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Abstract

Background: Malaria remains a significant public health issue in South America. Future climate change may
influence the distribution of the disease, which is dependent on the distribution of those Anopheles mosquitoes
competent to transmit Plasmodium falciparum. Herein, predictive niche models of the habitat suitability for P.
falciparum, the current primary vector Anopheles darlingi and nine other known and/or potential vector species of
the Neotropical Albitarsis Complex, were used to document the current situation and project future scenarios under
climate changes in South America in 2070.

Methods: To build each ecological niche model, we employed topography, climate and biome, and the currently
defined distribution of P. falciparum, An. darlingi and nine species comprising the Albitarsis Complex in South
America. Current and future (i.e., 2070) distributions were forecast by projecting the fitted ecological niche model
onto the current environmental situation and two scenarios of simulated climate change. Statistical analyses were
performed between the parasite and each vector in both the present and future scenarios to address potential
vector roles in the dynamics of malaria transmission.

Results: Current distributions of malaria vector species were associated with that of P. falciparum, confirming their
role in transmission, especially An. darlingi, An. marajoara and An. deaneorum. Projected climate changes included
higher temperatures, lower water availability and biome modifications. Regardless of future scenarios considered,
the geographic distribution of P. falciparum was exacerbated in 2070 South America, with the distribution of the
pathogen covering 35-46 % of the continent. As the current primary vector An. darlingi showed low tolerance for
drier environments, the projected climate change would significantly reduce suitable habitat, impacting both its
distribution and abundance. Conversely, climate generalist members of the Albitarsis Complex showed significant
spatial and temporal expansion potential in 2070, and we conclude these species will become more important in
the dynamics of malaria transmission in South America.

Conclusions: Our data suggest that climate and landscape effects will elevate the importance of members of the
Albitarsis Complex in malaria transmission in South America in 2070, highlighting the need for further studies
addressing the bionomics, ecology and behaviours of the species comprising the Albitarsis Complex.
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Background
Current consensus among scientists is that global pat-
terns of climate warming observed over the past twenty
years are attributable to human activities [1–3], and pub-
lic statements endorsing this position have been issued
by scientific organizations worldwide [4, 5]. Some
health-related issues of humans and animals are corre-
lated to climate change, including heat-related disorders,
respiratory disorders, vector-borne diseases, water-borne
diseases, food insecurity, and mental health disorders
that are associated with natural disasters [6].
The epidemiology of vector-borne diseases has been

under the influence of climate change at the global level
since the last quarter of the 20th Century [7]. Conse-
quently, the impact of climate factors on malaria reemer-
gence or emergence has attracted considerable attention
in studies relating climate factors to mosquito ecology [8,
9]. This particular interest reflects the fact that malaria is
a significant public health burden and, concomitantly, the
dynamics of transmission are highly sensitive to environ-
mental conditions [10, 11]. Additionally, the future
distribution of malaria is dependent on the distribution of
competent Anopheles vectors, especially those that are
exophagic climate generalists [12].
In Brazil, the number of malaria cases attributable to P.

falciparum is decreasing annually, mainly because of the
successful control and elimination strategies adopted by
the Malaria Control Program [13]. In 2012, P. falciparum
accounted for only 10 % out of 276,000 confirmed malaria
cases [14]. Anopheles darlingi Root is the primary malaria
vector in South America, transmitting both P. falciparum
and P. vivax in Brazil [15, 16], but many other species are
also involved in the dynamics of the transmission of
Plasmodium [17]. These include members of the Albitar-
sis Complex that have attracted attention because of the
high number of new species described in recent years
[18–22]. The Albitarsis Complex comprises five formally
described species (An. albitarsis Lynch Arribalzaga, An.
deaneorum Rosa-Freitas, An. janconnae Wilkerson and
Sallum, An. marajoara Galvao and Damasceno, An. ory-
zalimnetes Wilkerson and Motoki), and three recognized
unnamed species, An. albitarsis F [20], An. albitarsis G
[21, 22], An. albitarsis I [22] [20–24]. Anopheles albitarsis
H was originally conservatively described as a mitochon-
drial lineage due to low sample size [22], but has since
been more widely detected and should be considered a
separate species (Linton & Wilkerson, pers. comm.).
Herein all nine taxa are treated as separate species.
Anopheles deaneorum, An. marajoara, and An. jancon-
nae are proven vectors of Plasmodium in Brazil [22,
25–27]. Areas currently predicted as suitable for these
species (plus An. albitarsis G, An. albitarsis H, and An.
albitarsis I) largely coincide with distribution models of
P. falciparum and P. vivax [24].

