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Abstract

Background: The blacklegged tick Ixodes scapularis transmits Borrelia burgdorferi (sensu stricto) in eastern North
America; however, the agent of Lyme disease is not the sole pathogen harbored by the blacklegged tick. The
blacklegged tick is expanding its range into areas of southern Canada such as Ontario, an area where exposure to
blacklegged tick bites and tick-borne pathogens is increasing. We performed a systematic review to evaluate the
public health risks posed by expanding blacklegged tick populations and their associated pathogens.

Methods: We followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines
for conducting our systematic review. We searched Ovid MEDLINE, Embase, BIOSIS, Scopus and Environment
Complete databases for studies published from 2000 through 2015, using subject headings and keywords that
included “Ixodes scapularis”, “Rickettsia”, “Borrelia”, “Anaplasma”, “Babesia” and “pathogen.” Two reviewers screened
titles and abstracts against eligibility criteria (i.e. studies that included field-collected blacklegged ticks and studies
that did not focus solely on B. burgdorferi) and performed quality assessments on eligible studies.

Results: Seventy-eight studies were included in the final review, 72 were from the US and eight were from Canada
(two studies included blacklegged ticks from both countries). Sixty-four (82 %) studies met ≥ 75 % of the quality
assessment criteria. Blacklegged ticks harbored 91 distinct taxa, 16 of these are tick-transmitted human pathogens,
including species of Anaplasma, Babesia, Bartonella, Borrelia, Ehrlichia, Rickettsia, Theileria and Flavivirus. Organism
richness was highest in the Northeast (Connecticut, New York) and Upper Midwest US (Wisconsin); however,
organism richness was dependent on sampling effort. The primary tick-borne pathogens of public health concern
in Ontario, due to the geographic proximity or historical detection in Ontario, are Anaplasma phagocytophilum,
Babesia microti, B. burgdorferi, Borrelia miyamotoi, deer tick virus and Ehrlichia muris-like sp. Aside from B. burgdorferi
and to a much lesser concern A. phagocytophilum, these pathogens are not immediate concerns to public health in
Ontario; rather they represent future threats as the distribution of vectors and pathogens continue to proliferate.

Conclusions: Our review is the first systematic assessment of the literature on the human pathogens associated
with the blacklegged tick. As Lyme disease awareness continues to increase, it is an opportune time to document
the full spectrum of human pathogens transmittable by blacklegged ticks.
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Background
The blacklegged tick Ixodes scapularis is the vector of
Borrelia burgdorferi (sensu stricto) (agent of Lyme dis-
ease) in eastern North America. Blacklegged ticks are
three-host, non-nidiculous ticks with larvae and nymphs
that feed on small rodents (e.g. white-footed mouse) and
passerine birds, and adults that feed on large mammals
(white-tailed deer, humans). The blacklegged tick’s range
has been expanding northward from its precinctive habi-
tats in the Northeast and Upper Midwest US over the
last several decades [1–3]. In Ontario, this range expan-
sion has not been uniform; spreading primarily into sub-
urban and rural areas with mixed deciduous forests,
where vertebrate hosts are abundant and local climate is
favourable to blacklegged tick survival [4]. Until the
mid-1990s, B. burgdorferi and Babesia microti (babesiosis)
were the only pathogens known to be transmitted by black-
legged ticks [5–7]. Blacklegged ticks were soon implicated
as vectors of Anaplasma phagocytophilum (anaplasmosis),
and more recently, Borrelia miyamotoi (B. miyamotoi dis-
ease) and deer tick virus (DTV; DTV encephalitis) [8–10].
Uncommon in Ontario’s blacklegged ticks, so far, these
pathogens are likely to become more prevalent in the fu-
ture, as has been the case in recently-invaded jurisdictions
such as Maine [11].
In order to assess the public health risks due to

blacklegged ticks, an understanding of blacklegged tick-
associated organisms is essential, particularly their distribu-
tion, prevalence and capacity to cause human disease. We
performed a systematic review of the scientific literature to
identify organisms (targeting human pathogens) associated
with blacklegged ticks in eastern North America and to
assess which organisms pose a threat to the health of
Ontarians.

Methods
Search strategy
We followed PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) guidelines for
conducting our systematic review [12]. With the assistance
of Public Health Ontario’s Library Services, we developed
our primary search strategy in Medline and customized it
for other databases to account for database-specific vocabu-
lary and functionality. Our search used subject headings
and keywords that included “North America”, “Ixodes sca-
pularis”, “Rickettsia”, “Bartonella”, “Borrelia”, “Anaplasma”,
“Babesia”, “Powassan”, “pathogen” and “blacklegged tick.”
We conducted a systematic review of English-language
studies using five electronic databases: Ovid MEDLINE(R)
In-Process & Other Non-Indexed Citations and Ovid
MEDLINE(R) (Ovid platform: 1 January 1995 to 20 April
2015); Embase (Ovid platform: 1 January 1996 to Week 16,
2015); Scopus (1 January 1999 to 20 April 2015); Environ-
ment Complete (EBSCOhost Research Databases: 1 January

1995 to 20 April 2015); and BIOSIS Previews (Ovid plat-
form: 1 January 2002 to Week 20, 2015). All searches are
current as of 20 April 2015 (full search strategy for Ovid
Medline, Additional file 1).

