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Abstract

The worldwide resurgence of bed bugs [both Cimex lectularius L. and Cimex hemipterus (F.)] over the past two
decades is believed in large part to be due to the development of insecticide resistance. The transcriptomic and
genomic studies since 2010, as well as morphological, biochemical and behavioral studies, have helped insecticide
resistance research on bed bugs. Multiple resistance mechanisms, including penetration resistance through
thickening or remodelling of the cuticle, metabolic resistance by increased activities of detoxification enzymes
(e.g. cytochrome P450 monooxygenases and esterases), and knockdown resistance by kdr mutations, have been
experimentally identified as conferring insecticide resistance in bed bugs. Other candidate resistance mechanisms,
including behavioral resistance, some types of physiological resistance (e.g. increasing activities of esterases by point
mutations, glutathione S-transferase, target site insensitivity including altered AChEs, GABA receptor insensitivity and
altered nAChRs), symbiont-mediated resistance and other potential, yet undiscovered mechanisms may exist. This
article reviews recent studies of resistance mechanisms and the genes governing insecticide resistance, potential
candidate resistance mechanisms, and methods of monitoring insecticide resistance in bed bugs. This article provides
an insight into the knowledge essential for the development of both insecticide resistance management (IRM) and
integrated pest management (IPM) strategies for successful bed bug management.
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Background
Chemical control remains the most important and widely
used strategy against most insect pests around the world.
However, studies have shown that multiple resistance
mechanisms in insects confer resistance to a range of
insecticide classes [1–7]. Recently, researchers have used
new techniques and advances in genomic research (e.g.
transcriptomic sequencing and whole-genome sequencing)
to identify the mechanisms that govern insecticide resist-
ance in bed bugs (Table 1). Previous bioassay, genetic,
morphological, biochemical and behavioral studies, also
have made significant progress in the understanding of bed
bug insecticide resistance mechanisms such as penetration
resistance, metabolic resistance and knockdown resistance.

This review focuses on resistance to different insecticide
classes and the underlying mechanisms in bed bugs. Other
potential candidate resistance mechanisms in bed bugs are
also reviewed.

Bed bugs
The common bed bug Cimex lectularius L. and the tropical
bed bug C. hemipterus (F.) (Hemiptera: Cimicidae) are two
cryptic and nocturnal ectoparasites that have adapted to
feed on human blood [8, 9]. Cimex lectularius is most
prevalent in temperate regions, whereas C. hemipterus is
found mainly in tropical and subtropical regions [8, 10].
However, there is overlap in the regions where both species
can be found, such as Thailand [11, 12], Africa [13, 14],
Australia [15–17] and more recently in Florida, USA [18].
Approximately 70% of people who are bitten by C. lectular-
ius experience allergic reactions ranging from mild to se-
vere, including itchiness, erythematous rash, or urticaria

* Correspondence: chowyang@usm.my; chowyang@mac.com
1Urban Entomology Laboratory, Vector Control Research Unit, School of
Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Dang et al. Parasites & Vectors  (2017) 10:318 
DOI 10.1186/s13071-017-2232-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-017-2232-3&domain=pdf
mailto:chowyang@usm.my
mailto:chowyang@mac.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


[19–22], although fewer people react on initial exposure.
For C. hemipterus, the percentage of the population that
produces a clinical reaction is unknown, with described
skin reactions including the formation of papular lesions

with associated itch, which resolve around 1 h after the bite
[23]. In addition, scratching may lead to secondary bacterial
infections such as cellulitis, impetigo, ecthyma, and lym-
phangites [10, 21]. Only a small number of people may

Table 1 Progress in morphological, behavioral, biochemical, bioassay, and genetic characterization of insecticide resistance
mechanisms in bed bugs (Cimex spp.)

Year Characterization Targets Methods Accession numbera Resistance mechanisms Reference

C. lectularius

2009 Behavioral – Bioassay: SC – Behavioral resistance [89]

2009;
2015;2016

Bioassay P450s;
esterases

Bioassay (SC/T)
plus synergists
(e.g. PBO, PBH, EN16/5–1)

Metabolic resistance: P450s,
esterases

[127, 128,
136]

2008;
2011;
2016

Biochemical P450s; GSTs;
esterases

Biochemical assays – Metabolic resistance: P450s,
GSTs and esterases

[64, 113,
156]

2016 Morphological Cuticle SEM – Penetration resistance [95]

2008 Genetic VGSC Cloning and sequencing
(RACE)

FJ031996; FJ031997 Target site insensitivity: kdr [156]

2011 Genetic Transcriptome 454 pyrosequencing
(Roche 454 GS FLX
Titanium platform)

SRA024509 Metabolic resistance: P450s [104]

2011 Genetic Transcriptome High-throughput
sequencing
(Roche 454
Titanium platform)

SRA043735 Metabolic resistance: P450s,
GSTs and esterases; Target site
insensitivity: kdr

[113]

2012 Genetic RNA-seq Illumina high-throughput
sequencing (GAII platform)

GSE31823 Metabolic resistance: P450s,
GSTs, ABC-transporters, ester-
ases; Penetration resistance;
Target site insensitivity: kdr

[92]

2012 Genetic ClCPR Cloning and sequencing
(RACE)

JQ178363 Metabolic resistance: P450s [122]

2012 Genetic ClAChE1;
ClAChE2;
ClSChE

Cloning and sequencing
(RACE)

JN563927;
GU597837;GU597838;GU597839

– [168]

2013 Genetic CPRR Data from NCBI – Penetration resistance [94]

2013 Genetic Transcriptome 454 pyrosequencing
(Roche 454 GS FLX
Titanium platform)

– Metabolic resistance: P450s,
esterases, ABC-transporters;
Penetration resistance; Target
site insensitivity: kdr

[90]

2016 Genetic Genome Illumina high-throughput
sequencing
(Illumina HiSeq2000s)

SRS580017 Metabolic resistance: P450s,
esterases, ABC-transporters,
GSTs; Penetration resistance;
Target site insensitivity: kdr

[197]

2016 Genetic Genome;
RNA-seq

Illumina high-throughput
sequencing

SRS749263; SRR1790655 Target site insensitivity: kdr,
putative GABA receptors;
Metabolic resistance:P450s,
GSTs, esterases

[93]

C. hemipterus

2011 Bioassay P450s Bioassay (SC) plus PBO – Metabolic resistance: P450s [129]

2007 Biochemical P450s; GSTs;
Esterases

Biochemical assays – Metabolic resistance: GSTs,
and esterases

[56]

2015 Genetic VGSC(Part) Sanger sequencing – Target site insensitivity: kdr [17]

Abbreviations: EN16/5–1 6-[2-(2-butoxyethoxy) ethoxymethyl]-5-propyl-2, 3-dihydrobenzofuranby [127], PBH 3-Phenoxybenzyl hexanoate, a surrogate substrate for
carboxylesterases and oxidases [136], SC surface contact, T topical application, SEM scanning electron microscope, ClCPR Cimex lectularius NADPH-cytochrome
P450 reductase [122], CPRR cuticular protein with the rebers and riddiford consensus [94], ClAChE1, ClAChE2 two C. lectularius acetylcholinesterases, ClSChE C.
lectularius salivary gland-specific cholinesterase-like protein [168], RACE rapid amplification of cDNA ends, ABC-transporters ATP-binding cassette (ABC) transporters
aData from GenBank at NCBI (National Center for Biotechnology Information)
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have no visible effect after repeated bed bug bites, and this
lack of response may depend on previous exposure,
although some people never develop a reaction despite
multiple bites over time [24, 25]. Controlled laboratory
studies have shown that bed bugs are capable of
transmitting Trypanosoma cruzi (the etiological agent
of Chagas disease) and Bartonella quintana (the etio-
logical agent of trench fever) [26, 27]. However, to
date there is no evidence to support the premise that
bed bugs transmit these or other pathogens to
humans in their natural habitat [10, 19, 21, 27].
Bed bugs have a long association with humans and were

widespread and common world wide before World War II
[9]. Soon thereafter, modern insecticides such as the organo-
chlorine dichloro-diphenyl trichloroethane (DDT) were dis-
covered and became a fast and an inexpensive method to
control insect pests, including bed bugs. As a consequence,
bed bugs gradually became uncommon, especially in
economically developed countries, in the latter half of the
twentieth century [9, 21, 28]. Unfortunately, over the last
15–20 years bed bugs have made a resurgence around the
world with multiple reports of their comeback in the
published literature, and popular main stream and social
media (Table 2). Recent bed bug infestations have been
reported from hotels, motels, homes and apartment
complexes, cinemas, offices, retail outlets, public transpor-
tation, commercial flights, schools, and healthcare facilities
(including neonatal units) [21, 28, 29]. Several factors, such
as an increase in local and international travel, frequent
exchange of second-hand items, poor pest management
and insecticide resistance, have been suspected to be
amongst the factors contributing to the global resurgence
of bed bugs. Nevertheless, insecticide resistance has largely
been incriminated as the main reason for the comeback of
these nuisance pests [30].

Insecticide resistance in bed bugs
Insecticide resistance is defined by the Insecticide Resist-
ance Action Committee (IRAC) [31] as ‘a heritable change
in the sensitivity of a pest population that is reflected in
the repeated failure of a product to achieve the expected
level of control when used according to the label recom-
mendation for that pest species’. In other words, it is an
inherited ability of a population to survive a lethal concen-
tration of an insecticide product that would normally kill
a wild population. This is due to alleles that confer appro-
priate resistance factors, which subsequently increase in
frequency in response to insecticide selection pressure.
However, insecticide resistance is not to be confused with
insecticide tolerance. Unlike insecticide resistance, the
latter is the natural ability to withstand insecticide action,
and is not the result of genetic changes caused by the
insecticide selection pressure [32].

DDT resistance
DDT was a long-lasting, relatively inexpensive and unre-
stricted chemical that was used worldwide as an insecticide
to control disease-carrying mosquitoes, flies, and lice
during and after the World War II [33]. Beginning in 1942,
DDT was heavily used to control bed bug infestations in
military barracks [9]. The first case of control failure of
DDT against C. lectularius was reported in 1947 from the
barracks of the Naval Receiving Station in Pearl Harbor,
Hawaii [34]. It is noteworthy that bed bugs may have
started developing resistance to DDT within 5 years after
the product was first used, and the rapid pace of resistance
was probably due to the excessive and continuous use of
the insecticide. By the 1950s, bed bug resistance to DDT
was widespread (Table 3) [35–40]. During this period,
cross-resistance to pyrethrins was also observed in both C.
lectularius (from Israel) and C. hemipterus (from Tanzania)
[35]. Although there is abundant literature demonstrating
that bed bugs had developed marked resistance to DDT,
bed bug infestations decreased dramatically and were
effectively reduced to very low levels from the 1950s to the
late 1970s in many developed countries. The repetitive and
widespread use of DDT and subsequent insecticides (e.g.
malathion, chlorpyrifos, and propoxur) had led to the
significant decrease of bed bug infestations worldwide [9].
However, bed bug infestations were still a major
problem in some developing countries, such as Sierra
Leone [14], South Africa and rural Africa [13, 41, 42],
as well as problematic in the poultry industry in
many countries [8, 28, 43, 44].

Pyrethroid resistance
Pyrethroids, the synthetic analogues of pyrethrin in pyr-
ethrum, an extract of Chrysanthemum cinerariaefolium
flower, are a class of highly effective and extremely
efficient neurotoxic insecticides [45, 46]. However, with
the worldwide resurgence of bed bugs over the last two
decades, resistance to pyrethroids (Table 4) has been
documented in many parts of the world for both C. lectu-
larius [16, 30, 47–54] and C. hemipterus [12, 16, 17, 55, 56].