The Amazonian region has been identified as an espe-
cially vulnerable area for future climate changes because
of the projected increase in the length of the dry season
[28, 29], which will impact on the dynamics of infectious
diseases [30]. The stability and resilience of the Amazon-
ian climate-vegetation dynamics has been the focus of
many studies aiming to understand the impacts of
climate change on forest dynamics, and its potential
long-term replacement by drier biomes such as the trop-
ical savanna [31, 32], as during the mid-Pliocene [33].
Within this context, a tropical savanna biome would be
more favourable for the Albitarsis Complex [24, 26].
This group is mainly associated with Plasmodium
transmission as secondary vectors [24]. However, An.
marajoara can act as a primary vector depending on the
ecological changes, especially those related to land-use
and human migration [26]. Therefore, it is important to
address the effects of a potential savannization of the
Amazon forest on the dynamics of malaria transmission.
This study employed habitat suitability niche model-

ling to address potential associations among the spatial
distribution of P. falciparum, An. darlingi and the nine
component species of the Albitarsis Complex, consider-
ing the current environmental scenario and two scenar-
ios of climate changes predicted for the year of 2070.
The objectives of the study were to: 1) model the poten-
tial ecological niche of P. falciparum, nine species in the
Albitarsis Complex and An. darlingi; 2) estimate poten-
tial spatial distribution of nine species in the Albitarsis
Complex, An. darlingi and P. falciparum in two distinct
scenarios of climate changes predicted for the year of
2070; and 3) identify potential associations between the
spatial distribution of P. falciparum and nine Albitarsis
Complex species and An. darlingi.

Methods
Specimen data used for analysis
The number of occurrences of P. falciparum and each
Anopheles species, and absence data, utilized in the spe-
cies distribution modelling are shown in Table 1.
The distributions of Anopheles species and P. falciparum

are shown in Fig. 1.
The geographical distribution of An. darlingi was ob-

tained from the published literature [27, 34, 35] and new
data was obtained from field collections by ESB and
MAMS (Additional file 1). Specimens of adult An. darlingi
were identified by morphology using available identifica-
tion keys [36].
The distribution of P. falciparum was obtained from

The Malaria Atlas Project (MAP) [37, 38].
Species level distribution data for members of the

Albitarsis Complex was achieved through molecular spe-
cies verification of 1131 specimens, including topotypic
and type series material, using DNA barcode sequences
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(658 bp of the mitochondrial cytochrome c oxidase I
gene) (see [22] for methodology). These data, generated
by this team, have been previously published under the
following GenBank Accession numbers: JQ614998 - JQ6
15562 [22], KJ011904 - KJ012004, KJ492398 - KJ492558
and KJ492676 - KJ492894 [24]. Detailed individual speci-
men level collection data are available in the Mosquito
Barcoding Initiative projects on the Barcode of Life
(BOLD) [39] website under the Mosquitoes of the World
container project, “MBIAA: Anopheles albitarsis com-
plex”, and are available for download on VectorMap [40].
Template DNAs corresponding to GenBank Accession

numbers KJ492676 - KJ492894 (n = 219) [24] collected by
MAMS and ESB are retained at −70 °C in an entomological
reference collection, the Coleção Entomológica de Referên-
cia of the Universidade de São Paulo, SP Brasil. Template
DNA and other associated life stages for the remaining
912 specimens collected by RCW corresponding to
GenBank Accession numbers JQ614998 - JQ615562 [22],
KJ011904 - KJ012004 and KJ492398 - KJ492558 [24] are
housed at the Smithsonian Institution National Museum
of Natural History (NMNH), USA.

Environmental variables
Bioclimatic, topographic and biome variables were used
from different data sources. The bioclimatic data were
obtained from the WorldClim [41], the elevation data
were from the Shuttle Radar Topography Mission
(SRTM) [42] and the terrestrial biomes were from the
World Wildlife Fund (WWF) [43] (see Additional file 2,
Additional file 3).