Study selection
Studies included in the review were required to meet the
following eligibility criteria: (i) included field-collected I.
scapularis from Canada or US; (ii) published on or after
1 January 1995; and (iii) did not test solely for B. burg-
dorferi. We limited studies to those that tested for at
least one organism besides B. burgdorferi as our em-
phasis was on the incidence and prevalence of organisms
other than B. burgdorferi. Studies that focused on experi-
mental models–in the absence of field-collected black-
legged ticks–were excluded (e.g. modeling studies,
studies with experimental infections of hosts or ticks), as
were studies concentrating on human case reports, patient
treatment or blood-donor screening (as these did not spe-
cifically link an organism to field-collected blacklegged
ticks). We limited the final number of studies to those
published on or after 1 January 2000; we did not identify
any additional organisms from studies published from 1
January 1995 through 31 December 1999. Two reviewers
independently screened titles and abstracts against eligibil-
ity criteria and differences were resolved by consensus
(Mark P Nelder, Nina Jain Sheehan) (Fig. 1). We excluded
one study because it did not identify the state(s) where the
ticks were collected [13].

Data extraction and quality assessment
We populated a data extraction table with the study’s
first author, year(s) of study, location of study, tick or host
collection methods, organisms tested for (gene targets),
key organism detection methods, prevalence of organisms
(by tick stage), explicit mention of positive and negative
pathogen controls, acknowledgement of sequence submis-
sions to GenBank (where the organism identification was
uncertain) (Additional file 2).
To evaluate the quality of eligible studies and to re-

duce the risk of bias, critical appraisals for each study
were completed by two independent reviewers and dis-
agreements resolved by consensus (Curtis B Russell,
Mark P Nelder; Additional file 3). We completed critical
appraisals of studies using the Public Health Ontario
Meta-tool for Quality Appraisal of Public Health Evidence,
a composite tool based on multiple underlying instru-
ments (e.g. STROBE, STrengthening the Reporting of OB-
servational studies in Epidemiology) [14]. We assessed all
studies based upon relevancy, reliability, validity and ap-
plicability. The independent reviewers did not calculate an
overall quality score, in keeping with the agreement in the
literature [12].
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Data synthesis and analysis
We structured study outcomes by organism detected, jur-
isdiction (province or state) where detected and crude
prevalence (Table 1; Figs. 2 and 3). Pathogen prevalence is
reported as a crude prevalence, indicating the prevalence
reported includes pooled tick stages (larvae, nymphs and
adults), along with pooled engorgement status, collection
methods and pathogen detection methods. To determine
what tick-borne diseases are reportable to public health
officials, we reviewed reportable disease lists for Ana-
plasma, Babesia, Bartonella, Borrelia, DTV, Ehrlichia and
Rickettsia in Canada (Manitoba, Ontario and Quebec) and
the US (Illinois, Indiana, Michigan, Minnesota, New York,
Ohio, Pennsylvania and Wisconsin) (Table 2). We created
maps presenting crude prevalence (total positive ticks/
total ticks tested in a province or state) for the pathogens
of concern (Figs. 2 and 3) using the Environmental Sys-
tems Research Institute (ESRI) ArcMap Geographic Infor-
mation System software (v10.3.1), manually choosing data
classes, cut-off values and map colours for each of the
generated maps. We calculated Pearson product-moment
correlation coefficients (significance determined by linear
regressions) to test the linear association between the
number of organisms detected and the number of (i) stud-
ies conducted in a jurisdiction, (ii) ticks tested in a juris-
diction and (iii) organisms sought in a jurisdiction.

Results
Study characteristics
Seventy-eight studies were included in our final review
(Additional file 2) [4, 8, 15–90]. Eight studies included
blacklegged ticks from Canada and 72 studies included

samples from the US (two studies included Canadian
and US blacklegged ticks). In Canada, Ontario (n = 6)
was sampled the most frequently, followed by Nova Scotia
(n = 5) (Fig. 2). In the US, New York (n = 18) was sampled
the most frequently, followed by Wisconsin (n = 12), New
Jersey (n = 10), Connecticut (n = 9), Massachusetts (n = 7),
Pennsylvania (n = 7) and Rhode Island (n = 7) (Fig. 2).
Most Canadian studies did not provide details on the sub-
provincial regions where tick collection occurred; however,
the areas sampled most frequently were southern regions
of Ontario and Nova Scotia. In the US, counties that were
sampled the most were Dutchess (New York) (n = 11),
Westchester (New York) (n = 9), Monmouth (New Jersey)
(n = 6) and New London (Connecticut) (n = 6). No studies
included blacklegged ticks from Alabama, Kansas,
Missouri, Ohio, Oklahoma, South Dakota, Vermont or
West Virginia. From 2000 through 2007, three studies
were published per year (range = 2–4); from 2009 through
2015, 6.8 studies were published per year (range = 1–19).