Neonicotinoid resistance
Imidacloprid, a neonicotinoid was introduced into the mar-
ket in 1991 [57]. The neonicotinoids are now widely used
against a wide variety of chewing and sucking pests [58],
including the bed bugs [59–63]. Over the last few years,
neonicotinoids have been combined with pyrethroids in
formulated products, such as Temprid® SC (beta-cyfluthrin
+ imidacloprid), Transport® Mikron (bifenthrin + acetami-
prid) and Tandem® (lambda-cyhalothrin + thiamethoxam)
[10, 60, 63], and with diatomaceous earth (e.g. Alpine Dust
Insecticide, with dinotefuran) [64] for the control of bed
bugs. However, in a recent study, C. lectularius collected
from human dwellings in Cincinnati and Michigan, USA
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Table 2 Reports of bed bug (Cimex spp.) resurgence from around the world since the beginning of the 21th century

Continent Country Species Reference

Asia One of the Arabian Gulf States Cimex spp.a [205]

Bangladesh C. hemipterus [206]

China (Mainland) C. lectularius, C. hemipterus [207, 208]

Taiwan C. hemipterus [209]

India C. lectularius, C. hemipterus [29, 205]

Iran C. lectularius [210]

Israel C. lectularius, C. hemipterus [211, 212]

Japan C. lectularius [213]

Kuwait C. lectularius [214]

Malaysia C. hemipterus [129, 215–217]

Pakistan C. lectularius [218]

Singapore C. hemipterus [215]

South Korea C. lectularius [219]

Sri Lanka C. hemipterus [56]

Thailand C. lectularius, C. hemipterus [12, 220]

Africa Ethiopia Cimex spp.a [221]

Kenya C. hemipterus [17]

Nigeria C. lectularius, C. hemipterus [222, 223]

Rwanda C. hemipterus [224]

Sierra Leone C. lectularius, C. hemipterus [14]

South Africa C. lectularius, C. hemipterus [13]

Tanzania C. lectularius, C. hemipterus [55, 225]

Uganda Cimex spp.a [226]

Americas Argentina C. lectularius [227]

Brazil C. lectularius, C. hemipterus [228–230]

Canada C. lectularius [231, 232]

Chile C. lectularius [227]

Colombia C. lectularius [233]

Cuba C. hemipterus [209]

Mexico Cimex spp.a [28]

Panama C. hemipterus [209]

Peru C. lectularius [234]

USA C. lectularius, C. hemipterus [18, 48, 157, 209, 235, 236]

Venezuela C. lectularius, C. hemipterus [209, 237]

Europe Austria C. lectularius [238]

Czech Republic C. lectularius [205, 238]

Denmark C. lectularius [239]

France C. lectularius [158, 240, 241]

Germany C. lectularius [159, 242–244]

Hungary C. lectularius [245]

Italy C. lectularius [246, 247]

Norway C. lectularius [238]

Poland C. lectularius [238]

Spain C. lectularius [238]
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have shown moderate to high levels of tolerance/resistance
to various neonicotinoids [64]. Romero & Anderson [64]
reported that resistance to neonicotinoids may likely be
conferred by the increased enzymatic activities found in
these populations. These findings indicate that tolerance or
even resistance to neonicotinoids is now present in field
bed bug populations.

Pyrrole efficacy
Besides the conventional insecticides (e.g. pyrethroids, OPs,
and carbamates), newer insecticide such as chlorfenapyr
from the pyrrole class have also been evaluated [65, 66].
Pyrroles are a class of pro-insecticides that are activated by
cytochrome P450 monooxygenases (P450s) to its more
active metabolite [67]. Unlike neurotoxic insecticides (e.g.
pyrethroids), pyrroles are mitochondrial electron transport
inhibitors (METI) which disrupt the conversion of adeno-
sine diphosphate (ADP) to adenosine triphosphate (ATP)
(oxidative phosphorylation) in mitochondria of cells. This
process results in loss of energy production, which leads to
cell dysfunction and subsequent death of the organism [67].
Due to their novel mode of action, pyrroles (e.g. chlorfena-
pyr) are currently registered in more than 19 countries for
the control of various insect and mite pests [68], especially
against pyrethroid-resistant insect pests, including bed bugs
[65, 66, 69, 70]. Nevertheless, there are increasing number
of reports of insects and mites becoming resistant or cross-
resistant to pyrroles [71–74], mainly due to metabolic
resistance (e.g. P450s and esterases) [72, 75].
Despite no cases of resistance to chlorfenapyr has been

reported in the bed bug so far, this compound has shown
varying performance against bed bugs. While chlorfenapyr
(Phantom®) was extremely slow-acting in laboratory re-
sidual bioassays [48], direct application of the product on
the walls of infested apartments resulted in a 61% reduc-
tion in bed bug numbers in just 3 days [76]. Romero et al.
[65] reported that chlorfenapyr is a non-repellent insecti-
cide with long residual activity against C. lectularius based
on laboratory studies. On the contrary, other researchers
have found poor performance of this product even with
laboratory susceptible bed bugs [21, 66]. In a field
evaluation [69], Phantom® was widely sprayed throughout
15 apartments monthly for 5 months. The authors only

achieved control in 12 units despite including a range of
non-chemical means, yet three units remained infested. It
is not possible to determine if this lack of complete
control was due to poor product efficacy (and possible
resistance) or due to bed bugs being reintroduced.

Resistance to other insecticides
Besides resistance to DDT, by the 1950s both bed bug
species also had developed resistance to other chlorinated
hydrocarbon compounds (OCs) [e.g. gamma-HCH (1957),
methoxychlor (1958), dieldrin (1958), aldrin (1958), and
endrin (1958)] (Table 3) [35], organophosphates (OPs)
(e.g. malathion) (1971) [77], and carbaryl (carbamate)
(1972) [78]. Following the resurgence in the new
millennia, resistance to OCs [56], OPs [12, 53, 56] and
carbamates [12, 44, 49, 52] were also reported in bed bugs
(Table 4). All these classes of insecticides have largely been
banned for indoor use against bed bugs with exception to
selected countries in Asia, Africa, and some countries in
Latin America.

Mechanisms of resistance
Insecticide resistance can be divided into two major types:
behavioral resistance and physiological resistance [1, 79]. In
behavioral resistance, the insect populations may develop
the ability to avoid or reduce lethal insecticide exposure
[79]. In contrast, physiological resistance refers to physio-
logical modification mechanisms, including reduced
cuticular penetration, increased metabolic detoxification,
and decreased target site sensitivity. Behavioral and physio-
logical resistance often coexist in insect pests [79, 80] and
both forms could be involved with bed bug resistance
(Table 5, Fig. 1). Herein the resistance mechanisms that
have been reported in the bed bug are discussed, as well as
candidate resistance mechanisms that are yet to be
confirmed. So far, only penetration resistance, metabolic
resistance (namely P450 and esterase), and target site
insensitivity (namely kdr-type) have been found to confer
resistance in bed bugs. Other resistance mechanisms that
are yet to be detected in bed bugs are behavioral resistance,
glutathione S-transferase (GST), altered acetylcholinester-
ase (AChE), insensitive γ-aminobutyric acid (GABA) recep-
tor, altered nAChRs, and symbiont-mediated insecticide

Table 2 Reports of bed bug (Cimex spp.) resurgence from around the world since the beginning of the 21th century (Continued)

Russia C. lectularius [248, 249]

Sweden C. lectularius [238]

Slovakia C. lectularius [238]

Switzerland C. lectularius [238, 250]

UK C. lectularius [205, 251]

Oceania Australia C. lectularius, C. hemipterus [15–17, 54, 252, 253]

New Zealand C. lectularius [254]
aCimex spp., no indication of the species identification in the report
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Table 3 Reports of resistance to chlorinated hydrocarbons in bed bugs (Cimex spp.) by the 1970s

Species Year Chlorinated hydrocarbon Location Reference

C. lectularius 1947 DDT USA (Hawaii) [34]

1949 DDT Greece [255–257]

1952 DDT USA (Ohio, Illinois, Indiana, Utah) [36]

1953 DDT Belgian Congo [258]

1953 DDT Israel [259, 260]

1953 DDT Japan, Italy [36]

1954 HCH, dieldrin Italy [36]

1955 DDT USA (Colorado, Pennsylvania, Texas) [36]

1956 HCH, dieldrin Israel [36]

1956 DDT French Guiana [261]

1956 DDT Iran [262]

1957 γ-HCH Israel [263]

1957 DDT Trinidad, Turkey [36]

1957 DDT, chlordane, dieldrin Italy [264]

1958 Dieldrin, γ-HCH, aldrin, endrin, isodrin, α-chlordane,
β-chlordane, methoxychlor, perthane, prolan

Israel [35]

1958 DDT Lebanon [265]

1958 DDT Japan, Korea, USA (Ohio, and two US
naval vessels)

[266]

1959 DDT Hungary, Poland [36, 40, 267]

1960 HCH, dieldrin Indonesia, Zambia, Rhodesia, Borneo [37]

1960 DDT Borneo, Indonesia, Colombia [36, 40]

1960 DDT Zimbabwe [268]

1961 DDT, HCH, dieldrin South India [36]

1962 γ-HCH India [269]

1962 DDT, HCH, dieldrin South Africa [37, 270]

1963 DDT dieldrin Gaza [271]

1967 DDT, HCH, dieldrin Egypt [37, 272]

1971 γ-HCH Zambia, Italy, Borneo [40]

1972 DDT Papua-New Guinea [273]

1976 DDT, dieldrin Almost everywhere [38]

C. hemipterus 1955 DDT West India [36]

1956 HCH, dieldrin West India [36]

1956 DDT Taiwan [274]

1956 DDT India (Bombay State) [275]

1957 HCH, dieldrin Tanzania, Kenya, Upper Volta [37]

1957 DDT Hong Kong, Singapore [264]

1957 DDT Kenya [36]

1957 Dieldrin Ivory Coast [35]

1958 Dieldrin Tanganyika [276]

1958 DDT Mombasa, Somalia, Gambia, Hong Kong [35]

1958 Dieldrin Mombasa, Gambia [35]

1958 γ-HCH Mombasa, Somalia, Gambia [35]

1958 Methoxychlor Mombasa, Somalia [35]

1959 DDT Poland [267]
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resistance. The role of ATP-binding cassette (ABC) trans-
porters in upregulation of toxicant removal from the target
site will be discussed. For the ease of the flow of discussion,
we shall discuss according to types of the resistance mecha-
nisms (behavioural, metabolic, target site insensitivity, etc.)
and will highlight resistance mechanisms that are yet to be
detected in bed bugs as candidate mechanisms.

Behavioral resistance (candidate resistance mechanism)
Behavioral resistance can be divided into two broad
categories: (i) stimulus-dependent behaviors (e.g.
irritability and repellency), and (ii) stimulus-independent
behavior (e.g. exophily, outside resting) [1, 79, 81].
Stimulus-dependent behaviors require sensory stimulation
of the insect to detect a toxin-treated surface before acquir-
ing a lethal dose, by which an avoidance response is elicted
by the toxicant [79]. Such behaviors have been observed in
a number of insect pests. The best known example is bait
aversion to glucose in the German cockroach, Blattella
germanica (L.), which was selected through field exposure
to commercial cockroach baits [82–85]. Conversely,
stimulus-independent behavior refers to insect behavior
that prevents them from exposure to the toxicant [1]. These
behaviors do not require sensory stimulation by the
toxicant for avoidance to happen [79]. One example is
‘exophily’, which refers to the changes of behavior in anoph-
eline mosquitoes from their regular habit of biting indoor,
to biting outdoors [86]. This behavior decreases the
prevalence of indoor mosquitoes, and hence reduces the
potential for mosquitoes from contacting indoor insecticide
applications [87, 88].
Although behavioral resistance has been documented

in many insect pest groups, it has never been properly
studied and confirmed in bed bugs. There were several
studies that reported some behavioural observations in bed
bugs in the presence of insecticides. One recent study
showed that insecticide-susceptible and insecticide-resistant
C. lectularius may either avoid resting on deltamethrin-
treated filter paper, or increased their movement upon
direct contact with sublethal doses of deltamethrin [89].
This possibly suggested excito-repellency, a form of behav-
ioral resistance. In another study however, Moore & Miller

[48] found that insecticide-susceptible and insecticide-
resistant strains of C. lectularius did not avoid surfaces
treated with lambda-cyhalothrin. Cimex lectularius also
showed no avoidance behavior when exposed to chlorfena-
pyr [48, 65, 89]. Bed bugs are highly cryptic and often hide
in dark areas and in cracks and crevices. This unique be-
havioral characteristic may protect them from contacting
insecticide on treated surfaces, or being found during the
inspection process [8, 10, 90].