Species distribution modelling
The spatial relationship between the environmental
variables and presence of each Anopheles species and P.

falciparum were carried out using the MaxEnt algorithm
and Boosted Regression Trees (BRT) (see Table 1 for
more information). Implementations of these methods
are in the software R 3.0.1, in the following packages:
dismo, gbm, raster, rgdal and rJava [44–48]. Further in-
formation about these methods, applied for species
distribution modelling, can be found elsewhere, e.g.,
MaxEnt [49] and BRT [50]. For the predicted presence
of P. falciparum, it was herein assumed that the pres-
ence of the parasite is related to environmental factors.
This was considered fundamental for any climate sce-
nario because the mosquito host is an ectotherm, and
therefore the dynamics of the transmission suffers the
influence of climate variables, such as temperature and
precipitation (e.g., [8, 10]). Calculation of the average
value between the two methods, MaxEnt and BRT, was
performed in order to produce a consensus species dis-
tribution model.

Environmental variables in future scenarios
The WorldClim [51] provides bioclimatic variables from
global climate models by the National Aeronautics and
Space Administration (NASA) [52] and the European
Network for Earth System Modelling (ENES) [53] in the
fifth assessment of the Intergovernmental Panel on
Climate Change, under the representative concentration
pathway RCP85 (see Additional file 4, Additional file 5,
and Additional file 6 for more information). The ration-
ale for using the worst scenario among the four possible
representative concentration pathways was that it would
yield predictions for the most pessimistic scenario con-
sidered by the IPCC-CMIP5. The most pessimistic
scenario represented a situation in which human behav-
iours related to climate change would stay unchanged
between current and future scenarios. For the simulation

Table 1 Number of occurrences (presence data) of P. falciparum and each Anopheles species and absence data utilized in the
species distribution modelling approach with the aid of the MaxEnt algorithm and Boosted Regression Trees

MaxEnt Boosted Regression Trees

Presence data Absence data (background points,
pseudo-absence)

Presence data
(train data)

Presence data
(test data)

Absence data (derived from
MaxEnt output)

P. falciparum 112 200 84 28 10

An. darlingi 66 200 50 16 10

An. albitarsis s.s. 138 200 104 34 10

An. oryzalimnetes 240 200 180 60 10

An. marajoara 153 200 115 38 10

An. deaneorum 70 200 53 17 10

An. janconnae 96 200 72 24 10

An. albitarsis F 44 200 33 11 10

An. albitarsis G 106 200 80 26 10

An. albitarsis H 88 200 66 22 10

An. albitarsis I 12 200 9 3 10
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Fig. 1 Contemporary terrestrial biomes and occurrences of P. falciparum, An. darlingi and nine species in the Albitarsis Complex in South America.
Sources: Biomes (the World Wildlife Fund), P. falciparum (the Malaria Atlas Project), An. darlingi (published data [27, 34, 35], plus new data
obtained by ESB/MAMS [Additional file 1]) and the Albitarsis Complex (published data [22, 24]). Projection: longitude-latitude. Datum: WGS84
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tests, we assumed that in 2070 the topography of the
studied region would be identical to the current topog-
raphy [42]. Projection of terrestrial biome for 2070 was
applied in accordance with either the contemporary
situation [43] (Additional file 4, Additional file 5) or
assuming modifications as in [31] (Additional file 4,
Additional file 6).

Projections of the species distribution model in future
scenarios
The consensus (MaxEnt + BRT) species distribution
model was projected onto two hypothetical scenarios:
1) Future scenario 1, based on the predictions by the
NASA GISS-E2-R climate projection model [52] under
CMIP5 RCP85 in 2070; 2) Future scenario 2, based on
the predictions by the ENES HadGEM2-ES climate
projection model [53] under CMIP5 RCP85 in 2070. In
future scenario 1, there is an increase in temperature
(2-3 °C in average) and decrease in precipitation in the
driest month/quarter (−6.5-8 % mm) and in the wettest
quarter (−12 % mm). Biomes and topographic features
are kept unaltered. Future scenario 2 is more drastic
with an increase in the highest temperature (4 °C in
average), higher annual range of precipitation (i.e., wet-
ter [+1-5 % mm in average] wettest month/quarter and
drier [−15-17 % mm in average] driest month/quarter)
and different biome configuration. Future scenario 1
could be considered a more conservative scenario if it was
subject to less extreme events of temperature and precipi-
tation (i.e., the coefficient of variance is smaller among
predictions), while the future scenario 2 was the least opti-
mistic as it included the possibility of extreme climate
events [54], that would cause marked changes in the
biome structure [31].