Quality assessment
Twenty studies (26 % or 20 out of 78) met 100 % of
quality assessment criteria and an additional 44 studies
(56 %) met 75 % of criteria (Additional file 3). Thirty-
three studies (42 %) collected blacklegged ticks by drag-
ging or flagging; 21 (27 %) collected ticks from mammal
or bird hosts; 15 (19 %) used a combination of dragging
and animal collections; and nine (12 %) did not report
collection methods or employed other techniques. Thirty-
three studies (42 %) explicitly reported positive and negative
controls; four (5 %) reported negative controls only; 10
(13 %) reported positive controls only; and 31 (40 %)

Fig. 1 Literature search and study selection
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did not report any controls (Additional file 2). Six stud-
ies (38 % or six out of 16) included GenBank accession
numbers for gene sequenced PCR products where spe-
cies identification was indeterminate.

Descriptive analysis
Blacklegged ticks harbored 91 distinct taxa. Sixteen of
these organisms are tick-transmitted human pathogens;
the remainder is primarily gut or surface microbes of
blacklegged ticks and not transmittable to humans or
symbionts of blacklegged ticks (Table 1). The highest
number of organisms detected in the Canadian-sampled
blacklegged ticks were from Nova Scotia (n = 4; i.e. at
least four separate identifications of the organisms
sought in the ticks sampled), followed by three each in
Alberta, Manitoba, New Brunswick, Ontario and Prince
Edward Island (Table 2). US-sampled blacklegged ticks
harbored 91 organisms. The highest number of organ-
isms were detected in Connecticut (n = 42), followed by

New York (n = 36), Wisconsin (n = 9), Tennessee (n = 9),
Massachusetts (n = 8) and Pennsylvania (n = 8). Studies in
different jurisdictions sought varying numbers of pathogens
and often used various detection methods. The mean ± SE
number of studies per jurisdiction (4.2 ± 0.60; median = 3;
n = 78) was positively correlated (r = 0.77, n = 37, P <
0.0001) with the mean ± SE number of organisms de-
tected per jurisdiction (5.2 ± 1.09; median = 4; n = 78).
Similarly, the number of blacklegged ticks tested in a
jurisdiction (mean = 2,797 ± 1,022.6; median = 696) was
positively correlated with the number of organisms de-
tected per jurisdiction (r = 0.72, n = 37, P < 0.0001). In
the studies reviewed, researchers performed 149 unique
sampling events, where a sampling event is the testing
of blacklegged ticks for a specific organism in a specific
jurisdiction. The number of organisms sought per sam-
pling event (mean = 2.8 ± 0.29; median = 2; n = 149) was
positively correlated (r = 0.95, n = 149, P < 0.0001) with
the number of organisms detected per sampling event

Table 1 Summary of tick-borne, reportable pathogens and diseases for select provinces and statesa

Country (province
or state)

Arboviruses Anaplasma Babesia Bartonella Borrelia Ehrlichia Rickettsia

Canada

Ontario [120] Encephalitis
(primary viral)

NR NR NR Lyme disease
(B. burgdorferi)

NR NR

Manitoba [121] NR Anaplasmosis (A.
phagocytophilum)

Babesiosis
(Babesia spp.)

NR Lyme disease
(B. burgdorferi)

NR NR

Quebec [122] Encephalitis
(arthropod-
borne)

NR NR NR Lyme disease
(B. burgdorferi)

Ehrlichiosis
(E. chaffeensis)

NR

US

Illinois [123] Arboviruses Anaplasmosis Babesiosis NR Lyme disease Ehrlichiosis RMSF

Indiana [124] Encephalitis
(POWV)

A.
phagocytophilum

Babesiosis
(Babesia spp.)

NR Lyme disease
(B. burgdorferi)

Ehrlichiosis
(E. chaffeensis)

RMSF, other
spotted fevers
(Rickettsia spp.)

Michigan [125] Arboviral
encephalitides
(POWV)

Anaplasmosis (A.
phagocytophilum)

Babesiosis
(Ba. microti)

Cat-scratch fever
(Bartonella spp.)

Lyme disease
(B. burgdorferi)

Ehrlichia spp. Spotted fevers
(Rickettsia spp.)

Minnesota [126] Arboviral
disease (POWV)

Anaplasmosis (A.
phagocytophilum)

Babesiosis
(Babesia spp.)

Cat-scratch
disease
(Bartonella spp.)

Lyme disease
(B. burgdorferi)

Ehrlichiosis
(E. chaffeensis, E.
muris-like sp. and
E. ewingii)

RMSF, other
spotted fevers
(R. rickettsii),
Rickettsia spp.

New York [127] Arboviral
infection
(POWV)

Anaplasmosis (A.
phagocytophilum)

Babesiosis
(Babesia spp.)

NR Lyme disease
(B. burgdorferi)

Ehrlichiosis
(Ehrlichia spp.)

RMSF, other
spotted fevers
(R. akari, R. rickettsii)

Ohio [128] Arbovirus
(POWV)

Anaplasmosis Babesiosis NR Lyme disease Ehrlichiosis RMSF, other
spotted fevers
(Rickettsia spp.)

Pennsylvania [129] Arboviruses Anaplasmosis NR NR Lyme disease Ehrlichiosis RMSF,
rickettsialpox
(Rickettsia spp.)

