Invitrogen, Life Technologies), 0.2 U/μl RNase out
(Promega, USA), and 0.05 M dithiothreitol (DTT,
Sigma-Aldrich) was added to the mixture, and the RNA
was converted to cDNA in a series of incubations (25,
50, and 85 °C for 5, 60 and 15 min, respectively). RNA
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was removed from the RNA-cDNA hybrids after treat-
ment with RNase H for 20 min. All RNA samples were
quantified using a UV Spectrophotometer SMA 1000
(Merinton, China) before experiments.
Real time PCR was performed to validate the expression

levels of antioxidants as previously described [15, 21]
(Additional file 1). Ribosomal protein L8 (TVAG_104490)
was used as the internal control for data normalization
(forward: TTGCGGTATCAAGATGAACCCAG, reverse:
GAACCAAAGCTTTATGCAAGGTTGA). The following
reagents composed the reaction mixture: 2X reaction mix
(Ampliqon, Denmark), primers (0.5 μM), and 50 ng cDNA
from each condition, with the volume adjusted to 20 μl
with sterile water. The reaction was performed on an
MX3000p (Stratagene, Agilent Technologies), using ROX
dye as a reference and SYBR green as a quantifying signal
[22]. The data were calculated by MX pro program ver-
sion 4.10 (Stratagene, Agilent Technologies), representing
the relative expression level of each gene in different
conditions.

Total antioxidant capacity test
The total antioxidant capacities of cells cultured in dif-
ferent iron concentrations were determined as described
by the manufacturer (BioVision, USA). A total of 2 × 106

cells were collected from each group and lysed by 100 μl
Radio-ImmunoPrecipitation Assay (RIPA) lysis buffer.
After centrifugation at 16,750 × g for 10 min, 15 μl of
the samples were added and the volume was adjusted to
100 μl with the assay diluent. Working reagent (100 μl
for each sample) was prepared and then combined with
Cu++ and assay diluent in a ratio of 1:49. The 100 μl of
diluted samples and trolox standards (0, 4, 8, 12, 16,
and 20 nmol/ well) were mixed with 100 μl of work-
ing reagent and incubated at room temperature for
30 min. The absorbance at 570 nm of each sample
was measured by using an ELISA reader, SpectraMax
M2e (Molecular devices, USA). The values were expressed
as mM of Cu++ reduced, converted from standard trolox
equivalent.

Reactive oxygen species (ROS) detection
ROS detection was performed using a previously de-
scribed approach with slight modification [23]. Briefly,
5 × 106 cells were collected from different cultivations.
After wash steps, the cell pellets were treated with 1 ml
pre-warmed phosphate buffered saline (PBS), and
seeded 100 μl cells in the wells of the micro-plate. A
final concentration of 1 μM chloromethyl-2′, 7′-
dichloroflurescein diacetate (CM-DCFDA, Molecular
Probes, Life Technologies) was added into each well,
and incubated at 37 °C for 1 h. Fluorescence signals
were detected using an ELISA reader (excitation/
emission = 490/525 nm).
Intracellular nitric oxide (NO) detection
NO was detected by following the manufacturer’s
procedures. A total of 5 × 106 cells were collected
from each culture system. After wash steps, cell pel-
lets were resuspended with 1 ml PBS, and the 100 μl
aliquots of cells were seeded into dark micro-
centrifuge tubes containing 1 μl of 1 mM 4-amino-5-
methylamino-2′, 7′-difluorofluorescein diacetate (DAF-FM
DA, Molecular Probes, Life Technologies). After incuba-
tion at 37 °C for 1 h, the loading buffer was washed out,
and the cell pellets were resuspended by the addition of
1 ml PBS and then incubated for 30 min. The fluorescent
signals were detected with an ELISA reader (excitation/
emission as 495/ 520 nm) and the fluorescence intensities
were recorded.

