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Abstract

Background: The cloacal tapeworm Cloacotaenia megalops (Hymenolepididae) is one of the most common
cestode parasites of domestic and wild ducks worldwide. However, limited information is available regarding its
epidemiology, biology, genetics and systematics. This study provides characterisation of the complete
mitochondrial (mt) genome of C. megalops.

Methods: The complete mt genome of C. megalops was obtained by long PCR, sequenced and annotated.

Results: The length of the entire mt genome of C. megalops is 13,887 bp; it contains 12 protein-coding, 2 ribosomal RNA
and 22 transfer RNA genes, but lacks an atp8 gene. The mt gene arrangement of C. megalops is identical to that observed
in Anoplocephala magna and A. perfoliata (Anoplocephalidae), Dipylidium caninum (Dipylidiidae) and Hymenolepis
diminuta (Hymenolepididae), but differs from that reported in taeniids owing to the position shift between the tRNA (L1)
and tRNA (S2) genes. The phylogenetic position of C. megalops was inferred using Maximum likelihood and Bayesian
inference methods based on the concatenated amino acid data for 12 protein-coding genes. Phylogenetic trees showed
that C. megalops is sister to Anoplocephala spp. (Anoplocephalidae) + Pseudanoplocephala crawfordi + Hymenolepis spp.
(Hymenolepididae) indicating that the family Hymenolepididae is paraphyletic.

Conclusions: The complete mt genome of C. megalops is sequenced. Phylogenetic analyses provided an insight into the
phylogenetic relationships among the families Anoplocephalidae, Hymenolepididae, Dipylidiidae and Taeniidae. This
novel genomic information also provides the opportunity to develop useful genetic markers for studying the molecular
epidemiology, biology, genetics and systematics of C. megalops.
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Background
The cloacal tapeworm, Cloacotaenia megalops Nitzsch
in Creplin, 1829 (Cestoda: Hymenolepididae), is one of
the most common hymenolepidid tapeworms parasitis-
ing waterfowl, with a global distribution. The life-cycle

of this tapeworm is complex. Seed shrimpos (Ostracoda)
act as intermediate hosts and many waterfowl species
(including ducks, geese and swans) serve as definitive
hosts [1]. In China, C. megalops is considered as a pre-
dominant cestode species in ducks and geese [2, 3].
Comparison of entire mitochondrial (mt) genomes has

been used for reconstructing phylogenetic relationships
among parasitic Platyhelminthes [4, 5], including ces-
todes [6–11]. Cestode mt genomes usually encode 36
genes, including 12 protein-coding genes, 2 ribosomal
RNA (rRNA) genes and 22 transfer RNA (tRNA) genes
[6–11]. Cestoda is a large class of parasitic flatworms
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with many species representing a health danger for ani-
mals and humans worldwide. Despite the availability of
advanced DNA technologies and bioinformatic methods,
there is still a paucity of knowledge of mt genomes for
many tapeworms of socioeconomic importance, such as
the members of the family Hymenolepididae. Although
complete mt genomes are available for Hymenolepis
diminuta [8], H. nana (=Rodentolepis nana or Vampiro-
lepis nana) [9], and Pseudanoplocephala crawfordi [10],
no mt genomes are available from the genus Cloacotae-
nia. Furthermore, little is known about the epidemi-
ology, genetics and biology of the type-and only species
of this genus, C. megalops.
The taxonomic status of C. megalops has been

controversial for many years, and is still debated.
Czaplinski & Vaucher [12] considered Cloacotaenia a
synonym of Hymenolepis but Makarikov et al. [13]
have recently restored the independent status of the
genus Cloacotaenia based on remarkable morpho-
logical differences between C. megalops and Hymeno-
lepis (sensu stricto). To tackle these issues, in the
present study, the complete mt genome of C. mega-
lops was determined and its phylogenetic relation-
ships with selected cestode species were inferred
based on analysis of the concatenated mt amino acid
sequences.