Wisconsin [130] Arboviral
infection
(encephalitis,
meningitis)

Anaplasmosis Babesiosis NR Lyme disease Ehrlichiosis RMSF

aNR, not reportable; RMSF, Rocky Mountain spotted fever; POWV, Powassan encephalitis virus
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(mean = 2.3 ± 0.28; median = 2; n = 149). We performed
multiple tests on the same dataset, however, since these
P-values are very small, adjusting for multiple testing
would not alter the statistical significance of the results.
Thirty-two distinct organisms transmitted by ticks were

reported in the studies reviewed (Table 1). Five species of
Anaplasmataceae were detected; A. phagocytophilum was
most prevalent in Rhode Island (21.3 %; n = 684), Georgia
(17.3 %; n = 910), Connecticut (13.0 %; n = 454), Indiana
(10.8; n = 712), New York (8.9 %; n = 25,098), Michigan
(7.9 %; n = 444), Pennsylvania (6.5 %; n = 1,559) and Illi-
nois (6.5 %; n = 278) (Fig. 3; Table 1). Ehrlichia muris-like
sp. was restricted to Wisconsin (5.4 %; n = 4,066) and
Minnesota (3.0 %; n = 534) (Fig. 3). Blacklegged ticks har-
bored one Bartonellaceae species, Bartonella henselae,
which was only found in ticks from New Jersey (100 %;
n = 1), New York (2.3 %; n = 88) and Pennsylvania (3.1 %;
n = 544). Blacklegged ticks contained 12 Rickettsia taxa;
Rickettsia endosymbiont of Ixodes scapularis, a black-
legged tick obligate endosymbiont (non-pathogenic),

was the most prevalent taxa, particularly in Pennsylvania
(64.9 %; n = 94), Indiana (63.0 %; n = 100), Tennessee
(51.1 %; n = 47) and Maine (46.0 %; n = 100). Seven out
of 12 Rickettsia species were restricted geographically to
the Southern US and the known human pathogen Rickett-
sia parkeri was limited to Louisiana (16.6 %; n = 18). Ticks
sampled across all 78 studies contained six species of Bor-
relia. Borrelia burgdorferi was most prevalent in New
Hampshire (52.3 %; n = 509), Maine (49.1 %; n = 10,004),
Minnesota (47.2 %; n = 803), Indiana (45.3 % n = 506),
Michigan (39.5 %; n = 696), Illinois (33.9 %; n = 460) and
New York (31.6 %; n = 21,363). Borrelia miyamotoi was
most prevalent in Connecticut (4.7 %; n = 1,226), Indiana
(4.1 %; n = 487), Virginia (3.5 %; n = 173), Minnesota
(2.9 %; n =700), New Jersey (2.7 %; n = 765), Massachusetts
(2.5 %; n = 159) and Wisconsin (2.4 %; n = 3,151) (Fig. 3).
Blacklegged ticks harbored three Apicomplexan parasites;
Ba. microti was most prevalent in Connecticut (6.7 %; n =
1,198), New Jersey (6.5 %; n = 1.195) and Massachusetts
(5.3 %; n = 851) (Fig. 3). Several viruses were detected in

Fig. 2 Number of studies performed in each province or state from reviewed studies (2000–2015). No Data, no studies from these jurisdictions
were included in the review
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blacklegged ticks; however, only DTV and Powassan
virus (POWV) are of concern as human pathogens.
Deer tick virus/POWV was most common in New York
(3.4 %; n = 91) (Fig. 3). Pathogens sought for but not
detected in any samples included Coxiella burnetii
(New York, n = 88), Francisella tularensis (New York,
n = 374; Florida, n = 52; Georgia, n = 13) and Rickettsia
rickettsii (New York, n = 88) (Additional file 2).
Two of the studies reported 55 additional bacteria taxa,

common genera were Acinetobacter (Enterobacteriaceae),
Afipia (Alphaproteobacteria), Pseudomonas (Pseudomona-
daceae), Sphingomonas (Sphingomonadaceae) and Stenotro-
phomonas (Xanthomonadaceae) [19, 64]. While most of
the bacteria identified are commonly found in the environ-
ment (i.e., soil, water), some are associated with mammals,
such as E. coli, Shigella sp. and Streptococcus sp. These add-
itional bacteria are likely a part of the microbial community
(as commensal organisms or environmental contaminants)
of the blacklegged tick’s gut or surface and not necessarily
transmitted or maintained by blacklegged ticks.
The mandatory reporting requirements of pathogens

varied among the jurisdictions reviewed. Deer tick virus
is typically reportable as an arboviral infection in most
of the jurisdictions reviewed except for Manitoba
(Table 2). In Canada, anaplasmosis is reportable only in
Manitoba, yet reportable in all US states reviewed. In
Canada, babesiosis is reportable only in Manitoba, but in
all US states reviewed except Pennsylvania. Bartonellosis
was not reportable in any Canadian jurisdiction and re-
portable only in Michigan and Minnesota in the US.

Lyme disease (as B. burgdorferi) is reportable in all juris-
dictions reviewed; however, infection by other Borrelia
species is not. In Canada, only Quebec requires report-
ing of ehrlichiosis, but ehrlichiosis is reportable in all US
states reviewed. In Canada, rickettsial infections are not
reportable, but are reportable in all US states reviewed.