Next generation sequencing (NGS) and data analysis
The NGS analysis was performed as previously described
[24]. Briefly, the prepared cDNA (iron-rich and -deficient)
were fragmented for library construction and sequenced
using the Illumina sequencing platform (HiSeq™ 2000,
Illumina, USA). The raw data sets were processed using
CLC Genomic workbench (CLC bio) software (version 7).
Reads in each gene set were identified with the tool
“Mapping to reference” against the G3 reference genome
(TrichDB, release-1.3) [25]. All parameters were setup as
the recommended defaults. Besides, the length fractions
and similarity were changed to 0.9 and 0.8, respectively.
Reads Per Kilobase per Million mapped reads (RPKM) of
each gene were calculated and used as the normalized gene
expression level (Additional file 2). The basic information
generated from this analysis is shown in Additional file 3.

Proteasome activity assay
Proteasome activities of different iron availabilities were
determined by a fluorescent approach (proteasome activ-
ity fluorometric assay kit, BioVision) following the
manufacturer’s protocol. The iron-rich and -deficient
cultured cells (2 × 106) were lysed in 100 μl of 0.5 %
NP-40 (Sigma-Aldrich). The reaction mixture con-
tained 10 μl of testing samples, 90 μl assay buffer, and 1 μl
of proteasome substrate in the wells of the micro-plate.
MG132 (proteasome inhibitor) treated group was
used as the negative control for calibration. The
fluorescence signal can be detected when the sub-
strate is digested by proteasome in cell lysates. After
10 and 30 min of incubation at 37 °C, the values of
experimental groups as well as the aminomethylcoumarin
(AMC) standards (0, 20, 40, 60, 80, and 100 pmol/well)
were measured simultaneously by using an ELISA reader
(excitation/emission = 350/440 nm). The kinetics of the
proteasome activity was generated after subtracting fluor-
escence intensities detected from 2 time points of each
sample. The values were expressed in nmol/min/ml.
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Hydrogenosomal membrane potential measurement
The hydrogenosomal membrane potential was measured
as previously described [26]. We harvested 1 × 106 cells
from each of the treatments (DIP only, DIP plus
MG132, DIP plus MG132 and arginine) after 6 h of drug
exposure. The cell pellets were resuspended in 1 ml
PBS. No stained cell (blank) without JC-1 (Molecular
Probes, Life Technologies) treatment was prepared for
flow cytometry adjustment. All testing cells included
a negative control (treated with mitochondrial membrane
potential disrupter carbonyl cyanide 3-chlorophenyl
hydrazone (CCCP) in 50 μM) were treated with 2 μM JC-
1, incubating at 37 °C for 30 min. The cells were washed
once with PBS, and the cell was then resuspended with 0.5
ml PBS. The red fluorescence intensities alternations in
experimental groups were detected by flow cytometry
analysis.

Statistical analysis
Student’s t-tests were performed on the quantified data
derived from biological assays, using GraphPad Prism 5
software. Asterisks were used to represent the signifi-
cance of each assay as determined through the p value
(*: p < 0.05; **: p < 0.01; ***: p < 0.001).

Results
T. vaginalis survives in iron-deficient condition
It is known that iron is essential for cell proliferation in
T. vaginalis. Iron restriction causes an increase in doub-
ling time and a decrease in the maximum cell density
[27]. Until now, no report indicates the viability of
T. vaginalis upon iron deficiency. To monitor the cell
viability under iron-deficient condition, we cultured the
cells with a higher initial cell density (106 cells/ml) in
the medium containing 180 μM DIP [24, 28]. The
Fig. 1 T. vaginalis extends the survival time when cultured under iron-defici
a) and -deficient (ID, 180 μM DIP, b) media. The number of viable cells was
initial cell density is 1 × 106cells/ ml. The data are presented as the mean ± S
iron-rich cells reached the maximum cell density of
approximately 3.5 × 106 (cells/ml) at 6 h after inoculation,
followed by a rapid decline (Fig. 1a). The viable cells were
reduced to 1 × 105 (cells/ml) at approximately 50 h in
iron-rich cultivation. In contrast, we found that the max-
imum cell density of iron-deficient cells was 2-fold
(~1.5 × 106 cells/ml) less than that of iron-rich cells
(Fig. 1b). Interestingly, our result showed that the survival
of iron-deficient cells was further extended to 66 h
with a cell density of 1 × 105 viable cells per ml. This
phenomenon reflects that although iron deficiency affects
cell proliferation, T. vaginalis is capable of adapting to an
iron-deficient environment and survives for a longer
period. However, the underlying mechanism responsible
for cell survival during iron deficiency is still unclear,
which might be an important issue in elucidating
how T. vaginalis establishes and maintains infection
in the vaginal region.