Methods
Parasites and DNA extraction
Cloacotaenia megalops were collected from the cloaca of
ducks from a small abattoir in Xinjiang Uygur Autono-
mous Region, China. The adult tapeworm was isolated
from cloaca of a duck. Cestode identification was con-
ducted by morphological criteria including the features
of the scolex and mature and gravid proglottids [14]; the
scolex was observed in stereoscan photographs and ma-
ture and gravid proglottids were examined after
hematoxylin staining. The remaining fragment was fixed
in 70 % alcohol and stored at -20 °C until use. Total gen-
omic DNA was extracted from one of these specimens
using Tissue DNA Kit (OMEGA, Doraville, USA) ac-
cording to the manufacturer’s instructions.

PCR amplification and sequencing
Three pairs of PCR primers (Additional file 1: Table S1)
were designed based on well-conserved regions within the
mt genomes of tapeworms [6, 7]. These primers were used
to amplify three overlapping segments of the complete mt
genome of C. megalops by long PCR technology. Long
PCR reactions (50 μl) were conducted in 5.0 μl 10× LA
Mixture (Takara), 10 pmol of each primer (1 μl), 1.5 μl of
DNA sample and 41.5 μl of H2O in a thermocycler
(Eppendorf, Hamburg, Germany) under the following
conditions: 94 °C for 5 min (initial denaturation), followed

by 35 cycles of 98 °C for 10 s (denaturation), 50 °C for 20 s
(annealing), and 68 °C for 8 min (extension), and with a
final extension step at 68 °C for 10 min. Amplicons were
examined on 0.8 % agarose gels stained with ethidium
bromide. PCR products were subsequently sent to Sangon
Biotech Co. Ltd. (Shanghai, China) for sequencing using a
primer-walking strategy.

Sequence analyses
Sequences were assembled using CAP3 Server online.
The complete mt genome of C. megalops was aligned
against the complete mt genome sequences of H. dimin-
uta and A. perfoliata using the computer program
MAFFT 7.122 [15] to identify gene boundaries. Each
gene was translated into its amino acid sequence using
the flatworm mt genetic code (Translation table 9) in
MEGA 5 [16]. The translation start and stop codons
were identified based on the similarity of the gene
lengths and usual codons between H. diminuta and A.
perfoliata mt genomes. Twenty-two tRNA genes were
predicted using the program tRNAscan-SE [17] and then
confirmed by recognizing anticodon sequences and po-
tential secondary structures by visual inspection, and
two rRNA genes were identified by comparison with that
of H. diminuta and A. perfoliata [7, 8].

Phylogenetic analyses
A total of 20 tapeworm species were selected for phylo-
genetic analyses using one trematode Schistosoma japo-
nicum (GenBank accession number NC_002544) as the
outgroup [18]. The 12 amino acid sequences of protein-
coding genes were aligned independently using MAFFT
7.122. Ambiguously aligned sites and regions were ex-
cluded using Gblocks (http://molevol.cmima.csic.es/cas-
tresana/Gblocks_server) [19]. Phylogenetic analyses were
performed using Bayesian inference (BI) and Maximum
likelihood (ML) methods. The Akaike information criter-
ion as implemented in ProtTest 2.4 [20] was used to
choose the most suitable model of evolution. BI was per-
formed in MrBayes using the MtArt + I + G + F model of
evolution. BI was set up to perform two runs, each of
four simultaneous chains for the Monte Carlo Markov
Chain. In each run, the number of generations was set
to 1,000,000 and a tree was sampled every 100 genera-
tions in MrBayes 3.1.1 [21]; the average standard devi-
ation of split frequencies of less than 0.01 and the
potential scale reduction factor approaching 1 were used
to ensure the convergence of the two runs. The first
25 % of the trees were discarded as ‘burn-in’. A 50 %
majority rule consensus tree was used to calculate
Bayesian posterior probabilities (Bpp). ML analysis was
conducted using PhyML 3.0 [22]. A BioNJ tree was used
as a starting tree to search for the ML tree with the
MtArt + I + G model of evolution. The subtree pruning
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and regrafting method was chosen. The middle of each
discretized substitution rate class was determined using
the median. ML analyses were checked on the basis of
100 bootstrap replicates (Bf ). Phylograms were drawn
using the program FigTree v.1.4 (http://tree.bio.ed.ac.uk/
software/figtree).