Discussion
Our systematic review of 78 North American studies
published since 2000 documented that blacklegged ticks
are associated with 91 distinct organisms. Sixteen of these
organisms are tick-transmitted human pathogens. The
remainder of the organisms are non-pathogenic gut or
surface biota (as commensal organisms or environmental
contaminants), intracellular symbionts of ticks or have un-
known pathologies in vertebrates. Blacklegged ticks are
the principal vectors of six of these human pathogens: A.
phagocytophilum, Ba. microti, B. burgdorferi, B. miyamo-
toi, DTV and Ehrlichia muris-like sp. Due to studies docu-
menting their proximity to, or detection in, Ontario, the
six pathogens represent the primary risks in the province,
with two presenting more immediate threats than others
due to their recent detection in parts of Ontario (i.e. A.
phagocytophilum, B. burgdorferi). Similar to our review,
20 human pathogens were reported from Europe’s sister
taxa to the blacklegged tick, Ixodes ricinus [91, 92]. Given
the blacklegged tick’s liberal feeding behavior and propen-
sity to bite humans, continued identification of black-
legged tick-pathogen relationships and assessing their
public health implications is justified.

Fig. 3 Distribution and crude prevalence for human pathogens transmitted by Ixodes scapularis in eastern North America (2000–2015).
a Anaplasma phagocytophilum, b Babesia microti, c Borrelia burgdorferi, d Borrelia miyamotoi, e DTV/POWV, f Ehrlichia muris-like
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Table 2 Distribution of Ixodes scapularis organisms in eastern
North America, from 78 studies reviewed (2000–2015)

Organism Jurisdiction where organism
detected (Canadian provinces and
US states)a

Tick-borne organisms

Alphaproteobacteria

Anaplasmataceae

Anaplasma phagocytophilumb,c Canada: AB, MB, NB, NL, NS, ON,
PE, QC, SK; US: CT, DE, GA, IL, IN,
MA, MD, ME, MI, MN, NC, ND, NH,
NJ, NY, PA, RI, SC, TN, VA, WI

Ehrlichia chaffeensisb US: NY

Ehrlichia ewingiib US: TN

Ehrlichia Panola Mountain sp.b US: TN

Ehrlichia muris-like sp.
(or E. sp. nr. muris)b

US: MN, WI

Bartonellaceae

Bartonella henselaeb US: NJ, NY, PA

Unidentified/uncharacterized
Bartonella spp.

US: MD, NJ, PA

Rickettsiaceae

Candidatus Rickettsia cooleyi
(or cooleyi-like)d

US: FL, GA, TN, TX

Candidatus Rickettsia IRS4 US: MA

Candidatus Rickettsia amblyommii US: TN

Rickettsia buchnerid US: MN

Rickettsia massiliae/Rickettsia sp.
Bar 29

US: NC

Rickettsia parkerib US: LA

Rickettsia peacockiid US: TX

Rickettsia endosymbiont of
Ixodes scapularisd

US: CT, IN, LA, MA, ME, NY, PA,
TN, WI

Rickettsia sp. Is-I US: GA

Rickettsia sp. TR-39 US: FL, GA

Unidentified/uncharacterized
Rickettsia spp.

US: MD, NC, TN

Wolbachia sp. US: CT

Spirochaetes

Spirochaetaceae

Borrelia andersoniib US: MI

Borrelia bissettiib US: LA

Borrelia burgdorferi s.s.b Canada: AB, MB, NB, NS, NL, ON, PE,
QC; US: AR, CT, DE, GA, IA, IL, IN, LA,
MA, MD, ME, MI, MN, NC, ND, NH,
NJ, NY, PA, RI, SC, TX, VA, WI

Borrelia kurtenbachiib Canada: NS; US: NY

Borrelia lonestarib US: AR, MA, NY

Borrelia miyamotoib Canada: AB, MB, NB, NS, ON, PE,
QC; US: CT, IA, IL, IN, MA, MD, ME,
MI, MN, NJ, NY, PA, RI, VA, WI

Table 2 Distribution of Ixodes scapularis organisms in eastern
North America, from 78 studies reviewed (2000–2015) (Continued)

Unidentified/uncharacterized
Borrelia sp.