NO is accumulated in iron-deficient T. vaginalis
Previous studies have indicated that iron-deficient cells
exhibit up- and down-regulation of thiol- and iron-
dependent antioxidant defense systems, respectively
[15, 21]. We confirmed the expression patterns of the iron-
dependent antioxidants SOD (TVAG_039980, TVAG_12
0340) and rubrerythrin (TVAG_064490, TVAG_275660)
and the thiol-dependent thioredoxin peroxidase (TVAG_
114310, TVAG_455310) in cells cultured under iron-
rich and -deficient conditions by using quantitative
RT-PCR. The results revealed a trend similar to pre-
vious studies (Additional file 4). Furthermore, we examined
the cellular reducing power in iron-rich and -deficient
cells by measuring the amount of copper reduction
(Cu++ to Cu+), which is used as a general indicator for
antioxidant capacity. As shown in Fig. 2a, there is a
ent conditions. The growth of cells cultured in iron-rich (IR, 80 μM FAC,
monitored every three hours using the trypan blue exclusion assay. The
D of three independent experiments



Fig. 2 NO accumulated in iron-deficient T. vaginalis. a Antioxidant capacity of iron-rich (IR) and -deficient (ID) cells representing the reducing
power (Cu++ to Cu+) of each lysate. ROS (CM-DCF DA) b and NO (CM-DAF FM) c were examined. IR, iron rich (80 μM FAC); ID, iron deficient
(180 μM DIP). The data are presented as the mean ± SD of three independent experiments. *** p < 0.001, compared with the IR group
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significant increase in copper reduction in the iron-
deficient group compared with iron-rich group. To-
gether with quantitative RT-PCR analysis of multiple
antioxidant genes, these data confirm that the antioxi-
dative response of iron-deficient cells is stronger than
that of iron-rich cells.
To understand whether the redox molecules increased

simultaneously with antioxidants upon iron deficiency,
we used individual fluorescence indicators to detect ROS
and RNS (NO). As shown in Fig. 2b, there is no signifi-
cant difference in ROS production between iron-rich
and -deficient groups. Surprisingly, the amount of NO is
elevated when the environmental iron concentration
decreased (Fig. 2c), with an approximate 2-fold increase
in iron-deficient conditions. These data suggest that the
increase of intracellular NO production and the antioxi-
dants for redox maintenance in T. vaginalis occur under
iron-deficient conditions. The accumulated NO and the
corresponding signaling pathways were likely crucial for
iron-deficient cells; however, limited information is
known about the relationship of NO and iron deficiency
in T. vaginalis.
Transcriptomics analysis revealed NO-related responses in
iron-restricted T. vaginalis
Previous studies utilizing NGS-based transcriptomics ana-
lysis in T. vaginalis provided insights into the detailed
mechanical information [10, 24]. Therefore, this technique
creates the opportunity to identify the novel genes or
pathways in T. vaginalis associated with iron deficiency.
To date, little is known about the biological functions of
intrinsic NO in T. vaginalis, and the massive gene families
make it difficult to discern the participating genes. We
performed an NGS-based transcriptomics analysis of the
iron-deficient cells compared with iron-rich cells to moni-
tor the NO-related events. A total of 51,519,438 and
53,444,250 high quality reads (100 bases in length) were
generated from the iron-rich and -deficient cDNA librar-
ies, respectively (Additional file 3). These data sets covered
approximately 100-fold of the T. vaginalis genome that
contains more than 60,000 genes. After mapping the reads
to the T. vaginalis genome, there were 28,256 and 33,976
protein-coding genes expressed in iron-rich and -deficient
cells, respectively (Additional file 3). Table 1 showed the
most significantly up-regulated genes in iron-deficient