Physiological resistance
In contrast to behavioral resistance, many studies have
identified physiological resistance mechanisms in bed bugs
(Table 1). Mamidala et al. [91, 92] recently found that
metabolic detoxification, cuticular proteins, and knock-
down resistance (kdr) mutations were associated with in-
secticide resistance in C. lectularius. Similarly, Zhu et al.
[90] reported that there were kdr mutations and/or differ-
entially expressed genes including metabolic genes (P450s,
esterases, ABC transporters, and cuticular protein genes
associated with insecticide resistance (pyrethroid resistance)
in C. lectularius. Overall, three major physiological resist-
ance mechanisms have been investigated in association
with bed bug resistance to insecticides, namely penetration
resistance, metabolic resistance, and target site insensitivity.

Penetration resistance
Contact insecticides must pass through the insect cuticle
before reaching the target site [5]. Therefore, the cuticle
serves as the first line of defence against insecticides
[90, 93]. Resistant insects develop cuticular barriers
by evolving a thicker cuticle or by altering the cuticular
structure to reduce the penetration rate of insecticides
into the insect body [94, 95]. Penetration resistance may
provide protection to the insects against different classes
of insecticides [96, 97]. Penetration resistance also works
in combination with other resistance mechanism(s), as it
has been hypothesized that decreased cuticular penetra-
tion could help to ‘buy more time’ for detoxifying enzymes
to metabolize the insecticide or to allow the insect to ex-
crete the insecticide before it reaches its target [90, 98].
Penetration resistance has been reported in various insect

Table 3 Reports of resistance to chlorinated hydrocarbons in bed bugs (Cimex spp.) by the 1970s (Continued)

1959 HCH, dieldrin Dahomeh, Zanzibar [36, 37]

1960 DDT Malaysia, Thailand [36, 37]

1960 HCH, dieldrin Malaysia [36, 37]

1961 DDT, HCH, dieldrin Madagascar, South India [36, 37]

1961 DDT Tanzania (Zanzibar) [277]

1962 Dieldrin Tanzania (Magugu) [278]

1970 DDT Papua-New Guinea [279]

Abbreviations: HCH hexachlorocyclohexane, γ-HCH gamma-hexachlorocyclohexane, also known as lindane, gammaxene, gammallin and sometimes incorrectly
called benzene hexachloride (BHC)
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Table 4 Published reports of insecticide resistance and product efficacy in modern bed bugs (Cimex spp.), post 2000

Year Insecticide Method Location/Strain Susceptibility/
efficacy

Resistance
ratio

Reference

C. lectularius

2006 α-cypermethrina SC UK (3 field strains) Resistant – [47]

2006 Bendiocarbb SC UK (3 field strains) Resistant – [47]

2006 Deltamethrina SC USA (Arlington, VA) Resistant >300 [48]

2006 Chlorfenapyrg SC Susceptible Harlan strain Less effective [48]

2007 Deltamethrina SC USA: Cincinnati, OH(CIN1, CIN2, CIN3); Lexington, KY (LEX1) Resistant >12,765 [30]

2007 λ-cyhalothrina SC USA (Cincinnati, OH[CIN1]) Resistant >6123 [30]

2007 Deltamethrina SC USA (Los Angeles, CA [LA2]; Kissimmee, FL[KIS1]; Vienna, VA[VIN1]) Resistant – [30]

2007 Deltamethrina SC USA (Los Angeles, CA [LA1]) Susceptible [30]

2008 Deltamethrina SC USA (New York City, NY [NY-BB]) Resistant >250 [156]

2008 Bifenthrina SC USA (Arkansas: Washington, Carroll, Lafayette) Susceptible [44]

2008 λ-cyhalothrina SC USA (Arkansas: Washington, Carroll, Lafayette) Susceptible [44]

2008 Permethrina SC USA (Arkansas: Washington, Carroll, Lafayette) Susceptible [44]

2008 Carbarylb SC USA (Arkansas: Washington, Carroll, Lafayette) Susceptible [44]

2008 Imidaclopridc SC USA (Arkansas: Washington, Carroll, Lafayette) Susceptible [44]

2008 Fipronild SC USA (Arkansas: Washington, Carroll, Lafayette) Susceptible [44]

2008 Diazinone SC USA (Arkansas: Washington, Lafayette) Susceptible [44]

2008 Diazinone SC USA (Arkansas: Carroll) Resistant – [44]

2008 Dichlorvose SC USA (Arkansas: Washington, Carroll, Lafayette) Resistant – [44]

2008 Spinosadf SC USA (Arkansas: Washington, Carroll, Lafayette) Resistant – [44]

2008 Chlorfenapyrg SC USA (Arkansas: Washington, Carroll, Lafayette) Less effective [44]

2008 DDTh SC USA (Arkansas: Washington, Carroll, Lafayette) Resistant – [44]

2008 Chlorfenapyrg SC USA (Cincinnati, OH) Less effective [69]

2009 Pirimphos-methyle T Australia (Sydney strain) Susceptible 2.6 [49, 52]

2009 Imidaclopridc T Australia (Sydney strain) Susceptible 2.6 [49, 52]

2009 Bendiocarbb T Australia (Sydney strain) Resistant 250 [49, 52]

2009 Deltamethrina T Australia (Sydney strain) Resistant 370,000 [49, 52]

2009 Permethrina T Australia (Sydney strain) Resistant 1,235,000 [49, 52]

2009 Diazinone T/SC Australia (Sydney strain) Effective [50, 51]

2009 Pyrethrinsa T/SC Australia (Sydney strain) Resistant – [50, 51]

2009 β-cyfluthrina T/SC Australia (Sydney strain) Resistant – [50, 51]

2009 Tetramethrina T/SC Australia (Sydney strain) Resistant – [50, 51]

2009 Deltamethrina SC USA (Cincinnati, OH [CIN-1]) Resistant >2588 [128]

2009 Deltamethrina SC USA (Worcester, MA[WOR-1]) Resistant >2588 [128]

2010 Deltamethrina SC USA (New York City, NY) Resistant >9375 [162]

2010 λ-cyhalothrina SC USA (New York City, NY) Resistant 6990 [162]

2010 Chlorfenapyrg SC USA (Cincinnati, OH [CIN-1]) Effective – [65]

2010 Chlorfenapyrg SC USA (Worcester, MA[WOR-1]) Effective – [65]

2010 Phenothrina SC/T Japan (four field strains) Resistant – [280]

2010 Permetrhina SC/T Japan (four field strains) Resistant – [280]

2010 Dichlorvose SC/T Japan (four field strains) Susceptible [280]

2010 Fenitrothione SC/T Japan (four field strains) Susceptible [280]

2010 Propoxurb SC/T Japan (four field strains) Susceptible [280]
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Table 4 Published reports of insecticide resistance and product efficacy in modern bed bugs (Cimex spp.), post 2000 (Continued)

2010 Deltamethrina SC USA (Cincinnati, OH; Lexington, KY; Troy, MI; Dover, NJ; Frankfort, KY;
Kalamazoo, MI; Worcester, MA; Smithtown, Plainview, New York, NY)

Resistant – [157]

2011 Deltamethrina IT USA (Richmond, VA) Resistant 5167 [113]

2011 β-cyfuthrina IT USA (Richmond, VA) Resistant 111 [113]

2011 Deltamethrina SC USA (Richmond, VA) Resistant 390.5 [281]

2011 Deltamethrina SC USA (Cincinnati, OH) Resistant >340 [281]

2011 Deltamethrina SC USA (Arlington, VA: Kramer) Resistant 339.6 [282]

2011 Permethrina SC USA (Arlington, VA: Kramer) Resistant >115.1 [282]

2011 Deltamethrina SC USA (Richmond, VA) Resistant 390.5 [282]

2011 Permethrina SC USA (Richmond, VA) Resistant >291.7 [282]

2011 DDTh SC Thailand (Chiang Mai) Resistant – [12]

2011 Dieldrinh SC Thailand (Chiang Mai) Resistant – [12]

2011 Bendiocarbb SC Thailand (Chiang Mai) Resistant – [12]

2011 Propoxurb SC Thailand (Chiang Mai) Resistant – [12]

2011 Malathione SC Thailand (Chiang Mai) Resistant – [12]

2011 Fenitrothione SC Thailand (Chiang Mai) Resistant – [12]

2011 Cyfluthrina SC Thailand (Chiang Mai) Resistant – [12]

2011 Deltamethrina SC Thailand (Chiang Mai) Resistant – [12]

2011 Permethrina SC Thailand (Chiang Mai) Resistant – [12]

2011 β-cyhalothrina SC Thailand (Chiang Mai) Resistant – [12]

2011 Etofenproxa SC Thailand (Chiang Mai) Resistant – [12]

2011 Diazinone Spray Thailand (Chiang Mai) Less effective – [12]

2011 Fenobucarbb Spray Thailand (Chiang Mai) Less effective – [12]

2011 Esfenvaleratea Spray Thailand (Chiang Mai) Less effective – [12]

2011 Cypermethrina Spray Thailand (Chiang Mai) Less effective – [12]

2011 Bifenthrina Spray Thailand (Chiang Mai) Less effective – [12]

2011 Chlorfenapyrg Spray Thailand (Chiang Mai) Less effective – [12]

2011 Fipronild Spray Thailand (Chiang Mai) Less effective – [12]

2011 Imidaclopridc Spray Thailand (Chiang Mai) Efficient – [12]

2011 Permethrina T, SC Denmark Resistant – [53]

2011 Deltamethrina SC Denmark Resistant – [53]

2011 Chlorpyrifose T, SC Denmark Effective – [53]

2012 Deltamethrina SC USA (Columbus, OH) Resistant – [92]

2012 Pyrethrinsa T USA(New Haven, CT) Resistant – [283]

2012 Cyfluthrina T USA(New Haven, CT) Resistant – [283]

2012 λ-cyhalothrina T USA(New Haven, CT) Resistant – [283]

2012 cis-cypermethrina T USA(New Haven, CT) Resistant – [283]

2012 Deltamethrina T USA(New Haven, CT) Resistant – [283]

2012 Deltamethrina T USA (Cincinnati, OH [CIN-1], Plainview, NY [NY-1]) Resistant – [122]

2012 Neopynaminea SC France (Paris) Resistant – [158]

2012 Sumithrina SC France (Paris) Resistant – [158]

2013 Deltamethrina SC USA (CIN-1) Resistant 51 [90]

2013 Deltamethrina SC USA (CIN-1 S) Resistant 32,700,000 [90]

2013 Deltamethrina SC USA (NY-1) Resistant >300 [90]

2013 Deltamethrina T USA (Richmond, VA) Resistant >200,000 [94]
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Table 4 Published reports of insecticide resistance and product efficacy in modern bed bugs (Cimex spp.), post 2000 (Continued)

2013 β-cyfuthrina T USA (Richmond, VA) Resistant >160,000 [94]

2014 Deltamethrina SC Germany (Berlin) Resistant 3.8–5.1 [159]

2014 Deltamethrina SC USA: New York (Brooklyn) Susceptible – [284]

2015 Imidaclopridc/β-
cyfluthrinc

SC USA (Richmond and Epic Center strains) Resistant E: 3–5;
FI: 121–
493

[285]

2015 Acetamipridc/
bifenthrina

SC USA (Richmond and Epic Center strains) Resistant E: 39–
1080;
FI: 99–
1943

[285]