US: NY

Piroplasmida

Babesiidae

Babesia microtib US: CT, MA, MD, ME, MN, NH, NJ,
NY, PA, WI

Babesia odocoilei US: IN, IL, ME, MI, MS, PA, TN, WI

Theileriidae

Theileria cervi US: TN

Viruses

Bunyaviridae

Blacklegged tick phlebovirus US: NY

South Bay virus US: NY

Flaviviridae

Deer tick virus (POWV lineage II)b US: CT, MA, NY, RI, WI

Powassan virus (POWV lineage I)b US: NY

POWV (not subtyped)b US: NY

Reoviridae

St. Croix River viruse US: WI

Other

Ixodes scapularismononegaviralese US: NY

Non-vector-borne, gut/surface
orgnaisms

Alphaproteobacteria

Bradyrhizobiaceae

Afipia broomeaef US: NY

Afipia felisf US: CT

Caulobacteraceae

Uncultured bacterium 1 US: CT

Uncultured bacterium 2 US: CT

Methylobacteriaceae

Methylobacterium mesophilicumf US: CT

Methylobacterium sp. strain G296-5 US: CT

Uncultured bacterium 3 US: CT

Sphingomonadaceae

Sphingomonas elodeaf US: CT

Sphingomonas melonisf US: CT

Sphingomonas sp. US: CT

Sphingomonas sp. strain BF2 US: CT

Sphingomonas sp. AV069 US: CT

Sphingopyxis alaskensis US: CT

Sphingobacterium sp. US: NY

Betaproteobacteria

Burkholderiaceae
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Blacklegged ticks transmit two of the Anaplasmataceae
bacteria reported in the review (i.e. A. phagocytophilum
and Ehrlichia muris-like sp.). The number of human
granulocytic anaplasmosis cases has increased in the US
from less than 200 cases in 1997 to over 2,700 cases in
2013, with most cases reported from Massachusetts,
Minnesota, New York and Wisconsin [93, 94]. Patients
infected with A. phagocytophilum display (in order of
decreasing incidence) malaise, fever, myalgia, headache,
arthralgia and nausea [95]. Anaplasma phagocytophilum
is relatively rare (< 0.5 %) in Ontario blacklegged ticks
and we are not aware of any anaplasmosis cases diagnosed
from the province [4]. Ehrlichia muris-like sp. is restricted
to Wisconsin and Minnesota; however, this pathogen has
not been widely tested for elsewhere. Little is known about
this pathogen; nevertheless, it has been identified in 73 pa-
tients from Indiana, Michigan, Minnesota, North Dakota
and Wisconsin (all cases reported tick-bite exposures from
Minnesota or Wisconsin) displaying fever, malaise, head-
ache and myalgia [96]. Considering A. phagocytophilum
is present in Ontario and the distribution of Ehrlichia
muris-like sp. is not well-characterized, awareness of
these pathogens by public health officials is warranted.
We expected a relatively high number of rickettsial

agents to be reported from blacklegged ticks, given the

Table 2 Distribution of Ixodes scapularis organisms in eastern
North America, from 78 studies reviewed (2000–2015) (Continued)

Burkholderia sp. US: CT

Ralstonia mannitolilyticaf US: NY

Comamonadaceae

Delftia acidovoransf US: CT

Delftia acidovorans WDL34f US: CT

Uncultured bacterium 4 US: CT

Uncultured bacterium 5 US: CT

Gammaproteobacteria

Enterobacteriaceae

Enterobacter asburiaef US: NY

Escherichia colif US: CT

Photorhabdus sp. US: NY

Raoultella sp. US: NY

Shigella sp. US: NY

Uncultured gamma
protebacterium

US: NY

Acinetobacter sp. strain phenon 4 US: CT

Acinetobacter sp. 1 US: CT

Acinetobacter sp. 2 US: NY

Pseudomonadaceae

Pseudomonas fluorescensf US: NY

Pseudomonas sp. 1 US: NY

Pseudomonas sp. 2 US: NY

Pseudomonas sp. 3 US: NY

Symbiont cf. Pseudomonas US: NY

Xanthomonadaceae

Stenotrophomonas maltophiliaf US: CT

Uncultured Stenotrophomonas sp. US: NY

Stenotrophomonas sp. US: NY

Actinobacteria

Mycobacteriaceae

Mycobacterium manitobensef US: CT

Nocardiaceae

Rhodococcus erythropolis
strain NVIf

US: CT

Rhodococcus sp. US: NY

Williamsia sp. US: NY

Propionibacteriaceae

Propionibacterium acnesf US: CT

Firmicutes

Bacillaceae

Bacillus sp. US: CT

Streptococcaceae

Uncultured Streptococcus sp. US: CT

Table 2 Distribution of Ixodes scapularis organisms in eastern
North America, from 78 studies reviewed (2000–2015) (Continued)