Table 1 The most expressed genes in iron-deficient T. vaginalis

GeneID TrichDB Annotation RPKM (IR) RPKM (ID)

METABOLIC ENZYMES

TVAG_171090 Malate dehydrogenase, putative 1171.96 19,482.82

TVAG_344880 Alcohol dehydrogenase, putative 115.8 3,902.75

TVAG_038440 Fructose-bisphosphate aldolase, putative 63.12 1,715.45

TVAG_196700 Glutamate dehydrogenase, putative 41 1,787.34

OXIDOREDUCTASES

TVAG_167830 Regulator of cell morphogenesis and NO signaling (RCMNS) (metal ion binding) 237.68 2,776.24

TVAG_107080 4-carboxymuconolactone decarboxylase 2 11.21 3,030.84

TVAG_256720 4-carboxymuconolactone decarboxylase 1 2.82 3,363.03

TVAG_336320 Hydroxylamine reductase, putative 70.86 1089.89

PROTEOLYTIC PROCESSES

TVAG_184150 Ubiquitin, putative 113.42 1563.65

TVAG_476160 Clan MG, family M24, aminopeptidase P-like metallopeptidase 77.07 1534.83

TVAG_386080 Clan MG, family M24, aminopeptidase P-like metallopeptidase 129.25 7169.21

OTHERS

TVAG_469020 Biotin synthase, putative 4.15 1,508.21

TVAG_321740 Conserved hypothetical protein 67.62 8933.47

TVAG_059980 Conserved hypothetical protein 102.07 1,355.29

TVAG_307440 Conserved hypothetical protein 7.34 1,956.57

TVAG_491130 Conserved hypothetical protein 75.06 2,060.76

TVAG_488900 Conserved hypothetical protein 1.48 2,220.44

The genes listed in this table are only highly expressed (RPKM > 1000, fold-change > 10) in iron-deficient (ID) cells compared to iron-rich (IR) cells. RPKM, reads per
kilobase per million mapped reads
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cells (RPKM > 1000 and 10-fold higher than that in
iron-rich cells), including metabolic enzymes, proteoly-
sis, oxidoreductases, and hypothetical genes. Among
the highly expressed genes, hydroxylamine reductase
(TVAG_336320), carboxymuconolactone decarboxy-
lases (TVAG_107080, 256720), and regulators of cell
morphogenesis and NO signaling (TVAG_167830) are
all related to NO signaling pathways in other organ-
isms [29–31]. The expression patterns of these genes
were also validated by quantitative RT-PCR (Additional
file 5). This further prompted us to study the roles of NO
in iron-deficient T. vaginalis.

NO production is via arginine- and proteasome-dependent
pathway
It has been suggested that T. vaginalis probably uses
arginine deiminase (ADI), with no putative nitric
oxide synthase encoded, to produce NO when the
culture is supplemented with arginine in aerobic con-
ditions [32]. According to our transcriptomics data, ADIs
(TVAG_344520, TVAG_467820, and TVAG_183850)
exhibited up-regulation in iron-deficient conditions
(Additional file 2). To understand whether arginine
is the substrate for NO production, we treated the
iron-deficient cells with 1 and 3 mM arginine deriva-
tive L-NG-monomethyl arginine (L-NMMA) and moni-
tored the NO levels. As shown in Fig. 3a, the NO level in
iron-deficient cells treated with L-NMMA decreased in a
dose-dependent manner after 3 h of treatment, with an
approximately 20 % reduction in NO in cells treated with
3 mM L-NMMA compared with the untreated group, sug-
gesting the importance of arginine for NO production in
iron-deficient T. vaginalis. The effect of L-NMMA on NO
reduction could not be sustained for a long period in
iron-deficient cells (Additional file 6), suggesting that
either more arginine is catalyzed for NO production
or L-NMMA is consumed at later time points.
The ubiquitin-proteasome system (UPS) is thought to

be the machinery for maintaining an intracellular argin-
ine pool for NO production [33]. Hence, we investigated
whether the UPS plays a key role in NO production in
T. vaginalis during iron deficiency. Indeed, the prote-
asome activity is significantly increased in iron-deficient
cells (Fig. 3b). To elucidate the correlation between pro-
teolysis and NO production, we detected the NO level
in iron-deficient cells treated with or without the prote-
asome inhibitor, MG132. The data revealed that the cells
treated with MG132 have a decrease of 20 % in NO