Results and discussion
Features of the C. megalops mt genome
The complete mt genome of C. megalops is a 13,887 bp
(KU641017) long circular DNA molecule (Fig. 1). All 36
genes expected for tapeworm mt genomes have been
identified. This AT rich (71.6 %) mt genome includes 12
protein-coding genes (atp6, cox1–3, cytb, nad1–6 and
nad4L), 22 tRNA genes and two rRNA genes, but lacks
an atp8 gene (Table 1). Thirty-six mt genes are tran-
scribed from the same direction (Fig. 1). The size of C.
megalops mt genome is similar to other tapeworm mt
genomes, such as H. diminuta (13,900 bp) [8], H. nana
(13,764 bp) [9] and P. crawfordi (14,192 bp) [10]. The
mt gene arrangement of C. megalops is identical to that
in Anoplocephala magna and A. perfoliata (Anoploce-
phalidae), Dipylidium caninum (Dipylidiidae) and Hyme-
nolepis diminuta (Hymenolepididae), but differs from
that in taeniids owing to the position shift between the
tRNA (L1) and tRNA (S2) genes. The nucleotide com-
position of the entire mt genome of C. megalops is A =
26.4 %, T = 45.2 %, G = 18.7 % and C = 9.7 %.

Annotation
A total of 3352 amino acids are encoded in the C. mega-
lops mt genome. The aggregate length of all of the 12
protein-coding genes is 10,092 bp. In terms of the length
of individual protein-coding genes, cox1 gene is the lar-
gest (1593 bp) and nad4L gene is the shortest (261 bp).
In this mt genome, all protein-coding genes use ATG as
start codon (Table 1). All protein-coding genes have
complete termination codons (TAA and TAG) (Table 1).
However, some studies have indicated that the
incomplete termination codons T or TA are present in
the protein-coding genes of some tapeworm mt genomes
[7, 23]. A total of 22 tRNA (ranging from 56 to 72 nucle-
otides in length) genes were identified. Their predicted
secondary structures (not shown) are similar to those in
H. diminuta and A. perfoliata [8]. The tRNA-Cys gene
separates rrnL from rrnS. The size of the rrnL gene is
959 bp and the size of the rrnS gene is 722 bp (Table 1).
One larger non-coding region (NC2; 446 bp) is located
between the tRNA-Gly and cox3 genes, and one
shorter non-coding region (NC1; 221 bp) is located
between the tRNA-Tyr and tRNA-Ser genes (Table 1;
Fig. 1). In the NC1 region, there were two sets of
short inverted repeats and one set of long inverted
repeats (33 bp), each of them could be folded into a
stem-loop hairpin structure (Additional file 2: Figure
S1A). The NC2 region consists of six identical tan-
dem repeats with 31 bp sequences (Additional file 2:
Figure S1B). Similar stable hairpin structures and tan-
dem repeats in C. megalops may play the same role
as those in vertebrates, which have been shown to
initiate replication and transcription [24].

Sequence comparisons
Pairwise comparisons of C. megalops mt protein-coding
genes with those of three other hymenolepidid tape-
worms revealed 12.9–35.3 % differences in the nucleo-
tide sequences, and 10.6–43.6 % differences in amino
acid sequences (Table 2). Among twelve protein-coding
genes, cox1 and cytb genes were relatively conserved
whilst nad5 and nad6 genes were the most different in
all four species (Table 2). These results are useful to de-
sign primers to capture high sequence variability within
and between mt genes of these species as genetic
markers for population genetics and diagnostics.

Phylogenetic analyses
Phylogenetic analyses showed three distinct groups with
high statistical support (Bpp = 1.0; Bf = 98 %) with C.
megalops as a sister taxon to Anoplocephala spp. (Ano-
plocephalidae) + P. crawfordi +Hymenolepis spp. (Hyme-
nolepididae) (Fig. 2), indicating that the family
Hymenolepididae is paraphyletic. The result is consistent
with the maximum likelihood analysis in the study by