2015 Deltamethrina SC USA (Epic Center strain) Resistant 392 [285]

2015 d-allethrina SC Australia [NSW: Sydney (Abbotsford, Darlinghurst, North Parramatta,
Northbridge, Redfern), Newcastle (Maryland); VIC: Melbourne
(Ripponlea, South Yarra, Moonee Ponds), West Melbourne; WA:
Perth (Cottesloe); NT: Alice springs; SA: Adelaide (Semaphore Park)]

Resistant – [16, 54]

2016 Imidaclopridc T USA (Jersey City, NJ) Susceptible 2.0 [64]

2016 Imidaclopridc T USA (Troy, MI) Resistant 462.6 [64]

2016 Imidaclopridc T USA (Cincinnati, OH) Resistant 163.3 [64]

2016 Acetamipridc T USA (Jersey City, NJ) Resistant 31.7 [64]

2016 Acetamipridc T USA (Troy, MI) Resistant >33,333 [64]

2016 Acetamipridc T USA (Cincinnati, OH) Resistant >33,333 [64]

2016 Thiamethoxamc T USA (Jersey City, NJ) Susceptible 2.4 [64]

2016 Thiamethoxamc T USA (Troy, MI) Resistant 546 [64]

2016 Thiamethoxamc T USA (Cincinnati, OH) Resistant 226.2 [64]

2016 Dinotefuranc T USA (Jersey City, NJ) Resistant 46.8 [64]

2016 Dinotefuranc T USA (Troy, MI) Resistant 198 [64]

2016 Dinotefuranc T USA (Cincinnati, OH) Resistant 358.6 [64]

2016 Deltamethrina T Australia: Parramatta(NSW), Alice Springs(NT) and Melbourne(VIC) Resistant – [127]

2016 Deltamethrina SC Australia (Parramatta[NSW]) Resistant – [95]

C. hemipterus

2002 α-cypermethrina SC Tanzania Resistant – [55]

2002 Permethrina SC Tanzania Resistant – [55]

2007 DDTh SC Sri Lanka Resistant – [56]

2007 Malathione SC Sri Lanka Resistant – [56]

2007 Propoxurb SC Sri Lanka Resistant – [56]

2007 Deltamethrine SC Sri Lanka Resistant – [56]

2007 Permethrine SC Sri Lanka Resistant – [56]

2011 λ-cyhalothrina SC Malaysia (Kmelayu14); Singapore (Serangoon) Effective – [129]

2011 Bifentrina SC Malaysia (Kmelayu14); Singapore (Serangoon) Effective – [129]

2011 Fenitrothione SC Malaysia (Kmelayu14); Singapore (Serangoon) Effective – [129]

2011 Fipronild SC Malaysia (Kmelayu14); Singapore (Serangoon) Effective – [129]

2011 Imidaclopridc SC Malaysia (Kmelayu14); Singapore (Serangoon) Effective – [129]

2011 DDTh SC Malaysia (Kmelayu14); Singapore (Serangoon) Resistant – [129]

2011 DDTh SC Thailand (Bangkok, Chonburi, Phuket, Krabi) Resistant – [12]

2011 Dieldrinh SC Thailand (Bangkok, Chonburi, Phuket, Krabi) Resistant – [12]

2011 Bendiocarbb SC Thailand (Bangkok, Chonburi, Phuket, Krabi) Resistant – [12]

2011 Propoxurb SC Thailand (Bangkok, Chonburi, Phuket, Krabi) Resistant – [12]

2011 Malathione SC Thailand (Bangkok, Chonburi, Phuket, Krabi) Resistant – [12]
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Table 4 Published reports of insecticide resistance and product efficacy in modern bed bugs (Cimex spp.), post 2000 (Continued)

2011 Fenitrothione SC Thailand (Bangkok, Chonburi, Phuket, Krabi) Resistant – [12]

2011 Cyfluthrina SC Thailand (Bangkok, Chonburi, Phuket, Krabi) Resistant – [12]

2011 Deltamethrina SC Thailand (Bangkok, Chonburi, Phuket, Krabi) Resistant – [12]

2011 Permethrina SC Thailand (Bangkok, Chonburi, Phuket, Krabi) Resistant – [12]

2011 λ-cyhalothrina SC Thailand (Bangkok, Chonburi, Phuket, Krabi) Resistant – [12]

2011 Etofenproxa SC Thailand (Bangkok, Chonburi, Phuket, Krabi) Resistant – [12]

2011 Diazinone Spray Thailand (Bangkok, Chonburi, Phuket, Krabi) Less effective – [12]

2011 Fenobucarbb Spray Thailand (Bangkok, Chonburi, Phuket, Krabi) Less effective – [12]

2011 Esfenvaleratea Spray Thailand (Bangkok, Chonburi, Phuket, Krabi) Less effective – [12]

2011 Cypermethrina Spray Thailand (Bangkok, Chonburi, Phuket, Krabi) Less effective – [12]

2011 Bifenthrina Spray Thailand (Bangkok, Chonburi, Phuket, Krabi) Less effective – [12]

2011 Chlorfenapyrg Spray Thailand (Bangkok, Chonburi, Phuket, Krabi) Less effective – [12]

2011 Fipronild Spray Thailand (Bangkok, Chonburi, Phuket, Krabi) Less effective – [12]

2011 Imidaclopridc Spray Thailand (Bangkok, Chonburi, Phuket, Krabi) Effective – [12]

2015 d-allethrina SC Australia (North Queensland) Resistant >130 [17]

2015 d-allethrina SC Australia (Sydney, [NSW]: Auburn) Resistant 37 [17]

2015 d-allethrina SC Malaysia (Kuala Lumpur) Resistant >130 [17]

2015 d-allethrina SC Thailand (Bangkok, Chiang Mai) Resistant >130 [17]

2015 d-allethrina SC Africa (Kenya) Resistant 30 [17]

Abbreviation: SC Surface contact, T Topical application, IT Injection topical application [112]
aPyrethroids
bCarbamates
cNeonicotinoids
dPhenylpyrazoles
eOPs
fSpinosyn
gPyrrole
hChlorinated hydrocarbons

Table 5 Resistance mechanisms (verified and candidate mechanisms) in bed bugs (Cimex spp.)

Mechanism C. lectularius C. hemipterus Insecticide

Behavioral resistance Candidate mechanism Candidate mechanism Pyrethroids

Physiological
resistance

Penetration
resistance

Cuticle Verified by morphological
study [95, 103]

Candidate mechanism A broad spectrum of insecticide classes

Metabolic
resistance

P450s Verified by RNAi [90] and
synergism studies [127]

Verified by synergism
studies [129]

Pyrethroids, OCs, OPs, carbamates,
neonicotinoids and pyrroles

Esterases Verified by synergism
studies [127]

Candidate mechanism Carbamates, OPs, pyrroles, neonicotinoids
and pyrethroids

GSTs Candidate mechanism Candidate mechanism OCs, OPs and pyrethroids

ABC-transporters Verified by RNAi [90] Candidate mechanism Pyrethroids, OCs, OPs, carbamates,
and neonicotinoids

Target site
insensitivity

Kdr Verified by QS combined
with FCVB [162]

Candidate mechanism Pyrethroids and DDT

Altered AChEs Candidate mechanism Candidate mechanism OPs and carbamates

Insensitive GABA
receptors

Candidate mechanism Candidate mechanism Cyclodienes (OCs) and phenylpyrazoles

Altered nAChRs Candidate mechanism Candidate mechanism Neonicotinoids

Symbiont-mediated resistance Candidate mechanism Candidate mechanism OPs
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pests, including the house fly Musca domestica (L.) [98–100],
the German cockroach B. germanica [2, 101], the dengue
mosquito Aedes aegypti (L.) [102], and the common bed bug,
C. lectularius [94, 95, 103].
Penetration resistance plays a crucial role in insecticide

resistance in bed bugs. Koganemaru et al. [94] demon-
strated that the resistance ratio in the resistant Richmond
C. lectularius strain that was topically applied with
deltamethrin or beta-cyfluthrin onto the cuticle was 105

greater than that when applied subcuticularly, in compari-
son to the insecticide-susceptible Harlan strain. However,
compared with other physiological resistance mechanisms,
penetration resistance remains the least understood for
many insect pests. Nevertheless recently, various RNA and
genomic sequencing efforts have been made to identify the
putative genes associated with cuticular penetration resist-
ance in bed bugs [90, 92–94, 104]. Bai et al. [104] analysed
using the 454-pyrosequencing technique the transcriptomic
sequences of C. lectularius from the susceptible Harlan
strain and one field-collected resistant strain and identified
45 putative cuticular protein genes that were possibly
associated with insecticide resistance in bed bugs.
Mamidala et al. [92] detected 46 cuticular protein genes
that were upregulated in the deltamethrin-resistant strains
of C. lectularius. Five cuticular protein genes [larval cuticle
protein (LCP), pupal cuticle protein (PCP), chitin synthase
(CHS), chitin deacetylase (CDA), and cuticular protein
analogous to peritrophin (CPAP)] were further confirmed
by quantitative real-time PCR (qRT-PCR) to be possibly
associated with insecticide resistance in C. lectularius; these
genes displayed higher transcript levels in resistant strains
compared to those in susceptible strains [92]. Another 19
cuticular protein genes were similarly reported to be

associated with insecticide resistance in C. lectularius,
especially pyrethroid resistance [90, 94]. Overexpression
of these genes were inferred to thicken or remodel the
bed bug cuticle to reduce the insecticide penetration rate
[94], which could prevent or slow the insecticide from
reaching the target sites on nerve cells (Fig. 1b). These
results suggested that penetration resistance significantly
contributes to bed bug resistance to insecticides. Unfortu-
nately, no study on penetration resistance in C. hemipterus
has been reported so far.
Molecular assays such as dsRNA-mediated interference

(RNAi) technique may not be able to verify the association
between over-expression of culticular genes and penetra-
tion resistance since the cuticle has been thickened or
remodelled [90]. Nevertheless, more recently, a study
examining the relationship between cuticular thickness of
C. lectularius and insecticide residual bioassays, revealed a
positive correlation between the thickened cuticle and
insecticide resistance level [95]. The authors found that
highly pyrethroid-resistant individuals of the Parramatta
strain of C. lectularius possessed a significantly thicker cu-
ticle compared with that of an insecticide susceptible strain.
Also, the cuticle thickness of this resistant strain was
positively correlated to time-to-knockdown in insecticide
bioassays [95]. Future studies should be performed to pro-
vide direct evidence on penetration resistance in bed bugs
through in vivo assay using radio-labelled insecticide [105].

Metabolic resistance
Metabolic resistance is considered a key resistance mech-
anism and has been well reviewed in past literature [4–7].
Mamidala et al. [91] also provided a review of metabolic
resistance in bed bugs. Based on these reports, three

Fig. 1 Schematic of potential behavioral and physiological changes involved in insecticide resistance in bed bugs. a Susceptible bed bug. b
Resistant bed bug. The various forms of resistance act in compounding layers to counteract the effect of the insecticide. For example, direct
application of an insecticide such as a pyrethroid may kill the bed bugs; however due to the ‘excito-repellency’ nature of this class of compounds,
some bed bugs may avoid insecticide exposure (potential behavioral resistance). If the bed bugs come into contact with an insecticide, the cuticle
may be thickened or remodelled by over-expression of cuticular proteins, which will reduce the rate of insecticide penetration (penetration resistance)
beyond the cuticular layer. If the insecticides enter the insect, bed bugs can enhance metabolic detoxification (e.g. P450s, esterases, GSTs) to inhibit the
insecticidal effect (metabolic resistance). Finally, if the insecticides reach the neurological system to act on the target sites (such as the VGSC), point
mutations (e.g. kdr mutations) can reduce the sensitivity of the insecticide target site to the insecticide (target site insensitivity)
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major groups of enzymes, namely P450s, esterases, and
GSTs, as well as ABC transporters [90], are involved
(Table 5) and may have a broad spectrum of activity
against different insecticide classes [97]. Unfortunately,
most of metabolic resistance research has been under-
taken in C. lectularius; the studies on metabolic resistance
in C. hemipterus are limited (Table 5).