Fig. 3 NO production is an arginine- and proteasome-dependent process. a NO levels in DIP (180 μM) and L-NMMA (1 and 3 mM) co-treated
cells after 3 (white bars) and 6 h (gray bars) incubation. *** p < 0.001, compared with the DIP-only group. b Proteasome activities were measured
in iron-rich (IR) and -deficient (ID) cultured cells by detecting the fluorescence signal intensity. * p < 0.05, compared with the IR group. c NO levels
of DIP- and MG132-treated (1 and 3 μM) cells after 3 and 6 h of incubation. * (p < 0.05) and*** (p < 0.001), compared with the DIP-only group.
d Co-treatment with MG132 and arginine (5 mM) in iron-deficient cells after 6 h of incubation.*** p < 0.001, based on fold-change between the
indicated groups
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production in a time- and dose-dependent manner
(Fig. 3c). NO reduction in the MG132-treated group can
be restored by the addition of arginine (Fig. 3d), con-
firming the function of UPS in arginine pool mainten-
ance and NO production in iron-deficient T. vaginalis.
Because the change in the amount of NO in MG132-

treated cells can be totally reversed by arginine, and
there is a longer inhibitory effect of MG132 on NO
production compared with L-NMMA treated cells
(Additional file 6), we thereby used MG132 to deplete NO
production and clarify the roles of NO in iron-deficient
cells. Taken together, we demonstrated that NO produc-
tion depends on arginine and the UPS activity in T. vagina-
lis under iron-deficient conditions.

NO maintains cell survival in iron-deficient T. vaginalis
To verify the role of NO in the survival of T. vaginalis
under iron-deficient conditions, we monitored the growth
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of cells treated with or without MG132 by the trypan blue
exclusion assay. As shown in Fig. 4, the viability of iron-
deficient cells can be maintained at least 24 h after
DIP treatment with a cell density of ~ 1 × 106(cells/ml),
whereas combined treatment with MG132 and DIP re-
duced the viable cells to ~3 × 105(cells/ml) at 21h. Inter-
estingly, the number of viable cells recovered by
approximately 2-fold at 21h when the iron-deficient cells
were co-treated with MG132 and arginine compared with
MG132 treatment alone, suggesting that UPS-generated
NO is important for cell survival. The UPS-inhibited cells
could be rescued by the addition of single amino acid ar-
ginine, emphasizing the crucial function of UPS in NO
production in iron-deficient T. vaginalis. In other words,
this result demonstrates that NO is a pivotal molecule for
cell survival when T. vaginalis resides in iron-deficient
environments.

NO enhances hydrogenosomal membrane potential in
T. vaginalis upon iron deficiency
Previous studies have proven that NO activates cGMP
signaling to modulate mitochondrial biogenesis and ac-
tivity in mammals [34]. Mitochondrial membrane poten-
tial is believed to be a determinant of metabolic activity
and health status of a cell [35]. We utilized a cell-
permeable dye JC-1 to monitor the hydrogenosomal
membrane potential of T. vaginalis, which reflects the
hydrogenosomal functions [17, 26]. Using JC-1 staining,
we monitored the fluctuations in the red fluorescence-
containing cells, which possessed hydrogenosomes with
Fig. 4 NO is important for cell survival in iron-deficient T. vaginalis.
The growth of iron-deficient cells after treatment with different
drugs was monitored every three hours using the trypan blue
exclusion assay. The solid curve (circle) reveals the cell density of
iron-deficient (DIP, 180 μM) cells; the dashed curve (square)
reveals the cell density of MG132 (10 μM)-treated iron-deficient
cells; the dot-dashed curve (triangle) reveals the cell density of
MG132 and arginine (5 mM) co-treated iron-deficient cells. The
data are presented as the mean ± SD of three independent experiments
high membrane potential, in different iron concentra-
tions. We used the cells treated with CCCP, a disruptor
of mitochondrial membrane potential, as a negative con-
trol. As shown in Fig. 5a and b, the fluorescence inten-
sities were reduced in the CCCP-treated cells, indicating
that the measurement is suitable for analysis of hydroge-
nosomal membrane potential. We found that the red
fluorescence intensity in MG132 treated iron-deficient
cells was decreased significantly (p < 0.01) compared
with untreated cells (Fig. 5b). Interestingly, the MG132-
mediated reduction in red signal can be recovered by
the addition of arginine (Fig. 5b), suggesting that NO
maintains the hydrogenosomal membrane potential in
iron-deficient T. vaginalis. These observations indicate
that the hydrogenosomal membrane potential of MG132-
treated cells can be reversed after co-treatment with argin-
ine, confirming that NO functions in hydrogenosomal
membrane potential maintenance. These data demonstrate
that NO serves as a “keeper” for maintaining the functions
of the hydrogenosome, which is positively correlated with
prolonged survival in iron-deficient T. vaginalis.