Fig. 1 The organization of mitochondrial genome of Cloacotaenia
megalops. All genes are transcribed in the same direction and the 22
tRNA genes are shown by a single-letter abbreviation of their corre-
sponding amino acid. The two leucine tRNA genes are designated by
L1 (CUN) and L2 (UUR), respectively, and two serine tRNA genes by S1
(AGN) and S2 (UCN), respectively. Gene scaling is only approximate
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von Nickisch-Rosenegk et al. [25] in which 12S rDNA
data of a wider set of taxa representing a larger number
of families. The families Taeniidae, Anoplocephalidae
and Diphyllobothriidae were monophyletic with max-
imum support in all analyses (Bpp = 1.0; Bf = 100 %)
(Fig. 2), in agreement with previous studies [7, 9, 26]. In

addition, our results show that H. diminuta is more
closely related to P. crawfordi than to H. nana (Fig. 2).
In this study, the phylogenetic tree revealed that C.

megalops is distantly related to the genus Hymenolepis,
supporting the view of Makarikov et al. [13] who pre-
ferred to retain the independent status of Cloacotaenia

Table 1 Organization of Cloacotaenia megalops mitochondrial genome

Gene/region Position Size (bp) Start codon Stop codon

cox1 1–1593 1593 ATG TAA

tRNA-Thr (T) 1574–1637 64 – –

rrnL 1638–2596 959 – –

tRNA-Cys (C) 2597–2660 64 – –

rrnS 2661–3382 722 – –

cox2 3383–3961 579 ATG TAG

tRNA-Glu (E) 3963–4029 67 – –

nad6 4033–4482 450 ATG TAA

tRNA-Tyr (Y) 4487–4548 62 – –

Non-coding region (NC1) 4549–4759 211 – –

tRNA-SerUCN (S2) 4760–4824 65 – –

tRNA-LeuCUN (L1) 4841–4904 64 – –

tRNA-LeuUUR (L2) 4907–4971 65 – –

tRNA-Arg (R) 4972–5027 56 – –

nad5 5031–6602 1572 ATG TAA

tRNA-Gly (G) 6609–6680 72 – –

Non-coding region (NC2) 6681–7126 446 – –

cox3 7127–7780 654 ATG TAG

tRNA-His (H) 7771–7837 67 – –

cytb 7841–8932 1092 ATG TAG

nad4L 8936–9196 261 ATG TAA

nad4 9157–10,410 1254 ATG TAG

tRNA-Gln (Q) 10,411–10,473 63 – –

tRNA-Phe (F) 10,475–10,533 59 – –

tRNA-Met (M) 10,532–10,596 65 – –

atp6 10,600–11,115 513 ATG TAG

nad2 11,121–11,999 879 ATG TAG

tRNA-Val (V) 12,009–12,072 64 – –

tRNA-Ala (A) 12,073–12,135 63 – –

tRNA-Asp (D) 12,149–12,211 63 – –

nad1 12,215–13,105 891 ATG TAG

tRNA-Asn (N) 13,105–13,169 65 – –

tRNA-Pro (P) 13,184–13,247 64 – –

tRNA-Ile (I) 13,248–13,308 61 – –

tRNA-Lys (K) 13,320–13,384 65 – –

nad3 13,388–13,741 354 ATG TAG

tRNA-SerAGN (S1) 13,749–13,809 61 – –

tRNA-Trp (W) 13,820–13,884 65 – –
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based on the morphological characteristics. The present
results also suggest that Pseudanoplocephala crawfordi
is a member of the genus Hymenolepis as shown in pre-
vious studies [10, 27]. Hymenolepis nana is one of the
most common tapeworms infecting humans and ro-
dents. However, there is confusion regarding the

nomenclature of this species [28]. A taxonomic revision
of hymenolepidids with armed rostellae was suggested
by Vaucher [29] in which Hymenolepis nana was
regarded as a member of the genus Rodentolepis. This
classification is currently accepted by some cestode tax-
onomists [12]. Despite the nomenclature being revised,

Table 2 Nucleotide and/or deduced amino acid (aa) sequence differences of the protein-coding and two ribosomal RNA genes of
the mt genomes of Cloacotaenia megalops (CM), Hymenolepis nana (HN), Hymenolepis diminuta (HD) and Pseudanoplocephala craw-
fordi (PC)

Gene/
region

Nucleotide length (bp) Nucleotide difference (%) Number of aa aa difference (%)