Unclassified Bacteria

Uncultured bacterium 6 US: CT

Uncultured bacterium 7 US: CT

Uncultured bacterium 8 US: CT

Uncultured bacterium 9 US: CT

Uncultured bacterium 10 US: CT

Uncultured bacterium 11 US: CT

Uncultured bacterium 12 US: CT

Uncultured bacterium 13 US: CT

Plastid clone US: CT

Uncultured bacterium 14 US: NY

Uncultured/unidentified bacterium US: NY
aCanada: AB, Alberta; MB, Manitoba; NB, New Brunswick; NL, Newfoundland;
NS, Nova Scotia; ON, Ontario; PE, Prince Edward Island; SK, Saskatchewan;
QC, Quebec. US: AR, Arkansas; CT, Connecticut; DE, Delaware; FL, Florida;
GA, Georgia; IL, Illinois; IN, Indiana; IA, Iowa; LA, Louisiana; ME, Maine;
MD, Maryland; MA, Massachusetts; MI, Michigan; MN, Minnesota; MS, Mississippi;
NH, New Hampshire; NJ, New Jersey; NY, New York; NC, North Carolina; ND, North
Dakota; PA, Pennsylvania; RI, Rhode Island; SC, South Carolina; TN, Tennessee; TX,
Texas; VT, Vermont; VA, Virginia; WI, Wisconsin
bKnown or putative human pathogen, B. andersoni [131]; B. bissettii [132];
B. kurtenbachii [133]; B. lonestari [134]; R. parkeri [91]
cBoth the Ap-ha strain (human disease strain) and the Ap-variant-1 strain were
pooled during data extraction, since not all studies distinguished between the two
dKnown or putative endosymbiont of Ix. scapularis
eLikely a viral genome integrated into I. scapularis genome [135, 136]
fHuman pathogen, but likely not transmitted by blacklegged ticks,
gut organisms
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extensive association of Rickettsia with hematophagous
invertebrates such as fleas (Siphonaptera) and other ticks
(Ixodidae, Argasidae) [91]. Human disease has not been
associated with the majority of rickettsial organisms
identified in this review; however, careful clinical and
epidemiological studies can lead to some of these being
identified as human pathogens (e.g. R. parkeri) [97]. Cur-
rently, there is no evidence demonstrating blacklegged
ticks as effective vectors of Rickettsia; however, further
investigation is justified where unexplained cases of
spotted fever occur with tick-bite histories.
The reviewed studies reported that blacklegged ticks

harbor six species of Borrelia, two of which are primarily
reported from blacklegged ticks (i.e. B. burgdorferi and B.
miyamotoi). Borrelia burgdorferi was widely distributed
throughout the range of the blacklegged tick (at least in
the ticks examined in these studies), including Ontario
(prevalence = 16 % of blacklegged ticks), with the highest
prevalence (> 30 %) in the Northeast and Midwest US.
Studies focusing solely on B. burgdorferi were not in-
cluded in review; therefore, caution must be used when
interpreting the prevalence of B. burgdorferi. Patients with
acute B. burgdorferi infection usually display erythema
migrans (bulls-eye rash), fever, myalgia, headache, arthral-
gia, neck stiffness and arthritis [98]. In Ontario, the Lyme
disease incidence rate has increased from 0.2 (2002) to 1.6
cases per 100,000 population (2014) [99]. Borrelia miyamo-
toi is a newly recognized human pathogen, which based on
the reviewed studies has a widespread distribution in North
America (Ontario prevalence < 0.5 %). Recently, 53 patients
with Lyme disease-like symptoms from Connecticut,
Massachusetts, New Jersey, New York and Rhode Island
showed serological evidence for B. miyamotoi infection
[100, 101]. Patients with B. miyamotoi disease display
fever, fatigue, headache, myalgia, chills and nausea [10,
102]. To our knowledge, B. miyamotoi disease has not
been diagnosed in Ontario. Since our literature search was
performed, a new blacklegged tick-transmitted Borrelia
has been associated with human disease in Wisconsin,
Candidatus Borrelia mayonii [103, 104]. Borrelia burgdor-
feri has rightfully been the Borrelia of concern to public
health; however, other Borrelia species are beginning to
emerge as additional threats to public health.
While the focus of this systematic review was organisms

of public health significance, it is important to note the
superficially benign microbes and symbionts associated
with blacklegged ticks. While outside the scope of this
review, the gut microorganisms of blacklegged ticks
can moderate the colonization of human pathogens in
blacklegged ticks, such as with B. burgdorferi [105,
106]. Several of the gut or surface bacteria (e.g. Steno-
trophomonas maltophilia and Rhodococcus erythropolis)
associated with opportunistic infections in humans, es-
pecially in immunocompromised individuals [107–109].

Our understanding of the role that symbionts play in
the biology of blacklegged ticks and the blacklegged
tick’s ability to transmit pathogens is poorly understood
and represents an opportunity for future research. Symbi-
onts, such as Rickettsia endosymbiont of Ixodes scapularis
and Wolbachia sp. (closely related to W. pipientis
supergroup A) were reported from the studies reviewed.
Wolbachia symbionts are involved in the manipulation of
arthropod reproduction (e.g. cytoplasmic incompatibility
and parthenogenesis) in other arthropods such as Dros-
ophila and parasitoid wasps [110]. Understanding how the
entire tick microbiome regulates pathogen acquisition and
transmission is a burgeoning field, undoubtedly providing
insights into potential blacklegged tick management op-
tions. In addition, a better understanding of Ix. scapularis
symbionts could lead to novel management tools.
In the reviewed studies, Ba. microti was most common in

blacklegged ticks collected from the Coastal Atlantic states
of the Northeast US. In the US, the number of babesiosis
cases has increased from approximately 1,100 (2011) to
1,800 (2013), with most cases reported from Connecticut,
Massachusetts, New Jersey and New York [94, 111]. Pa-
tients with babesiosis display fever, fatigue, headache, chills
and arthralgia [112]. While Ba. microti could eventually oc-
cupy the same distribution of B. burgdorferi, it will do so at
a slower rate due to several factors. For example, black-
legged tick transmission of Ba. microti to reservoir hosts is
not as efficient when compared to B. burgdorferi [113, 114].
In addition, the survival of Ba. microti is low in overwinter-
ing blacklegged tick nymphs when compared to B. burgdor-
feri [115]. Babesia microti has not been detected in Ontario
blacklegged ticks (in the published literature) or identified
as the cause of locally acquired disease, to our knowledge.
Deer tick virus (POWV lineage II) was the most