Statistical analysis
Cross-validation tests between species occurrence data,
absence data and each species distribution model were
performed to estimate a threshold at which the sum of
the sensitivity (true positive) and specificity (true nega-
tive) is highest in the confusion matrix. Evaluation of
MaxEnt species distribution models was performed using
background points (n = 200) as absence data (i.e., pseudo-
absence). Evaluation of BRT species distribution models
was done by utilizing absence data derived from MaxEnt
outputs (see Table 1 for more information). The Area
under the Curve (AUC) and the threshold that maximized
both sensibility and specificity for each species distribution
model were calculated for model evaluation.
The mean threshold for the MaxEnt and BRT species

distribution models was calculated. This mean threshold
value, which transformed the consensus species distribu-
tion model (probability of presence) to a binary score
(presence or absence), was applied. This binary score of
potential distribution of P. falciparum and that of each
Anopheles species were associated in a 2 by 2 contin-
gency table. An association metric (i.e., odds ratio - OR)
was calculated. A result of OR < 1 showed negative asso-
ciation between the presence of P. falciparum and an
Anopheles species and OR > 1 showed a positive associ-
ation between P. falciparum and an Anopheles species.
A 99 % confidence interval was adopted for the OR
analysis.

Results
Contribution of each environmental variable for the habi-
tat suitability models for the parasite, An. darlingi and
members of the Albitarsis Complex revealed significant
differential characteristics among these species, reflecting

Fig. 2 Potential distribution of An. darlingi and P. falciparum under contemporary conditions
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specific niche requirements (Additional file 7). In the
resulting maps, the estimated probabilities of potential
species presence ranged from 0 (white colour) to 1 (dark
green) (see gradient legend in Figs. 2, 3, 4, 5, 6, 7).
The current spatial distribution of Anopheles darlingi

was positively associated with warm and humid areas
(Fig. 2A) and that of P. falciparum was positively associ-
ated with higher temperatures (Fig. 2b).
The current spatial distributions of the members of the

Albitarsis Complex varied significantly (Fig. 3). As can be
seen from Fig. 3, Anopheles albitarsis s.s. was positively

associated with cold temperatures with higher potential
presence in the south of the continent. Anopheles
oryzalimnetes showed a climate-generalist characteristic
with potential presence in at least three distinct biomes
(Amazonia, Atlantic Forest and Brazilian Savanna).
Anopheles marajoara was mainly associated with the drier
parts of the Amazonian biome. Anopheles deaneorum was
positively associated with dry forests and savannas. Asso-
ciations of An. janconnae showed that this species has re-
stricted environmental requirements with occurrence
more likely in specific hotspots of the northern part of

Fig. 3 Potential distribution of members of the Albitarsis Complex under contemporary conditions

Laporta et al. Parasites & Vectors  (2015) 8:426 Page 6 of 13



Amazonia. Anopheles albitarsis F was positively associated
with the entire Amazonian biome. Anopheles albitarsis G
was associated with the climatic and topographic charac-
teristics in the Amazon River basin. Anopheles albitarsis
H was positively associated with drier biomes such as the
Brazilian Savanna. Finally, apart from the small sample
size (N = 12), it was possible to extract information from
Anopheles albitarsis I current distribution which was asso-
ciated with climate and topography of the northern part
of the continent.
The aforementioned habitat suitability niche-based

models of P. falciparum and Anopheles species were ex-
trapolated employing two future climate scenarios: future
scenario 1, conservative [climate change only] and future
scenario 2, pessimistic [climate plus biome changes].
The predicted spatial distribution maps for An. darlingi

for both scenarios showed that this species would decrease
its presence in the Amazonian biome (Figs. 4a and 5a). This

could be possible because of the decrease of precipitation
in both scenarios. This further shows that An. darlingi is
not a generalist species for drier environments. On the
other hand, the spatial distribution of P. falciparum would
increase in the same biome, possibly because of the in-
crease in temperature for both scenarios, for which this
species seems to be well adapted (Figs. 4b and 5b).
The projected future distributions of species of the

Albitarsis Complex are shown in Figs. 6 and 7. From
such figures it can be seen that future spatial distribution
of An. albitarsis s.s. and An. janconnae were restricted
to the south and north, respectively, of the continent.
This shows that both species are very sensitive to climate
change. On the other hand, other species such as An. dea-
neorum, An. albitarsis F, An. albitarsis H, and An. albitar-
sis I showed expansion on their future spatial distribution
in both scenarios, whereas An. oryzalimnetes, An. mara-
joara, and An. albitarsis G were more likely to expand

Fig. 4 Potential distribution of An. darlingi and P. falciparum under global climate change scenario 1