P450s
P450s, the most important subset of the monooxygenase
system, constitute one of the largest superfamilies of
proteins found in all living organisms [106–108] and
plays a significant role in the detoxification of insecti-
cides [100, 109, 110]. Recently, more than 1700 genes of
P450s were characterized from various insects [7, 111,
112], and 386 contigs of P450s associated with insecticide
resistance were found in hematophagus insects [91].
There are two possible mechanisms attributed to up-reg-

ulation of P450 genes [112]: (i) constitutive transcriptional
overexpression (mRNA levels), in which the gene is con-
tinually transcribed, and (ii) induced transcriptional overex-
pression, in which the expression of the gene is induced as
needed. However, the factors regulating the overexpression
of P450s in these two mechanisms are less known. The first
mechanism is common in many insect pests, including bed
bugs. Currently, the link between insecticide resistance and
constitutive overexpression of P450 genes has been shown
in C. lectularius [90, 92, 113]. Adelman et al. [113] found
that the resistance ratios to deltamethrin and β-cyfluthrin
in C. lectularius (Richmond strain, compared with suscep-
tible Harlan strain) were 5167 and 111, respectively.
Biochemical assays revealed that the P450 activities of the
Richmond strain were significantly enhanced by 41% com-
pared to that of the Harlan strain. In addition, genetic
studies revealed that three P450 genes, namely CYP397A1
(>36-fold), CYP6DM2 (>29-fold) and CYP400A1 (>18-fold),
were all significantly overexpressed in the Richmond strain
[113]. The Richmond strain showed high resistance to pyre-
throids due to overexpressed P450 genes (and possible
other mechanisms as well). In addition, four P450 genes
(CYP9 [104], CYP397A1V2, CYP6A2 and CYP6A13 [92])
were found to be putatively responsible for C. lectularius
resistance to pyrethroids. The dsRNA-mediated interfer-
ence (RNAi) technique confirmed that another four P450
genes (CYP397A1, CYP398A1, CYP6DN1 and CYP4CM1)
were involved in C. lectularius pyrethroid resistance, as
these genes were up-regulated in resistant strain(s) [90].
Molecular docking studies revealed that the P450 genes
may confer cross-resistance to the major classes of insecti-
cides (e.g. OCs, pyrethroids and neonicotinoids) used to
control bed bugs [92]. All these findings suggest that P450-
mediated detoxification plays a key role in metabolic resist-
ance to insecticides, especially the pyrethroids.

In the second mechanism, the expression of some P450
genes can be induced by exogenous and endogenous
compounds which include insecticides [110] which led to
increased resistance to insecticides [114, 115]. This
phenomenon had been reported in several insect pests,
including M. domestica [116, 117] and the mosquito Culex
quinquefasciatus (Say) [118]. Additionally, both mecha-
nisms (constitutive and induced overexpression) can be
exhibited in same insect population within an area, such as
M. domestica [117]. However, in comparison with the
constitutive overexpression, the induction associated with
insecticide resistance is less well known and not described
in bed bugs to date. Further studies should be conducted to
better understand the mechanism of induction in bed bugs.
Currently, the mixture insecticide products which

contain a neonicotinoid and a pyrethroid, are used to
control bed bugs, particularly in the USA and other
parts of the world [119]. Constitutive or both constitu-
tive and induced overpression of P450 genes have been
associated with neonicotinoid resistance in other insects
[117, 120]. In the wake of neonicotinoid resistance in C.
lectularius [64], further studies are warranted to deter-
mine the role of P450s, as well as potential cross-
resistance in both species of bed bugs.
The reaction of the P450 system requires an electron

transferred from nicotinamide adenine dinucleotide phos-
phate (NADPH) to the P450 heme centre by a cytochrome
P450 partner enzyme, NADPH-cytochrome P450 reductase
(CPR), and/or cytochrome b5 reductase in microsomal
systems, and by an adrenodoxin-like ferredoxin coupled to
an adrenodoxin reductase in mitochondrial systems
[121–124]. Recently, Zhu et al. [122] sequenced and
characterized the gene of CPR from C. lectularius
(ClCPR) and found that RNAi suppressed the expres-
sion of ClCPR, which led to the resistant CIN-1
strain (a field-collected C. lectularius strain collected
in 2005 in Cincinnati, OH) showing increased suscep-
tibility to deltamethrin. This finding verified at least a
partial role of CPR in P450-mediated detoxification
and indicated that P450-mediated metabolic resistance
to pyrethroids occurred in the CIN-1 strain.
Piperonyl butoxide (PBO), a primary inhibitor of some

cytochrome P450 monooxygenases, is used to characterize
the possible involvement of P450-mediated detoxification
as a resistance mechanism [125–127]. PBO could be in-
cluded in formulations as a synergist of pyrethroid-based
insecticides [128, 129] to enhance their efficacy. Romero et
al. [128] used PBO to determine the role of P450s in
deltamethrin resistance in two highly resistant C. lectularius
strains (CIN-1: Cincinnati, OH, USA; WOR-1, collected in
2007 in Worcester, MA, USA). The results showed that the
resistance level of CIN-1 and WOR-1 reduced from >2588-
fold to 174-fold and from >2588-fold to 39-fold after treat-
ment with PBO, respectively, when compared to the
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corresponding results obtained with the Fort Dix (= Har-
lan) susceptible strain [128]. These results indicated that
P450s contribute in part to the deltamethrin resistance in
these strains of C. lectularius. Similar synergism studies
were performed by How & Lee [129] and Lilly et al. [127]
for two Southeast Asian C. hemipterus strains and four
Australian C. lectularius strains, respectively. Both studies
supported that P450-mediated metabolic resistance to pyre-
throids occurred in bed bugs.

Esterases
Esterases confer resistance to carbamates and OPs in
many insect species [2, 4, 5, 7, 130–132] as well as to
pyrethroids [127, 133], mainly due to the activity of
carboxylesterases [134, 135] and only in a few rare cases
by arylesterases (aromatic esterases) [2].
Esterases (especially carboxylesterases) mediate metabolic

resistance by two main mechanisms: (i) increased level of
gene expression (quantitative change), and (ii) mutations in
coding gene sequences (qualitative changes) [4, 7]. In the
first mechanism (quantitative change), resistant insects
overproduce non-specific esterases or carboxylesterases by
gene up-regulation to quickly sequester the insecticides
(e.g. carbamates and OPs) [133]. This mechanism has been
documented in numerous insect species including mosqui-
toes, cattle ticks, aphids, cockroaches [4], and both C. hemi-
pterus [56] and C. lectularius [64, 90, 113]. Adelman et al.
[113] recently reported a significant increase in the general
esterase activity (at least by 35%) based on the biochemical
assays in a highly resistant Richmond C. lectularius strain,
when compared to that of the susceptible Harlan strain.
Their subsequent findings based on genetic studies (via
RNA sequencing and relative gene expression based on
qRT-PCR) identified that two esterase-encoding genes,
CE3959 and CE21331, were significantly overexpressed in
the Richmond strain. These findings suggest that CE3959
and CE21331 may be candidate genes contributing to
esterase-mediated resistance in C. lectularius. Zhu et al.
[90] also found that the gene CLCE21331 (also known as
CE21331) was associated with C. lectularius pyrethroid
resistance, due to overexpression in resistant strains. They
subsequently determined that the gene CLCE21331 showed
maximum up-regulation (>50-fold) in most field popula-
tions (76.2% of 21 populations) compared with the suscep-
tible LA-1 C. lectularius strain (collected in 2006 in Los
Angeles, CA, USA [30]), that strongly suggests the import-
ance of esterase-mediated metabolic resistance in bed bugs.
Karunaratne et al. [56] found that elevated esterase mecha-
nisms were present in C. hemipterus populations based on
biochemical assays, and elevated levels of general esterases
were similarly found to be associated with resistance to the
neonicotinoids in C. lectularius [64]. However, further stud-
ies including the use of metabolism studies [105], should be
attempted to experimentally validate the specific gene(s)

encoding esterase mediated mechanism in bed bugs.
Besides the biochemical assays and genetic studies on
esterase-mediated resistance, researchers also have used
bioassays in combination with synergists to investigate the
activity levels of general esterases in resistant bed bug
populations. Hardstone et al. [136] selected PBH (3-phe-
noxybenzyl hexanoate, a surrogate substrate for carboxyles-
terases and oxidases) as a metabolic synergist to suppress
resistance to pyrethroids in C. lectularius. The authors
found that PBH synergized the action of deltamethrin
6-fold on an insecticide-susceptible C. lectularius strain
(FL-BB, collected from Gainesville, FL, USA, more than
20 years ago), and was 2.8-fold more synergistic than PBO.
These findings suggested that esterases were involved in C.
lectularius metabolic detoxification of deltamethrin.
Similarly, Lilly et al. [127] employed a novel synergist,
EN16/5–1 (6-[2-(2-butoxyethoxy) ethoxymethyl]-5-propyl-
2, 3-dihydrobenzofuranby), which mainly inhibits the
activity of esterases, to determine if esterase-mediated
pyrethroid resistance exists in C. lectularius. They found
that the resistance in three of four C. lectularius strains to
deltamethrin was significantly suppressed by EN16/5–1,
which strongly suggested that esterases conferred metabolic
resistance to C. lectularius in Australia.
In the second mechanism (qualitative changes), resistant

insects can increase esterase-mediated metabolism due to a
single point mutation or substitution in the structural
genes. For example, the LcaE7 gene of the sheep blowfly
Lucilia cuprina (Wiedemann) encodes a carboxylesterase.
A single point mutation on the LcaE7 gene changes glycine
at residue site 137 to an aspartic acid and then converts the
carboxylesterase to an organophosphorus hydrolase that
confers organophosphorus resistance [137, 138]. However,
limited reports about this mechanism are available world-
wide [7]. This mechanism still is a candidate mechanism
and yet to be reported in bed bugs.

GSTs (candidate resistance mechanism)
GSTs mediate metabolic resistance to organophosphates,
chlorinated hydrocarbons, and pyrethroids through
catalyzing the conjugation of electrophilic compounds by
reduced glutathione (GSH) [7, 139–141]. On the other
hand, some insect GSTs catalyse a dehydrochlorination
reaction by using GSH as a cofactor rather than as a
conjugate [7, 141, 142]. GSTs are also involved in detoxifi-
cation via xenobiotic binding, intracellular transport of
endogenous lipophilic compounds, or sequestration [7].
Using biochemical assays, Karunaratne et al. [56] found

that DDT resistance in a Sri Lankan C. hemipterus strain
was associated with high GST levels, as dehydrochlorina-
tion of DDT by GSTs is a major route of detoxification in
insects [141]. Adelman et al. [113] found that one GST
gene (gsts1) was putatively associated with pyrethroid re-
sistance in the Richmond C. lectularius strain due to up-
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regulated transcription, and three other GST genes were
similarly identified by Mamidala et al. [92]. However, fur-
ther studies on transgenic expression (such as those in
Drosophila flies [143]) and metabolism studies [105], are
urgently warranted to empirically confirm this mechanism
in bed bugs.

