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Abstract

Background: African trypanosomes are the causative agents of sleeping sickness in humans and nagana disease in
livestock animals. As the few drugs available for treatment of the diseases have limited efficacy and produce adverse
reactions, new and better tolerated therapies are required. Polyether ionophores have been shown to display anti-cancer,
anti-microbial and anti-parasitic activity. In this study, derivatives of the polyether ionophores, salinomycin and monensin
were tested for their in vitro activity against bloodstream forms of Trypanosoma brucei and human HL-60 cells.

Results: Most polyether ionophore derivatives were less trypanocidal than their corresponding parent compounds.
However, two salinomycin derivatives (salinomycin n-butyl amide and salinomycin 2,2,2-trifluoroethyl ester) were
identified that showed increased anti-trypanosomal activity with 50 % growth inhibition values in the mid nanomolar
range and minimum inhibitory concentrations of below 1 μM similar to suramin, a drug used in the treatment of
sleeping sickness. In contrast, human HL-60 cells were considerably less sensitive towards all polyether ionophore
derivatives. The cytotoxic to trypanocidal activity ratio (selectivity) of the two promising compounds was greater
than 250.

Conclusions: The data indicate that polyether ionophore derivatives are interesting lead compounds for rational
anti-trypanosomal drug development.
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Background
African trypanosomiasis is an infectious parasitic disease
of humans and animals of similar aetiology and epidemi-
ology. The causative agents of the disease are flagellated
protozoans of the genus Trypanosoma. The parasites are
transmitted by the bite of infected tsetse flies (Glossina
sp.) and live and multiply in the blood and tissue fluids
of their mammalian host. The distribution of trypano-
somiasis in Africa corresponds to the range of tsetse flies
and comprises an area of 8 million km2 between 14°N and
20°S latitude [1]. In this so-called tsetse belt, millions of
people and cattle are at risk of contracting the disease
[2, 3]. Throughout history, African trypanosomiasis has
severely repressed the economic and cultural develop-
ment of central Africa [4].

For treatment of African trypanosomiasis only a hand-
ful drugs are available. All the drugs are outdated, re-
quire parenteral administration, induce significant toxic
side effects, have limited efficacy and are being increas-
ingly subject to drug resistance [5–7]. Thus, there is an
urgent need for the development of new, more effective
and safer treatments for African trypanosomiasis.
In recent years, polyether ionophores have received

attention as promising anti-cancer candidate drugs [8].
However, compounds displaying anti-cancer activity
often also exhibit trypanocidal activity [9]. Recently it
has been shown that the ionophore salinomycin in-
hibits the growth of bloodstream forms of T. brucei in
vitro at sub-micromolar concentration [10]. Although
salinomycin was shown to be less toxic to human cells,
its selectivity (cytotoxic/trypanocidal ratio) was in a
moderate range (< 100) [10]. Therefore, we were inter-
ested whether chemical modification of polyether ion-
ophores, such as salinomycin and monensin, could
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lead to compounds with improved trypanocidal activity
and better selectivity.

Methods
Compounds
The synthesis of the twelve salinomycin derivatives
(Fig. 1) and the four monensin derivatives (Fig. 2) inves-
tigated in this study is described elsewhere [11–17].

Cell cultures
Bloodstream forms of T. brucei (clone 427-221a) [18] and
human myeloid leukaemia HL-60 cells [19] were grown in
Baltz medium [20] and RPMI medium [21], respectively.

Both culture media were supplemented with 16.7 % (v/v)
heat-inactivated foetal calf serum. All cultures were
maintained in a humidified atmosphere containing 5 %
CO2 at 37 °C.

Toxicity assays
Cells were seeded in 96-well plates in a final volume of
200 μl of their respective culture medium containing 10-
fold serial dilutions of ionophore derivatives (10-4 to 10-10

M) and 1 % DMSO. Wells containing medium and 1 %
DMSO served as controls. The initial cell densities were
1 × 104/ml for T. brucei and 1 × 105/ml for HL-60 cells.
After 24 h incubation at 37 °C in a humidified atmosphere

Fig. 1 Structure of salinomycin and its derivatives studied in this work
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containing 5 % CO2, 20 μl of a 0.44 mM resazurin solution
prepared in PBS was added and the cells were incubated
for a further 48 h so that the total incubation time was
72 h. Thereafter, the plates were read on a microplate
reader using a test wavelength of 570 nm and a reference
wavelength of 630 nm. The 50 % growth inhibition (GI50)
value, i.e. the concentration of a compound necessary to
reduce the growth rate of cells by 50 % compared to the
control was determined by linear interpolation according
to the method described in [22]. The minimum inhibitory
concentration (MIC) values, i.e. the concentration of the
drug at which all trypanosome and human cells were
killed, was determined microscopically. Each compound
was independently tested three times.

Measurement of changes in cell volume
Change in cell volume was determined by light scatter-
ing as previously described [10]. In brief, bloodstream
forms of T. brucei were seeded at a density of 5 × 107

cells/ml in 96-well plates in a final volume of 200 μl
culture medium containing 100 μM of salinomycin or
the salonimycin derivatives SAL-E7 or SAL-AM2 and
1 % DMSO. Absorbance of the cultures was measured at
490 nm every 15 min. A decrease in absorbance corre-
sponded to an increase in cell volume. The experiment
was repeated three times.