Fig. 5 Potential distribution of An. darlingi and P. falciparum under global climate change scenario 2
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their territory in future scenario 1 only. This outcome
shows that some species of the Albitarsis Complex could
resist climate change (An. oryzalimnetes, An. marajoara,
and An. albitarsis G), while others may survive under cli-
mate and biome changes (An. deaneorum, An. albitarsis F,
An. albitarsis H, and An. albitarsis I).
There were shifts in the predicted presence of An. dar-

lingi, P. falciparum and An. deaneorum from current to
future scenarios (Fig. 8). The current spatial distribution
of P. falciparum was positively associated with higher

temperatures. In future scenarios 1 and 2, in which
temperature was higher, this parasite species expanded
its distribution in South America. In the current sce-
nario, coverage of P. falciparum in South America was
25 %, increasing to 35 % in future scenario 1 and 46 %
in future scenario 2 (Fig. 8). Higher levels of precipita-
tion positively influenced current spatial distribution of
An. darlingi. In future scenarios 1 and 2, where precipita-
tion decreases, its distribution in South America also de-
creases. The current coverage of An. darlingi decreased

Fig. 6 Potential distribution of members of the Albitarsis Complex under global climate change scenario 1
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from 21 % to 11 % in scenario 1 and 8 % in scenario 2
(Fig. 8). In those Albitarsis Complex species for which
precipitation was an important predictor (e.g., An. albitar-
sis s.s.), all showed decreased distributions in both future
scenarios. On the contrary, other species benefitted from
either temperature increase or altered biome configur-
ation resulting in the expansion of their spatial distribu-
tions in future scenarios. For example, coverage of An.
deaneorum increased from its current value of 6 % to 8 %
in scenario 1 and 9 % in scenario 2 (Fig. 8).

Spatial associations of binary (presence/absence) spe-
cies distribution models between P. falciparum and
each Anopheles in all scenarios are in Table 2. Spatial
association between the parasite and An. darlingi
decreased in future scenarios. On the contrary, spatial
associations between P. falciparum and species of the
Albitarsis Complex, particularly An. oryzalimnetes,
An. marajoara, An. deaneorum, An. albitarsis G, An.
albitarsis H, and An. albitarsis I, increased in both fu-
ture scenarios.

Fig. 7 Potential distribution of members of the Albitarsis Complex under global climate change scenario 2
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Discussion
Probable spatial distributions of the malarial parasite P.
falciparum and ten Neotropical Anopheles species were
predicted using an ecological niche modelling approach
that included climate factors, topographical and biomic
variables under the current malaria transmission setting
in South America. In a second round of analyses, the
currently predicted niche model for each species was ad-
dressed employing two potential scenarios of future cli-
mate and biome changes in 2070, with the assumption

that climate change would progress under a high emis-
sion scenario (i.e., RCP8.5). A significant potential shift
in the respective roles of the current major mosquito
vector species of P. falciparum was indicated using two
distinct scenarios of climate and environmental changes
predicted for 2070. Our analyses showed that whereas the
role of the major current vector An. darlingi in malaria
transmission may decrease in future, some species of the
Albitarsis Complex (An. marajoara, An. deaneorum, An.
albitarsis G, An. albitarsis H, and An. albitarsis I) may

Fig. 8 Potential distribution of An. darlingi and P. falciparum and An. deaneorum under contemporary conditions, global climate change scenario
1, and global climate change scenario 2
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adopt a more significant role as either primary or second-
ary vectors of P. falciparum in South America. Because of
a potential distribution expansion in some species of the
Albitarsis Complex, the geographical distribution of the
parasite could exacerbate, from few-clustered parasite
populations at present to a hugely increased potential
35-46 % coverage of South America by 2070. This
result is consistent with the results found by Caminade
et al. [11], in which they showed that P. falciparum
would expand its current distribution towards areas sit-
uated in greater latitudes and altitudes, if the tempera-
tures in those areas increased. Additional supporting
evidences were found in highland ecosystems in where
parasites and vectors had expanded their geographic
distributions towards malaria-free highlands because of
climatic and socio-economic changes [55, 56].
The distribution of An. darlingi, which is dependent on

high precipitation levels [57], decrease markedly in both
future scenarios of climate changes tested in the present
study. This result is consistent with the arguments of Par-
ham and Michael [10] regarding the association of climate
variables, such as levels of precipitation and temperature,
and their role as potential driving forces to the rate of
malaria transmission. This further relates to the evidences
that an optimum threshold of malaria emergence could
occur under combining effects of temperature and pre-
cipitation [58, 59]. In contrast, spatial distributions of the
component species of the Albitarsis Complex seem to be
less dependent on precipitation levels [24]. The evidence
that effects of climate change on vector abundance require
species-specific combinations further supports this result
[60]. Therefore, in future scenarios subject to climate
changes, dynamics of malaria could have such species,
particularly An. marajoara and An. deaneorum, as local
primary vectors of P. falciparum in forest areas that can
follow a savannization process.