ABC transporters
ATP-binding cassette transporters (ABC transporters) are
one of the largest classes of transporters that are respon-
sible for the ATP-powered translocation of many substrates
across membranes. The function of ABC transporters is as
either importers, which bring nutrients and other mole-
cules into cells, or as exporters, which pump toxins, drugs
and lipids across membranes [144–146]. In addition, ABC
transporters were found to increase the efficiency of toxin
removal from the targeted site. Hence, ABC transporters
have been associated with resistance to major insecticide
classes (Table 5) although not directly related to the detoxi-
fication of the compounds. In bed bugs, Mamidala et al.
[92] suspected that ABC transporters were involved in
metabolic resistance in C. lectularius due to overexpression
of the genes encoding ABC transporters. Zhu et al. [90]
confirmed the role of ABC transporters (e.g. Abc 8 and Abc
9) mediated metabolic resistance to pyrethroids (β-cyflu-
thrin) in C. lectularius, via RNAi. In addition, the authors
also identified this mechanism was widespread in the field
populations (20/21) [90].
Biochemical and molecular assays have identified that

P450s, esterases, and GSTs are associated with bed bug
insecticide resisance. Synergism studies [95] and molecular
assays based on RNAi [90] have confirmed that P450s and
esterases as well as ABC transporters mediated resistance
mechanisms exist to pyrethroids in C. lectularius. However,
most of these mechanisms have yet to be demonstrated in
C. hemipterus. In addition, further studies specifically in-
volving metabolism experiments to empirically demon-
strate the disappearance of the parent compound and an
increase of metabolites in resistant strains would be helpful
in clarifying the role of these mechanisms in bed bugs.

Target site insensitivity
Insecticides such as OPs, carbamates, DDT, and pyre-
throids affect specific target sites (e.g. AChEs, VGSC,
GABA receptor) (Table 5) that typically are associated with
the insect nervous system [147]. Insecticide-resistant
insects have evolved modifications at these target sites that
allows for normal neurological function to occur, despite
the presence of the toxicant. The four main types of target
site insensitivity mechanisms in resistant insects are: (i)
knockdown resistance (kdr-type), which causes resistance
to pyrethroids and DDT; (ii) altered AChEs, which confer
resistance to OPs and carbamates; (iii) insensitive GABA
receptors (also known as rdl-mutation), which provide

resistance to cyclodienes and phenylpyrazoles; and (iv)
altered nAChRs, which confer resistance to neonicotinoids
[6, 147, 148].

Kdr
VGSCs are essential for normal transmission of nerve im-
pulses [149]. DDT and pyrethroids act on or bind to the
VGSC proteins to disrupt the process, which is followed
by knockdown, paralysis, and eventually death of the
insect. Many insect pests have evolved moderate to high
levels of resistance to DDT and pyrethroids by reducing
target site sensitivity (so-called kdr) [150]. The first case of
reduced neuronal sensitivity to DDT was reported in the
1950s in M. domestica [151]. The kdr-resistance is a
recessive trait that confers cross-resistance to most
pyrethroids as well as DDT and its analogues [46, 152].
The VGSC gene from D. melanogaster was originally

cloned and sequenced in the late 1980s [153]. This study
revealed how to sequence the VGSC gene of both resistant
and susceptible insects. Several studies showed that kdr-
type resistance to DDT and pyrethroids results from a
single or multiple point mutations (also known as kdr
mutations) in coding sequences of VGSC in various
insect pests (Fig. 2) [46, 150, 154, 155], including bed
bugs [17, 54, 156, 157]. Yoon et al. [156] first cloned
and sequenced the coding gene of C. lectularius
VGSC from both insecticide resistant and susceptible
strains in the USA. Two kdr mutations (V419L: valine
419 to leucine, and L925I: leucine 925 to isoleucine)
were linked to confer pyrethroid resistance in C. lec-
tularius [156]. These two kdr mutations (either one
or both) were found to be widely distributed across
the USA in C. lectularius (88% of 117 strains [157]
and 85.7% of 21 strains [90] in different studies). One hun-
dred percent of the tested C. lectularius collected from
Paris, France [158] and Berlin, Germany [159] only con-
tained L925I. Of C. lectularius collected from various lo-
cations in Australia (25 strains), 96% possessed L925I [55],
while from Israel (12 strains), 100% had L925I, of which, a
few specimens from both countries had additional V419L
[54, 160]. Based on the various genotypes of V419L and
L925I mutations of 110 field-collected strains of C. lectu-
larius in the USA, Zhu et al. [157] identified four haplo-
types; haplotype A (without V419L and L925I mutations;
15.5% [17/110]), haplotype B (only L925I; 40.9% [45/110]),
haplotype C (V419L and L925I; 40.9% [45/110]) and
haplotype D (V419L; 2.7% [3/110]).
Recently, a novel mutation, I936F (isoleucine 936 to

phenylalanine), was identified in the VGSC gene of one
field-collected C. lectularius strain (from Adelaide in
Australia) that was linked to low levels of resistance to
d-allethrin [54]. This novel mutation was also found in
museum preserved C. lectularius specimens collected over
1994–2002 from four disparate locations (4/7) and one
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field-collected Perth C. lectularius strain (collected in
2007), all from Australia [54]. Interestingly, the museum
preserved specimens and the Adelaide strain did not have
the kdr V419L and L925I mutations (haplotype A). Only
the Perth strain had the L925I mutation (haplotype B).
The novel I936F mutation was probably once relatively
prevalent in preserved Australian C. lectularius specimens
(without V419 L and L925I) but largely disappeared after
2004, when the knowledge of bed bug control practices
was improved [15, 54]. It is possible that I936F only con-
ferred low levels of resistance and the populations with
the mutation did not survive, as the Adelaide strain
showed relatively higher susceptibility to d-allethrin than
that in other strains with L925I or both V419L and L925I
[54]. Although I936F mutation confers low levels of resist-
ance, it may help other mutation(s) or other resistance
mechanism(s) to evolve. The findings that the Australian
Perth C. lectularius strain had L925I and both L925I and
I936F mutations [54] may support this scenario.
Another recent study has identified four novel muta-

tions in the VGSC genes of C. hemipterus collected from
multiple countries, including Australia [L899V (leucine
899 to valine), M918I (methionine 918 to isoleucine),
D953G (aspartic acid 953 to glycine) and L1014F (leucine
1014 to phenylalanine)], Thailand (M918I, D953G and
L1014F), India (M918I and L1014F), Malaysia (L1014F)
and Kenya (L1014F), of which, two mutations (M918I and
L1014F) were associated with high resistance to pyre-
throids in C. hemipterus [17]; however the presence of
other resistance mechanisms were not excluded. These
two sites are known to confer pyrethroid resistance in a
wide range of insect pests (Fig. 2) [150, 157]. The I936F,
M918I and L1014F mutations could be verified as kdr
mutations in bed bugs by functional expression of each
mutation individually and in combination using the

Xenopus oocyte expression system with two-electrode
voltage-clamp electrophysiology [161], although this has
yet to be undertaken.
The reports of the various mutations in the VGSC

genes suggest that kdr-resistance in C. lectularius and C.
hemipterus is widespread. Seong et al. [162] found that
deltamethrin resistance levels increased in C. lectularius
with increasing frequency of the resistance allele (e.g.
L925I mutation). The M918I mutation, which was
always found together with the L1014F mutation, prob-
ably plays a synergistic role in enhancing pyrethroid
resistance in C. hemipterus [17]. These findings may
suggest that multiple kdr mutations play a significant
role in bed bug resistance to pyrethroids and DDT.
It is noteworthy that the kdr mutations found in the

two sympatric species (C. hemipterus and C. lectularius)
have occurred at different regions in the genome and
not identical between the two species. In contrast to C.
lectularius, kdr mutations in C. hemipterus may likely
have occurred from the malaria control programs (e.g.
the widespread use of pyrethroid-treated bed-nets and
indoor residual wall sprays of DDT/pyrethroid) in the
tropics [12, 28, 55, 56]. Cimex hemipterus from Kenya
(with L1014F), Malaysia (L1014F), India (M918I and
L1014F) had similar mutations, in which, these
mutations were also found in malaria vectors of
Anopheles spp. [46, 163]. The presence of kdr mutations
in Anopheles spp. could have severe consequences for
the sustainable use of pyrethroids, especially when pyre-
throids are presently used for treating bed nets [164].
On the other hand, mutations may be completely
random, and the different kdr mutations occurring
between C. lectularius and C. hemipterus may be a func-
tion of this randomness and completely unrelated to the
use of a particular insecticide.

Fig. 2 kdr mutations in insect voltage-gated sodium channels implicated in pyrethroid/DDT resistance. All information of kdr mutation sites came
from Davies & Williamson [150], Zhu et al. [157] and Dang et al. [17, 54]. I, II, III and IV, four homologous repeat transmembrane domains. One as-
terisk indicates kdr mutations (or putative kdr mutations) identified from both the common bed bug C. lectularius (V419L, valine to leucine; L925I,
leucine to isoleucine; putative I936F, isoleucine to phenylalanime) and the tropical bed bug C. hemipterus (putative M918I, methionine to isoleu-
cine; putative L1014F, leucine to phenylalanime). Two asterisks: V410 found in the tobacco budworm Heliothis virescens (F.) and V419 found in C.
lectularius are the same residue
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Altered AChEs (candidate resistance mechanism)
The first report of insensitivity of AChE to OPs and carba-
mates was reported in the spider mite Tetranychus urticae
(Koch), and subsequently reduced sensitivity of AChE was
reported as a common OP/carbamate resistance mechan-
ism in many insect species [4, 165–168].
The genetic study of the gene sequence and genomic

structure encoding for AChE (symbol: Ace) in different in-
sects revealed that sensitivity of AChE to inhibition was re-
duced by altered amino acids caused by point mutations on
the Ace gene [169, 170], which is referred to as ‘altered
AChE’. For example, the malathion-resistant MH19 strain
of D. melanogaster was found to contain a single amino
acid substitution, F368Y (phenylalanine 368 to tyrosine),
caused by a point mutation in the Ace gene. This point
mutation was found to confer resistance to malathion by P-
element transformation experiments [165]. Subsequently,
three other point mutations [phenylalanine 115 to serine
(F115S), isoleucine 199 to threonine/valine (I199T/V), and
glycine 303 to alanine (G303A)] in the Ace gene sequence
of D. melanogaster were identified [171]. These four muta-
tions in D. melanogaster associated with resistance to OPs
and carbamates were verified using the Xenopus laevis oo-
cyte expression system [171]. Furthermore, other mutations
in the gene encoding AChE have been found in other in-
sects [4, 170] which reduce the degree of AChE inhibition
by insecticides. Additionally, like the kdr-type resistance, in-
secticide resistance due to altered AChE may produce a
broad range of cross-resistance among OPs and carbamates
[172, 173].
Several studies had identified resistance to OPs and car-

bamates in both C. lectularius [11, 44, 47, 53] and C.
hemipterus [12, 56, 129]. Karunaratne et al. [56] reported
that 29–44% of Sri Lankan C. hemipterus populations
showed target site AChE insensitivity, and this may be re-
sponsible for resistance to both OPs and carbamates.
Recently, Seong et al. [168] identified and characterized

the full-length-cDNA sequences encoding two AChEs
(CAChE1 and CAChE2) from C. lectularius. Hwang et al.
[174] examined the molecular and enzymatic properties of
these two AChEs. The relatively higher correlation between
in vitro ClAChE1 inhibition and in vivo toxicity suggested
that ClAChE1 is the more relevant toxicological target for
OPs and carbamates in C. lectularius. These findings offer
valuable insights into altered AChE-mediated resistance in
bed bugs, although most of these AChE-inhibitor insecti-
cides have been prohibited for usage indoor against bed
bugs in many parts of the world.

Insensitive GABA receptor (candidate resistance
mechanism)
The GABA-gated chlorine channel, which is also known as
the GABA receptor, is the validated target for cyclodiene
(e.g. dieldrin) and phenylpyrazole (e.g. fipronil) [175–178].

Resistance to cyclodienes in several insect pests is caused
by a single mutation [A302S/G: alanine 302 to serine/gly-
cine (residue 302 in D. melanogaster, and residue 296 in
An. gambiae are the same residue)] in the GABA receptor
[147, 179, 180]. The replacement of alanine 302 affects the
binding site and destabilizes the preferred conformation of
the receptor [181]. Furthermore, an additional mutation
(V327I: valine to isoleucine) was detected in the same gene,
and it was consistently associated with the mutation A296S
(alanine 296 to serine) in resistant anophelines [182].
Several studies had identified resistance to dieldrin in

both C. lectularius and C. hemipterus [38], but both cyclo-
dienes and phenylpyrazoles are currently not legally
allowed to be used against bed bugs in most countries.
Recently, the genome sequencing of C. lectularius was
completed, and the resistance to dieldrin (Rdl) gene
encoding the GABA receptor was identified [93]. This
cyclodiene target site is a target site for phenylpyrazoles
(e.g. fipronil) as well. Therefore, these data may provide
an important clue to reveal the resistance mechanism of
insensitive GABA receptor to both cyclodienes and phe-
nylpyrazoles in bed bugs in the future.