common viral agent detected in the studies reviewed,
a viral species serologically indistinguishable from POWV
(POWV lineage I) but with unique nucleotide and amino
acid sequences. In 2009, DTV was the cause of a fatal case
of encephalitis from New York, the first report implicating
DTV as an agent of human disease [116]. Soon after this
initial case report, additional cases were reported in New
York that displayed fever, malaise, confusion, seizure,
headache, rash and vomiting [117]. There is no evidence
for the presence of DTV in the Ontario’s blacklegged ticks;
however, field research is underway to determine its pres-
ence (Curtis B Russell, unpublished data).
Describing pathogens associated with blacklegged ticks is

only the first step towards appreciating the role of this tick
as North America’s most important vector of public health
significance. The majority of pathogens and intracellular
symbionts reported here have poorly understood natural
histories and, for the most part, we know little of their
maintenance in nature, their potential or preferred verte-
brate reservoirs and, in some cases, their ability to cause
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disease in vertebrates. While symbionts and non-human
pathogens are relatively benign, it is important to under-
stand their ecology as well, because they likely play roles in
determining the distribution and prevalence of the human
pathogens discussed through competitive exclusion [118].
In Ontario blacklegged ticks, only a handful of pathogens
have been sought after and there is an opportunity to better
understand their ecology (e.g. Babesia, Ehrlichia, Rickettsia,
DTV). Understanding the complex epidemiology of the hu-
man pathogens transmittable by blacklegged ticks will
require longitudinal, ecological (host and vector com-
petence) and epidemiological studies in endemic and
emerging areas.
While comprehensive, our systematic review does have

several limitations. We did not perform a search of the grey
literature (publications on testing results from public health
or government institutions); therefore, our results might be
biased towards primary research with positive results due
to publication bias. In Canada, blacklegged ticks collected
by passive surveillance were likely used in multiple studies
for pathogen detection; however, an examination of the
studies shows that overlap (same ticks used in separate
studies) involved only two studies each from 2007 through
2012 and was limited to the detection of A. phagocytophi-
lum and B. burgdorferi. Another limitation is that studies
were undertaken where pathogen prevalence or disease
burden are high, meaning prevalence does not represent a
uniform value across a province or state. The heterogeneity
among studies in terms of collection methods, blacklegged
tick stages assayed, engorgement levels of ticks, molecular
methods used or gene targets undoubtedly influenced the
crude prevalences we reported. For example, we expect that
ticks collected from reservoir hosts (pathogen acquisition
can also vary by host type and tick stage) would have a
higher pathogen load, compared to host-seeking ticks
collected by dragging. The number of organisms de-
tected in a jurisdiction is dependent upon sampling ef-
fort and testing methods; therefore, little-studied areas
may indeed hold more blacklegged tick- organisms.
The presence of pathogens in neighboring jurisdictions
or in Ontario itself provides the basis for assessing the
risks of blacklegged tick-transmitted infections in Ontario,
but this method does not allow for an accurate estimate of
when these pathogens will be a threat to Ontario. As far
as we know, blacklegged ticks transmit and maintain all
the underscored pathogens within a rodent-mammal-tick
cycle in temperate, mixed deciduous forests. Given the
pathogens share a common transmission cycle, these path-
ogens should eventually occur throughout the blacklegged
tick’s range. The review identified that most research has
occurred in relatively small geographic areas, representing
an opportunity to determine pathogen incidence and
prevalence outside of highly sampled regions. As research
continues to detect pathogens in blacklegged ticks and

reservoir hosts, we expect the number of pathogens to
increase. In addition, comprehensive studies, seeking
all possible pathogens using standardized methods, are
needed for better comparison of pathogen prevalence
across northeastern North America. Our review is the
first systematic assessment of literature, identifying and
bringing together the scattered knowledge of human
pathogens associated with the blacklegged tick.

Conclusions
Viewed as a mere pest until the mid-1970s, the blacklegged
tick was not known to transmit pathogens to humans or
other animals [119]. In the following 40 years, the black-
legged tick has turned into the most important vector in
North America. Our review has identified several human
pathogens besides B. burgdorferi that are transmittable by
blacklegged ticks, yet we have not demonstrated disease in
Ontario at this time for A. phagocytophilum, Ba. microti, B.
miyamotoi, DTV or Ehrlichia muris-like sp. While most of
these pathogens do not represent immediate public health
threats in Ontario, there is an opportunity to ensure mitiga-
tion efforts are in place prior to their arrival. The growing
public and physician awareness concerning Lyme disease
provides a catalyst upon which to synergize awareness of
other tick-borne diseases. In addition, surveillance of patho-
gens in field-collected blacklegged ticks will establish base-
line data and inform local risk assessments. Public health in
Ontario needs to remain vigilant because Ontario (i) has a
relatively higher population of at-risk people in Canada, (ii)
has blacklegged tick populations that continue to expand
and (iii) is positioned next to jurisdictions where these
pathogens occur.
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