CM HN HD PC CM vs
HD

CM vs
HN

CM vs
PC

HN vs
HD

HN vs
PC

HD vs
PC

CM HN HD PC CM vs
HN

CM vs
HD

CM vs
PC

HN vs
HD

HN vs
PC

HD vs
PC

atp6 513 516 516 516 30.0 30.2 30.4 26.9 28.2 21.9 170 171 171 171 27.5 29.2 30.4 30.4 32.7 33.1

nad1 891 894 891 891 25.6 25.7 25.8 21.7 19.8 16.4 296 297 296 296 23.6 25.7 25.0 18.9 18.2 12.2

nad2 879 885 882 897 31.7 32.1 32.3 27.0 27.1 24.7 292 294 293 298 37.7 39.4 41.4 34.5 35.6 24.7

nad3 354 348 348 348 31.3 29.0 28.2 25.3 27.3 21.8 117 115 115 115 36.5 38.3 37.4 22.6 29.6 19.1

nad4 1254 1209 1230 1230 31.1 33.4 32.4 29.6 33.9 25.5 417 402 409 409 33.3 36.9 35.9 32.7 34.2 25.4

nad4L 261 261 261 261 27.6 26.4 27.6 20.7 20.3 16.1 86 86 86 86 30.2 32.6 29.1 20.9 21.9 19.8

nad5 1572 1575 1575 1575 31.7 35.3 34.2 31.2 31.7 25.9 523 524 524 524 33.3 38.6 34.1 35.4 36.6 26.1

nad6 450 459 459 459 34.0 33.6 32.7 32.2 30.3 24.6 149 152 152 152 42.3 43.2 43.6 39.1 39.7 24.3

cox1 1593 1584 1552 1582 23.2 23.4 22.4 20.6 19.4 17.3 530 527 517 527 15.9 18.6 16.7 16.3 16.2 10.6

cox2 579 573 579 579 26.3 27.7 26.9 26.4 28.3 18.3 192 190 192 192 21.9 26.8 24.5 26.3 28.4 13.0

cox3 654 645 651 651 32.0 31.7 30.7 29.8 30.1 20.5 217 214 216 216 41.6 42.5 38.3 34.6 31.3 26.4

cytb 1092 1098 1098 1095 25.3 23.8 25.4 23.0 23.4 20.3 363 365 365 364 22.9 20.9 23.8 17.3 20.9 15.7

rrnS 722 710 709 724 18.7 19.8 20.5 16.5 17.0 12.9 – – – – – – – – – –

rrnL 959 967 967 963 23.3 20.7 24.0 21.8 23.2 19.2 – – – – – – – – – –

Fig. 2 Phylogenetic relationships among 19 species of tapeworms. Phylogenetic tree was inferred by Bayesian inference and Maximum likelihood
analysis from deduced amino acids of 12 protein-coding genes using Schistosoma japonicum as the outgroup. Bayesian posterior probability
(Bpp) and bootstrapping frequency (Bf) values are shown at nodes
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the name H. nana persists in textbooks and medical
papers [30]. Additionally, whether the Anoplocephali-
dae should be nested among species of the Hymeno-
lepididae should also be rigorously evaluated in
further studies based on more extensive taxon sam-
pling of hymenolepidids. This will also help a better
understanding of the evolution of hymenolepidid ces-
todes and a re-evaluation of the morphological traits
employed in their systematics.

Conclusions
The complete mt genome of C. megalops is charac-
terised. Phylogenetic analyses of the concatenated amino
acid sequence dataset for 12 protein-coding mt genes of
C. megalops and selected cestode representatives indi-
cated that the family Hymenolepididae is paraphyletic.
This mt genome provides a unique genetic marker for
studying the molecular biology, genetics and systematics
of C. megalops.

Additional files

Additional file 1: Table S1. Primers used to amplify PCR fragments for
Cloacotaenia megalops. (DOC 37 kb)

Additional file 2: Figure S1. Putative secondary structures for the two
non-coding regions in Cloacotaenia megalopsmtDNA. The NC1 (A) consists of
two identical repeats of 34 nt shown in the box. The NC2 region (B) consists
of six identical tandem repeats of a 31 nt sequence and part of the seventh
repeat (10 nt). Arrows represent inverted repeats. (DOC 330 kb)
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