Results and discussion
It has been shown that chemical modification of poly-
ether ionophore not only can increase their anti-cancer
and anti-bacterial activity but also can reduce their
general cytotoxicity [23]. In addition, salinomycin and
monensin with modified carboxyl groups (esters or am-
ides) transport cations via an electrogenic or biomimetic
mechanism while the unmodified parent ionophores carry
cations across membranes always by an electroneutral
mechanism [6]. This change in ionophoretic properties
can lead to compounds with better biological activities.
Most salinomycin and all monensin derivatives tested in
this study were found to be less trypanocidal than their
parent compounds with MIC values of 10 μM and GI50
values of around 3 μM (Table 1). Only the salinomycin de-
rivatives SAL-E7 (2,2,2-trifluoroethyl ester) and SAL-AM2
(n-butyl amide) displayed increased trypanocidal activity
with MIC values ranging between 0.1–1 μM and GI50
values in the mid nanomolar range (Table 1). Notably,
both compounds exhibited similar trypanocidal activity
to suramin (MIC = 0.1 μM; GI50 = 0.035 ± 0.002 μM)
(Table 1), one of the drugs used in the treatment of
human African trypanosomiasis or sleeping sickness.
However, no obvious structure-activity relationship trend
could be detected. For example, while the n-butyl amide
derivative SAL-AM2 was 4.5 times more trypanocidal

Fig. 2 Structure of monensin and its derivatives studied in this work
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than salinomycin, the corresponding n-butyl ester deriva-
tive SAL-E4 was 17 times less trypanocidal than its parent
compound (Table 1).
The lack of any clear structure-activity relationship for

salinomycin derivatives raised the question whether the
two most active substances SAL-E7 and SAL-AM2 share
the same mechanism of action as their parent com-
pound. Previously it was shown that the trypanocidal
action of salinomycin was due to an influx of Na+-ions
which subsequently induced swelling of the cells [10].
Change in cell volume can be measured by light scatter-
ing at 450–550 nm whereby a decrease in absorbance
indicates swelling of cells. In order to be able to record
measurable absorbance changes, a high cell density is
required. However, since trypanosomes do not survive
for a very long time at high cell density in culture, a
much higher concentration of ionophores was needed
(100 μM) in order to produce fast enough cell swelling
[10]. Incubation of trypanosomes with SAL-E7 or SAL-
AM2 resulted in cell swelling similar to parasites treated
with salinomycin (Fig. 3). However, the derivatives caused
a slightly faster swelling of the cells than salinomyicn.

After 45 min incubation no further decrease in absorb-
ance was recorded indicating that the endpoint of the
swelling process induced by the derivatives was reached.
Trypanosomes treated with the parent compound salino-
mycin continued to swell until the end of experiment. In
contrast, when trypanosomes were incubated with deriva-
tives that were found to be less trypanocidal, a prompt
increase in absorbance was observed indicating an instant-
aneous shrinking of the cells (Fig. 3 and data not shown).
During further incubation, trypanosomes increased their
cell volume but cell swelling was much slower and much
less. These results indicate that salinomycin derivatives
with modified carboxyl group retain ionophoretic activity
but depending on the modification they may transport
cations more or less efficient across membranes. However,
it seems that the transport efficiency determines the trypa-
nocidal potency of salinomycin derivatives.
For determination of the general cytotoxicity of salino-

mycin and monensin derivatives, HL-60 cells were used
as reference because their sensitivity for approved trypa-
nocides is well established [24, 25]. All derivatives were
less cytotoxic towards HL-60 cells than their parent

Table 1 GI50 and MIC values and ratios of salinomycin and monensin derivatives for T. brucei and HL-60 cells