Altered nAChRs (candidate resistance mechanism)
Neonicotinoids are widely used to control a broad range of
sucking insect pests in plants [58, 120]. Neonicotinoids act
selectively on the insect central nervous system as agonists
of the nAChRs, opening the channel and causing continu-
ous depolarisation and firing of postsynaptic neurons
resulting in paralysis and death [183]. With the increase of
neonicotinoid usage, resistance to these insecticides has in-
creasingly been reported, not only due to metabolic detoxi-
fication mechanism, such as P450s, but also due to the
target-site mutation(s) on nAChRs [120, 184]. For example,
the mutation R81T (arginine 81 to threonine) present in
the β1 nAChR subunit confers high levels of resistance to
imidacloprid in cotton-melon aphid, Aphis gossypii (Glover)
[185] and green peach aphid, Myzus persicae (Sulzer) [186].
More recently, Romero & Anderson [64] reported high
levels of neonicotinoid resistance in C. lectularius.
Although metabolic resistance including general esterases
may be involved [64], the role of altered nAChR has never
been confirmed in the bed bug.

Symbiont-mediated insecticide resistance (candidate
resistance mechanism)
Symbiotic relationships between animals and microorgan-
isms are common in nature. Various microorganisms have
established associations with animal hosts through parasit-
ism, mutualism and commensalism, or by ectosymbiosis
and endosymbiosis [187]. In insects, bacterial symbionts,
such as Wolbachia, commonly associated with hosts, can
manipulate insect host reproduction and nutritional mu-
tualism [188]. Interestingly, bacterial symbionts have been
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identified to be involved in insecticide resistance in some
insect pests, which is termed ‘symbiont-mediated’ insecti-
cide resistance [189, 190]. Kikuchi et al. [189] found that
fenitrothion-degrading Burkholderia endosymbiont strains
established a specific and beneficial symbiosis with the soy-
bean bug Riptortus pedestris (F.) and conferred fenitrothion
resistance. Apart from Burkholderia, a variety of organo-
phosphorus degraders have been isolated and characterized
from many bacterial genera [191]. In addition, bacterial
symbionts can be involved in insect resistance to biological
agent such as Bacillus thuringiensis Berliner [192] and the
parasitoid wasp Aphidius ervi Haliday [193]. A recent study
suggested a correlation between the high bacterial densities
(e.g. Arsenophonus, Rickettsia, and Wolbachia) in whitefly
Bemisia tabaci (Gennadius) and the insect’s ability to de-
toxify toxic compounds such as insecticides (e.g.
thiamethoxam, imidacloprid, pyriproxyfen and spiromesi-
fen) [194].
Recently, molecular studies identified various symbionts,

especially the bacterial symbionts, in bed bugs [104, 188,
195–197], although the first endosymbiont, Rickettsia lectu-
laria Arkwright et al. (= Symbiotes lectularius), was
documented by light microscopy in C. lectularius almost
90 years ago [198]. Hypsa & Aksoy [195] first isolated two
symbionts, Wolbachia (an alpha-proteobacterium) and a
BEV-like symbiont (an unnamed gamma-proteobacterium)
from ovary tissue of C. lectularius, which were later found
to be responsible for manipulating reproduction of bed
bugs [196]. Subsequently, Wolbachia was found to play an
essential role in nutritional mutualism in C. lectularius
[188]. A transcriptomic study by Bai et al. [104] identified a
total of 14.24% of non-insect transcriptomic sequences (e.g.
non-insect eukaryotes, 11.16%, fungi, 1.78%, bacteria,
1.21%, viruses, 0.04%, Archaea, 0.02%, and artificial
sequences, 0.03%) in C. lectularius that probably belongs to
various symbionts or pathogens in bed bugs. In fact, a
genomic study by Benoit et al. [197] further demonstrated
various sequences from multiple bacterial symbionts and/
or possible pathogens, or opportunists in C. lectularius, for
instance, Arsenophous, Wolbachia, Sodalis, Hamiltonella,
Peptoclostridium, Methanococcus, Serratia, Shewanella,
and 81 other genera. Despite the presence of multiple
functional symbionts in bed bugs, their potential role in
mediating insecticide resistance in bed bugs is still undocu-
mented and should be considered in future studies.

Monitoring insecticide resistance
Over the last few years, there have been many reports of
insecticide resistance in bed bugs worldwide. Monitoring
insecticide resistance status and resistance mechanisms
in bed bugs is a proactive and essential approach to de-
termine proper insecticide usage and to provide early
warning for the need to modify chemical control strat-
egies. Numerous studies on the methods of detecting

and documenting insecticide resistance in pest popula-
tions have been evaluated. The three major methods of
monitoring insecticide resistance are (i) conventional
toxicity bioassays, (ii) biochemical assays, and (iii) mo-
lecular assays (Table 6).

Conventional toxicity bioassays
The standard bioassay that is routinely used to detect
insecticide resistance involves collecting insects from the
field and rearing them until sufficient numbers are
available for testing. Mortality of nymphs or adults is
then assessed after exposure to a range of doses of an in-
secticide. Subsequently, the LD50, LC50 or LT50 values
are determined using probit analysis. The results from
field populations are then compared with those from a
susceptible population, and a resistance ratio is calcu-
lated to estimate the susceptibility of field populations.
The susceptibility of recent collected bed bugs to major
insecticide classes (such as pyrethroids, OPs, carba-
mates, and neonicotinoids) have been evaluated using
bioassays (Table 7) [30, 44, 48, 53, 64].
However, bioassays can be difficult to undertake. Nor-

mally this method requires a relatively large number of
live bed bugs for the test, and obtaining such numbers is
not always possible, especially when the number of bed
bugs collected from field infestations can be relatively
small [17, 162]. In addition, a standard susceptible strain
is required for comparison, but many organisations do
not have access to such a strain. A few susceptible C.
lectularius strains are maintained in laboratories around
the world, such as the Ft. Dix strain (= Harlan strain,
established in 1973) [30, 113], FL-BB strain (early 1990s)
[30, 136], LA-1 strain (2006) [30, 90], UBA strain of the
Federal Environment Agency (since 1947) [159], and
Monheim (Germany) strain (late 1960s) [53], but to date,
no susceptible C. hemipterus strain is available. Other
traditional bioassays, such as the use of discriminating
concentrations which are based on previous studies on
the dose–response curves of susceptible strains, could
be an alternative option [16, 39], if there is no suscep-
tible strain or sufficient number of live bed bugs avail-
able for testing. However, a single discriminating dose
could only indicate whether resistance is present, but
not the degree of resistance.
Most insecticide resistance monitoring depends on trad-

itional bioassays, which use a fixed insecticide concentra-
tion (e.g. discriminating/diagnostic concentration) for a
pre-determined exposure time in a chamber or on a filter
paper impregnated with insecticides. The results are re-
ported as percentage mortality and/or knockdown effect.
For example, the diagnostic concentration (or WHO
susceptibility test kit) defined by the World Health
Organization (WHO) (e.g. twice the concentration/dosage
that kills 100% of the susceptible insect strain) is widely
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used to determine the susceptibility or resistance to major
classes of insecticides in mosquito vectors [38, 39]. Several
studies have investigated bed bug resistance using this
method (Table 7). Myamba et al. [55] adapted the WHO
mosquito test kit [199] to detect pyrethroid resistance in C.
hemipterus in Tanzania. Karunaratne et al. [56] also adapted
the WHO method [39] to determine resistance to several
insecticides in C. hemipterus in Sri Lanka. Tawatsin et al.
[12] examined the insecticide resistance of both C.
lectularius and C. hemipterus in Thailand using the WHO
test kit [200].
Similar to the WHO methods, many studies established

the baseline susceptibility data (e.g. LC99/LD99) for insecti-
cides that results in 99% or more mortality of susceptible
bed bug strain(s) (Table 7) [30, 47, 53, 201, 202]. These data
can serve as guidelines for selecting discriminating concen-
trations to screen for bed bug resistance to insecticides,
even in the absence of a susceptible strain. For example,
Boase et al. [47] established two different discriminating
concentrations that produced 99% mortality in three
susceptible C. lectularius strains in the United Kingdom to
detect resistance to bendiocarb (carbamates) and alpha-
cypermethrin (pyrethroids), respectively. Romero et al. [30]
used a discriminating concentration (10-fold greater than
the labelled rate of active ingredient in the commercial
product and nearly 30-fold the dose required to kill 100%
of the susceptible Ft. Dix C. lectularius strain) to evaluate
resistance to deltamethrin in third-to-fifth instar C. l-
ectularius of 10 field-collected populations. Zhu et al. [157]
also used this discriminating concentration to assess resist-
ance to pyrethroids in 17 C. lectularius populations.
Kilpinen et al. [53] determined the C. lectularius resistance
to permethrin by the discriminating concentration of 1.6-
fold LD99 and chlorpyrifos by the concentration of 2-fold
LD99, respectively. However, if the discriminating concen-
trations used are excessively high, this could potentially
mask the detection of resistance, especially when the

resistance level is still relatively low. Early detection of
resistance is only possible if the diagnostic concentration is
low enough (or a dose response curve undertaken). Other-
wise, resistance could only be discovered after widespread
field control failures are reported.
Once the resistance status is determined, the resistance

mechanisms should next be characterized. A rapid and
simple bioassay in combination with synergists could be
used to detect some metabolic resistance mechanisms.
Synergists serve as enzyme inhibitors of metabolic detoxi-
fication enzymes such as esterases, P450s, and GSTs
(Table 8). Bioassays incorporating synergists have been
used widely to detect the role of different resistance mech-
anisms in many insect pests. For example, synergists, such
as PBO, have been incorporated in the control of bed
bugs, and to detect potential resistance mechanisms
[127–129, 136]. However, not all resistance mechanisms
could be characterized using synergists. Therefore, bio-
chemical assays and molecular assays must be employed
along with insecticide bioassays to detect the specific re-
sistance mechanisms (Tables 6, and 9).

Biochemical assays
Biochemical assays use model substrates to detect ele-
vated activity of metabolic enzymes involved in insecti-
cide resistance in individual insects. Over the last two
decades, biochemical assays have been used successfully
to detect and monitor insecticide resistance in numerous
insects [203] especially in combination with insecticide
bioassay. Karunaratne et al. [56] surveyed insecticide
resistance and potential resistance mechanisms in Sri
Lankan C. hemipterus based on toxicity bioassays [36, 39]
and biochemical assays [203]. They found that C. hemi-
pterus showed high levels of resistance to DDT and mala-
thion, and detected elevated levels of GSTs and esterases
as well. Yoon et al. [156] used biochemical assays to iden-
tify resistance mechanisms responsible for deltamethrin

Table 6 Methods used to monitor for insecticide resistance in bed bugs (Cimex spp.)

Methoda Advantages Disadvantages

Bioassays via dose/
concentration-response
assays

Provide levels of resistance Require a susceptible strain, need large numbers of live bed
bugs; regardless of mechanism(s)

Bioassays via
discriminating
concentration/dose
assays

Standardized (e. g. WHO susceptibility test kits);
simple to perform

Provide no information about levels of resistance and type of
resistance mechanism(s) (except when using synergists); lack
sensitivity

Biochemical assays Require a small sample size; sensitive; provide indirect
evidence on specific resistance mechanism(s)

Require sophisticated and costly equipment and the
technology which pest managers do not have ready access
to; require materials to be kept frozen

Molecular assays Require a small sample size; very sensitive; provide
informations on specific resistance mechanism(s); can detect
resistance alleles (e. g. kdr mutations), even from dead body;
could develop specific molecular markers to detect specific
mechanism(s)

Require specific and costly equipment, high ongoing costs
and the technology which pest managers may not have
access to; costly reagents, require materials to be kept frozen

aInformation from Ranson et al. [163], Seong et al. [162] and Dang et al. [16]

Dang et al. Parasites & Vectors  (2017) 10:318 Page 19 of 31



Table 7 Published discriminating doses and susceptibility baselines used to detect insecticide resistance in bed bugs (Cimex spp.)