Discussion
T. vaginalis has been shown to adapt to environmental
changes in the vaginal region, such as metabolic repro-
gramming and autophagy in response to glucose restric-
tion [24]. Similarly, the shift of the energy production
pathway from hydrogenosome to glycolysis in iron-
deficient conditions has been demonstrated [15, 36]
(Table 1). In the present work, we found that T. vagina-
lis can survive for an extended time in the environment
without sufficient iron supplementation. Nevertheless,
the mechanisms involved in the adaptation in iron-
deficient situations are still largely unknown.
The up-regulation of NO in parallel with elevated anti-

oxidant capacity suggests that NO signaling might be
critical for iron-deficient T. vaginalis [37]. NO serves as
a regulator to protect the cells from iron shortage-
mediated damages [38]. For instance, accumulated NO
functions in adjusting iron utilization and preventing
oxidative stresses in iron-restricted plants [39, 40]. NO
accelerates the release of iron from ferritin to re-balance
the free iron concentration in iron deficient anemia
models [41].
NO production from arginine-dependent pathway has

been suggested in a previous study [32]. Nevertheless, it
is still unknown how NO produced in T. vaginalis. In
our work, we determined that T. vaginalis used arginine
as the substrate for NO production under iron-deficient
conditions without additional arginine supplementation.
UPS, proteolytic machinery that commonly exists in
eukaryotic and prokaryotic cells, functions in protein
turnover and quality control [42]. The conserved
ubiquitin-conjugating system and proteasome subunits



Fig. 5 NO maintains the hydrogenosomal membrane potential of iron-deficient T. vaginalis. a The histograms indicate the red signal of the
cells treated with DIP (180 μM), DIP-MG132 (10 μM), and DIP-MG132-arginine (5 mM). Red fluorescence represents a hydrogenosome with high
membrane potential. The red fluorescence intensities of negative control group (CCCP treated cells, 50 μM) and experimental groups were
detected by using flow cytometry after JC-1 staining. b Quantification data of the red fluorescence intensities (geometric mean) in panel a are
shown. All tested groups were collected 6 h after drug treatments, and the data are presented as the mean ± SD of three independent experiments.
*(p < 0.05) and **(p < 0.01), based on the differences between the indicated groups
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can be found in the genome of T. vaginalis. However,
none of them have been characterized. The UPS gener-
ates amino acid for cellular functions that have been
examined in mammals, such as cysteine and arginine
[33, 43]. We illustrated that T. vaginalis utilizes UPS-
derived arginine for NO production under iron-deficient
conditions. We also found that the UPS plays a pivotal
role in the survival of iron-deficient cells, which corre-
lated with NO production. This finding suggests that the
functional role of UPS in NO production could be con-
served in T. vaginalis.
Previous study suggests that T. vaginalis can also gen-

erate energy from arginine provided by either UPS or ex-
ogenous arginine via the arginine dihydrolase pathway
[44]. However, according to our transcriptomics analysis,
the compensatory responses were raised for energy pro-
duction due to compromised hydrogenosomal energy
metabolism of iron-deficient cells, such as carbohydrate
metabolism (Table 1). In addition, the arginine dihydro-
lase pathway only contributes 10 % of ATP that gener-
ated from glycolysis [44]. Thus, we believe that
exogenous arginine may trigger NO-related responses
rather than ATP production to protect T. vaginalis from
iron deficiency.
NO is a second messenger that controls cellular func-