T. brucei HL-60 Selectivity

Compound MIC (μM)a GI50 (μM)b MIC (μM)a GI50 (μM)b MIC ratioc GI50 ratio
d

Salinomycin 1 0.18 ± 0.06 1 0.44 ± 0.21 1 2.4

SAL-E1 10 3.08 ± 0.18 100 35.5 ± 2.4 10 11.4

SAL-E2 10 3.25 ± 0.26 100 34.6 ± 1.9 10 10.6

SAL-E3 10 3.10 ± 0.21 100 33.8 ± 3.5 10 10.9

SAL-E4 10 3.12 ± 0.08 100 32.9 ± 2.5 10 10.5

SAL-E5 10 3.21 ± 0.02 100 38.4 ± 4.2 10 11.0

SAL-E6 10 3.01 ± 0.06 > 100 > 100 > 10 > 33

SAL-E7 0.1–1e 0.057 ± 0.029 100 16.4 ± 1.9 100–1000 288

SAL-AM1 10 3.23 ± 0.21 100 38.9 ± 3.2 10 12.0

SAL-AM2 0.1 0.040 ± 0.007 100 14.5 ± 1.3 1000 363

SAL-AM3 10 2.94 ± 0.20 100 7.92 ± 1.95 10 2.7

SAL-AM4 10 2.69 ± 0.51 100 24.5 ± 3.7 10 9.1

SAL-AM5 10 2.69 ± 0.20 100 39.2 ± 1.6 10 14.6

Monensin 0.1 0.029 ± 0.002 10 1.48 ± 0.56 100 51

MON-E1 10 3.06 ± 0.06 100 34.1 ± 2.2 10 11.1

MON-E2 10 2.76 ± 0.10 100 25.3 ± 5.0 10 9.2

MON-E3 10 1.68 ± 0.56 100 20.3 ± 3.1 10 12.1

MON-UR1 1 0.31 ± 0.06 100 23.3 ± 6.6 100 75

Suraminf 0.1 0.035 ± 0.002 > 100 > 100 > 1000 > 2857
aData shown are mean values of three independent experiments
bData shown are mean values ± SD of three independent experiments
cMIC ratio, MIC(HL-60)/MIC(T. brucei)
dGI50 ratio, GI50(HL-60)/GI50(T. brucei)
eAfter an incubation period of 72 h, in one of the three experiments a few motile trypanosomes were observed at a concentration of 0.1 μM (but none at 1 μM)
while in the two other experiments no motile parasites were found at that concentration. Thus, a range of 0.1–1 μM as MIC value was assigned
fReference control
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compounds with MIC values of 100 μM and GI50 values
ranging between 7.9–39 μM (Table 1). Compound SAL-
E6 did not affect HL-60 cells, even at 100 μM, indicating
that salinomycin 2,4-dinitrobenzyl ester displays no cyto-
toxicity (Table 1). Overall, the observed cytotoxic activities
of the salinomycin derivatives were in good agreement
with previously reported findings [11–13].
With the exception of SAL-AM3 (benzyl amide), the se-

lectivity indices (MIC and GI50 ratios) of salinomycin de-
rivatives were found to be better than those of the parent
compound salinomycin. Most derivatives had selectivity
indices of around 10 (Table 1). Compounds SAL-E7 and
SAL-AM2 had promising MIC and GI50 ratios of > 100
(Table 1). In contrast to salinomycin derivatives, the se-
lectivity indices of most monensin derivatives were found
to be inferior to the parent compound monensin (Table 1).
Only MON-UR1 (alkyl urethane) had MIC and GI50 ratios
similar to those of monensin (Table 1). By comparison,
drugs used for treatment of African trypanosomiasis have
much higher selectivity indices [24, 25]. For example, the
reference drug suramin displayed no toxicity towards HL-
60 cells with MIC and GI50 values greater than 100 μM.

Accordingly, the MIC and GI50 ratios for suramin were
> 1000 and > 2857, respectively (Table 1).
This study has shown that the polyether ionophores

can be modified into derivatives with improved trypano-
cidal and reduced cytotoxic activity. Two salinomycin
derivatives, SAL-E7 and Sal-AM2, were identified that,
in this respect, were superior to the parent compound.
In contrast to salinomycin, derivatization of monensin
did not result in compounds with increased trypanocidal
activity. One reason for this maybe that monensin itself
is already quite trypanocidal (about 6–10 times more
active than salinomycin) and, therefore, it might be diffi-
cult to improve its trypanocidal activity further by chem-
ical modification.

Conclusion
Both, SAL-E7 and SAL-AM2, match the activity criteria
for drug candidates for African trypanosomiasis (GI50 <
1 μM; selectivity > 100) [26]. However, it should be noted
that in this study a cancer cell line was used for determin-
ing selectivity and that, compared with non-malignant
cells, cytotoxicity of both compounds are therefore likely
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Fig. 3 Effect of salinomycin derivatives on the cell volume of bloodstream forms of T. brucei. Trypanosomes (5 × 107 cell/ml) were incubated with
100 μM salinomycin (closed circles), SAL-E7 (open circles), SAL-AM2 (open squares), SAL-E4 (open triangles), or SAL-AM1 (open diamonds) in culture medium.
Every 15 min, the absorbance at 490 nm was measured. Mean values ± SD of three experiments are shown. At the time points 30 and 45 min, the values
for SAL-E7 and SAL-AM2 were statistically significantly different from the values for salinomycin (P< 0.05). At the time points 15, 30, 45 and 60 min, the
values for SAL-E4 and SAL-AM1 were statistically significantly different from the values for salinomycin (P< 0.05). Note that a decrease in absorbance
corresponds to an increase in cell volume
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to be overestimated as has been shown for the parent
compound salinomycin. For example, the cytotoxicity of
salinomyicn in human peripheral blood mononuclear and
nasal mucosa cells was determined to be in the mid-
micromolar range with 50 % effective concentrations of 30
and 11 μM, respectively [10, 27]. Before developing any
salinomycin derivatives into trypanocides, animal experi-
ments should be carried out to establish the in vivo activ-
ity of the compounds.

Abbreviations
DMSO, dimethyl sulfoxide; GI50, 50 % growth inhibition; MIC, minimum
inhibitory concentration; PBS, phosphate-buffered saline
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