The core message in the present work is that future
scenarios may lead to shifts in the relative importance of
species of the Albitarsis Complex over An. darlingi for
transmission of P. falciparum in South America. It is not
possible, however, at this stage, to confirm that future
distribution of malaria will decrease or not because the
human control efforts were not included as predictors in
the projected scenarios. Additionally, further implemen-
tations on the projected scenarios would be to consider
the effects of future climate change on the quality of
larval habitat, as this potentially is an important pre-
dictor to malaria transmission [61]. On the other hand,
Foley et al. [24], who utilized the same dataset of speci-
mens of the Albitarsis Complex used herein, but in a dif-
ferent approach, showed that vector species shifts are
likely to occur in South America. More specifically, these
authors showed that long term changes in precipitation
could affect vector abundance and distribution differ-
ently, possibly increasing the chances of An. marajoara
compared to species more sensitive to water unavailabil-
ity, such as An. albitarsis s.s., or An. darlingi, according
to the present study. Vector species shifts may further
relate to the magnitude of vector richness in a certain
region because the pool of competent vectors in a mos-
quito assemblage could likely be an important predictor
to malaria resilience, as supported recently [62].
The link between future scenarios under climate change

effects and Amazonian savannization process has long
been recognized [31, 32]. During a savannization process,
Amazonian tropical evergreen forests would be replaced
by drier and less productive biomes such as savanna,
shrub land or even semi-desert [31]. Amazonian forest
could be subject to a decreased precipitation, and a few
models suggest the extensive possibility of retreat of the
forest [32]. Potential interactions between climate
changes and land-use changes may strongly influence

Table 2 Spatial association of species distribution models of P. falciparum against each Anopheles vector according to present and
future scenarios, South America

Current Future (scenario1) Future (scenario2)

P. falciparum P. falciparum P. falciparum

OR (CI99%) OR (CI99%) OR (CI99%)

An. darlingi 7.42 (7.39, 7.44) 2.48 (2.48, 2.49) 6.51 (6.47, 6.54)

An. marajoara 8.02 (7.97, 8.06) 9.71 (9.67, 9.77) 11.3 (11.21, 11.41)

An. deaneorum 6.21 (6.18, 6.24) 11.66 (11.59, 11.72) 10.25 (10.19, 10.31)

An. janconnae 3.41 (3.38, 3.45) 2.18 (2.14, 2.22) 0.89 (0.87, 0.91)

An. albitarsis s.s. 0.08 (0.08, 0.08) 0.03 (0.03, 0.03) 0.33 (0.33, 0.33)

An. oryzalimnetes 1.91 (1.9, 1.91) 9.21 (9.18, 9.24) 3.13 (3.12, 3.14)

An. albitarsis F 10.29 (10.26, 10.33) 5.41 (5.39, 5.42) 6.92 (6.9, 6.94)

An. albitarsis G 4.72 (4.66, 4.77) 7.55 (7.46, 7.64) 28.83 (27.78, 29.89)

An. albitarsis H 3.48 (3.47, 3.49) 9.36 (9.33, 9.39) 6.57 (6.55, 6.58)

An. albitarsis I 1.2 (1.16, 1.23) 21.6 (21.48, 21.73) 44.89 (44.38, 45.34)
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the Amazonian ecosystem in the future [28]. Changes
in land-use and human migration patterns have already
affected malaria transmission in areas of the municipal-
ity of Macapá, in Amapá state in the Amazon forest
[26], with the replacement of the primary vector An.
darlingi by a secondary vector An. marajoara [26]. The
ecological niches of members of the Albitarsis Complex
are dependent upon long-term changes in precipitation
and, especially, the increased duration of the dry season
can increase the abundance and distribution of some
species of this group [24]. This may be indicative that
these species will succeed at colonizing savanna forest
in future scenarios.

Conclusions
Climatic and landscape effects caused by global warm-
ing will facilitate expanded distributions and, conse-
quentially, increasingly important roles for component
species in the Albitarsis Complex as important malaria
vectors. This further highlights the need for further de-
tailed studies elucidating the respective bionomics,
ecology and epidemiological roles of component mem-
bers of the Albitarsis Complex.
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