tions via triggering the production of cGMP [45]. The
cGMP-regulated pathways are likely the important
downstream effect of accumulated NO. We have moni-
tored the cGMP levels in iron-deficient cells, which are
10 % greater than iron-rich cells (data not shown). The
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increased cGMP directly activates cGMP-dependent
protein kinase (known as protein kinase G or PKG),
which participates in signaling related to cell survival
[46]. Among the 144 members of the protein kinase
AGC family in the genome of T. vaginalis, no specific
PKG was annotated [25]. It is difficult to pinpoint
which gene is responsible for the cGMP-dependent re-
actions because there is high sequence similarity
within the catalytic domain. Additionally, PKG is the
potential drug target for Toxoplasma and Plasmodium
spp. treatment [47, 48]. Therefore, the identification
and characterization of PKG related to NO metabol-
ism in T. vaginalis, especially under iron deficiency, is
a crucial task in the future.
The NO-dependent increase in cGMP also regulates

mitochondrial biogenesis in mammals [19, 45]. Previous
studies demonstrated that iron-deficiency leads to a re-
duction in hydrogenosomal activity [16]. Here, we found
that if NO production in iron-deficient cells is reduced,
the membrane potential of hydrogenosome is further
decreased. This suggests that NO is crucial for the
Fig. 6 Scheme of the proposed model. In environments without sufficient
(UPS) to digest proteins and generate the amino acid arginine. It is likely th
utilizes arginine as the source for NO production [14, 32]. NO is crucial for t
capacity. Both mechanisms protect T. vaginalis from iron deficiency-induce
functional maintenance of iron-restricted hydrogeno-
some. The mitochondrial membrane potential is a
determinant for cell health [35]. Likewise, the linkage
between hydrogenosomal membrane potential and
cell death in T. vaginalis has been determined [17].
In fact, low mitochondrial membrane potential repre-
sents increased permeability, which is correlated with
apoptosis in mammalian cells [35]. Accordingly, we
proposed that NO-enhanced hydrogenosomal mem-
brane potential is critical for cell survival under iron-
deficiency.

Conclusions
In conclusion, we demonstrate, for the first time, that
T. vaginalis utilized a NO-dependent regulatory network
to survive in iron-deficient situations (Fig. 6). Once
T. vaginalis encounters iron-limited environments, the
protist generates more NO via proteasome-dependent
pathway. The UPS-derived arginine is the substrate for
NO production [33]. The generation of NO possibly
takes place in the hydrogenosome since ADI, the
iron availability, T. vaginalis activates the ubiquitin-proteasome system
at ADI, the enzyme with NO synthase activity in the hydrogenosome,
he maintenance of hydrogenosomal function as well as antioxidant
d damage and prolong the survival of this parasite
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enzyme with NO synthase activity, is found in this or-
ganelle [14, 32]. NO is a pivotal factor that modulates
the hydrogenosomal membrane potential to protect cells
from death. These mechanisms are vital for T. vaginalis
to adapt to the continuous alternation of iron in the
vaginal region, which is beneficial for establishment of
an infection and parasitization.
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Additional file 2 Transcriptomic analysis of T. vaginalis under
different iron concentrations by RNA-seq.

Additional file 3 Summary of NGS analysis.

Additional file 4: Iron-dependent expression of antioxidants in
T. vaginalis. The expression levels of antioxidative defense systems
in cells cultured under different iron concentrations were determined by
using quantitative RT-PCR. IR, iron rich (80 μM FAC); ID, iron deficiency
(180 μM DIP). SOD, superoxide dismutase; Rbr, rubrerythrin; TrxP,
thioredoxin peroxidase.

Additional file 5: Validation of NO-related genes identified from
transcriptomics analysis. The expression levels of iron deficiency-
induced genes were verified by using quantitative RT-PCR. IR, iron rich
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