Insecticide Discriminating
concentration

Assessment Susceptibility baseline Reference

LC50/LD50 LC90(99)/LD90(99)

C. lectularius

DDTa 4% 5 df – – [39]

Dieldrina 0.8% 2 df – – [39]

Fenitrothionb 1% 5 hf – – [39]

Malathionb 5% 16 hf – – [39]

Trichlorfonb 1% 5 hf – – [39]

Propoxurc 0.8% 24 hf – – [39]

Permethrind 0.25% Cf – – [39]

Deltamethrind 0.025% Cf – – [39]

Dichlorvosb – 24 hf 2.9 ppm 5.7 ppm [202]

Pirimiphos-methylb – 24 hf 13.5 ppm 29.8 ppm [202]

λ-cyhalothrind – 24 hf 22.2 ppm 357.7 ppm [202]

Permethrind – 24 hf 71.4 ppm 201.7 ppm [202]

Bendiocarbc – 24 hf 47.1 ppm 95.9 ppm [202]

Malathionb – 24 hf 92 ppm 245 ppm [202]

Carbarylc – 24 hf 166.3 ppm 245 ppm [202]

Tetrachlorvinphosb – 24 hf 252 ppm 472.7 ppm [202]

Bendiocarbc 35.3 M 48 hf – 35.3 M [47]

α-cypermethrind 23.1 M 48 hf – 23.1 M [47]

Deltamethrind 0.06% Cg – – [48]

Deltamethrind 1300 M (30 × LC99) 24 hf 3.1 M 44 M [30]

λ-cyhalothrind – 24 hf 2.16 M 66 M [30]

Deltamethrind 1% Cf – – [156]

Deltamethrind – 24 hf 1.4 M 19.2 M [201]

Bendiocarbc – 24 hf 6.5 M 38.1 M [201]

Pirimphos-methylb – T, 24 h 0.11 U – [49, 52]

Imidaclopride – T, 24 h 0.0057 U – [49, 52]

Bendiocarbc – T, 24 h 0.027 U – [49, 52]

Permethrind – T, 24 h 0.00044 U – [49, 52]

Deltamethrind – T, 24 h 0.00057 U – [49, 52]

Deltamethrind – 1 hf 18.1 ppm 81.8 ppm [162]

Deltamethrind 12 hf 3.2 ppm 26 ppm [162]

λ-cyhalothrind 1 hf 17.7 ppm 87 ppm [162]

λ-cyhalothrind 12 hf 3.4 ppm 30 ppm [162]

Deltamethrind 1300 M (30 × LC99) 24 hf – – [157]

Deltamethrind – IT, 24 h 0.00003 U – [113]

β-cyfluthrind – IT, 24 h 0.00004 U – [113]

DDTa 4% C f – – [12]

Dieldrina 0.8% C f – – [12]

Bendiocarbc 0.1% C f – – [12]

Propoxurc 0.1% C f – – [12]

Malathionb 5% C f – – [12]

Fenitrothionb 1% C f – – [12]
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Table 7 Published discriminating doses and susceptibility baselines used to detect insecticide resistance in bed bugs (Cimex spp.)
(Continued)

Cyfluthrind 0.15% C f – – [12]

Deltamethrind 0.05% C f – – [12]

Permethrind 0.75% C f – – [12]

λ-cyhalothrind 0.05% C f – – [12]

Etofenproxd 0.5% C f – – [12]

Permethrind 2.56 U (1.6 × LC99) T, 24/48 h 0.159 U 1.65 U [53]

Permethrind 57.6 M 40 minh – – [53]

Deltamethrind 19.6 M 40 minh – – [53]

Chlorpyrifosb 0.2 U (2 × LC99) T, 24/48 h 0.03 U 0.1 U [53]

Chlorpyrifosb 53 M 40 minh – – [53]

Malathionb 0.007% (2 × LC95) T – – [248]

Diazinonb 0.02% (2 × LC95) T – – [248]

Trichlorfonb 1.4% (2 × LC95) T – – [248]

Chlorpyrifosb 0.014% (2 × LC95) T – – [248]

Permethrind 0.03% (2 × LC95) T – – [248]

Cypermethrind 0.00008% (2 × LC95) T – – [248]

α-cypermethrind 0.000001% (2 × LC95) T – – [248]

Deltametrhrind 0.00008% (2 × LC95) T – – [248]

λ-cyhalothrind 0.00005% (2 × LC95) T – – [248]

Imidaclopride 0.0015% (2 × LC95) T – – [248]

Acetamipride 0.0044% (2 × LC95) T – – [248]

Deltamethrind 1300 M (30 × LC99) 24 hf – – [92]

Deltamethrind 0.06 U (100 × LD50) T, 24 h 0.0006 U – [122]

Deltamethrind – 24 hf 30 M – [90]

Deltamethrind – T 0.0004 U – [94]

β-cyfuthrind – T 0.00308 U – [94]

Deltamethrind – 24 hf 2.58 M [159]

d-allethrind 40 mg/mat 24 hi – – [16, 54]

Imidaclopride – T, 72 h 0.0023 U – [64]

Acetamipride – T, 72 h 0.0003 U – [64]

Thiamethoxame – T, 72 h 0.0019 U – [64]

Dinotefurane – T, 72 h 0.0145 U – [64]

C. hemipterus

DDTa 2% 1 hf – – [39]

α-cypermethrind 20 M 72 hj – – [55]

Permethrind 200 M 72 hj – – [55]

Permethrind 0.75% 72 hf – – [55]

DDTa 2% 24 hf – – [56]

Malathionb 5% 16 hf – – [56]

Propoxurc 0.8% 24 hf – – [56]

Deltamethrind 0.025% Cf – – [56]

Permethrind 0.25% Cf – – [56]

DDTa 4% Cf – – [12]

Dieldrina 0.8% Cf – – [12]
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resistance in a New York C. lectularius strain, although
there were no differences in the activity of the enzymes
evaluated. Adelman et al. [113] also used biochemical as-
says to detect the differential activity of detoxification en-
zymes, which suggested that metabolic resistance
probably was associated with pyrethroid resistance in C.
lectularius. Romero & Anderson [64] evaluated the
activities of metabolic detoxification enzymes (P450s,
GSTs, and esterases) in C. lectularius using biochemical
assays. They found that metabolic resistance is probably
involved in resistance to neonicotinoids. However, it is im-
portant to clarify that the presence of elevated levels of

enzymes alone is not a direct evidence to demonstrate
their involvements as resistance mechanisms, unless it
could be shown through in vivo metabolism and/or syner-
gism studies that these enzymes were involved [105].

Molecular assays
Detection of insecticide resistance using molecular assays
could provide early warning of the development of insecti-
cide resistance and the specific resistance mechanism,
which would allow the choice of insecticides to be decided
more accurately. For example, kdr-resistance mutations
could be identified in many DDT- and/or pyrethroid-
resistant insects. Multiple molecular assays have been de-
veloped to detect kdr mutations, such as direct DNA se-
quencing analysis, allele-specific PCR (AS-PCR), Heated
Oligonucleotide Ligation Assay (HOLA), Sequence Specific
Oligonucleotide Probe Enzyme-linked ImmunoSorbent
Assay (SSOP-ELISA), PCR-Dot Blot, Fluorescence Reson-
ance Energy Transfer/Melt Curve Analysis (FRET/MCA),
High Resolution Melt (HRM), and TaqMan Real-Time
PCR assays, in a range of insect pests [204], including bed
bugs (Table 9) [17, 54, 90, 92, 113, 156–158, 162]. Direct
DNA sequencing analysis, including QS (Quantitative Se-
quencing) [160, 162] is the most common molecular assay
used to identify kdr mutations (e.g. V419L, L925I) in field-
collected bed bug strains (Table 9) [54, 92, 113, 157, 158].
However, this analysis is not practical for studying large-
scale populations. Other assays such as AS-PCR [90, 157]
can be used to detect kdr mutations in field-collected
strains (Table 9). As noted by Bass et al. [204], a more

Table 7 Published discriminating doses and susceptibility baselines used to detect insecticide resistance in bed bugs (Cimex spp.)
(Continued)

Bendiocarbc 0.1% Cf – – [12]

Propoxurc 0.1% Cf – – [12]

Malathionb 5% Cf – – [12]

Fenitrothionb 1% Cf – – [12]

Cyfluthrind 0.15% Cf – – [12]

Deltamethrind 0.05% Cf – – [12]

Permethrind 0.75% Cf – – [12]

λ-cyhalothrind 0.05% Cf – – [12]

Etofenproxd 0.5% Cf – – [12]

d-allethrind 40 mg/mat 24 hi – – [16, 17]

Abbreviations: T topical application, IT injection topical application [113], C continuous exposure, d days, h hours, M mg AI m−2, U μg μL−1 or μg insect−1
aChlorinated hydrocarbons
bOPs
cCarbamates
dPyrethroids
eNeonicotinoids
fSurface contact on filter paper
gSurface contact on Hardboard panels
hSurface contact on glass plates
iSurface contact on mosquito mat
jSurface contact on netting

Table 8 Synergists as inhibitors of major metabolic
detoxification enzymes

Insecticide detoxification
enzymes

Synergists/inhibitorsa

Cytochrome P450
monooxygenases (P450s)

PBO, sesamex

Esterases EN16/5–1, DEF, TPP, IBP, K-1, K-2, sesamex,
and SV-1

Glutathione S-transferases
(GSTs)

DEM, EA and CF

Abbreviations: DEF S.S.S-tributlyphosphorotrithioate, TPP triphenyl phosphate,
IBP S-benzyl diisopropyl phosphorothiolate, K-1 (2-phenyl-4H-1,3,2-
benzodioxaphosphorothiolate), K-2 2-phenoxy-4H-1,3,2-benzodioxaphosphorin
2-oxide, sesamex 5-[1-[2-(2-ethoxyethoxy) ethoxy]ethoxy]-1,3-benzodioxole, SV-
1, O,O-diethyl-O-phenyl phosphorothiolate, DEM diethyl maleate, EA ethacrynic
acid, CF chlorfenethol
aData sourced from Brogdon & Chan [286], Heong et al. [147] and Lilly et
al. [127]
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Table 9 Published molecular markers of genes putatively involved in resistance mechanisms of bed bugs (Cimex spp.)

Resistance mechanism Gene Molecular assay Primer sequence (5′˗3′) Reference

kdr V419 L PCR and sequencing F: AACCTGGATATACATGCCTTCAAGG;
R: TGATGGAGATTTTGCCACTGATG

[54, 157]

L925; I936F PCR and sequencing F: GGAATTGAAGCTGCCATGAAGTTG;
R: TGCCTATTCTGTCGAAAGCCTCAG

[54, 157]

V419L AS-PCR F(V): ATTCCTGGGATCATTCTACCTCg;
F(L): ATTCCTGGGATCATTCTACCTCc;
R: TGATGGAGATTTTGCCACTGATG

[90, 157]

L925I AS-PCR F(L): ATTATGGGCAGAACAGTGGGTGCCc;
F(I): ATTATGGGCAGAACAGTGGGTGCCa;
R: TGCCTATTCTGTCGAAAGCCTCAG

[90, 157]

V419L QS F: GTCCGTGGCACATGTTGTTCTTCA;
R: CTGATGGAGATTTTGCCACTGATGC;
R: CCTCTTCAGCAGCTTCTTCTTCTTC (for sequencing)

[160, 162]

L925I QS F: GGTCTATCAGTTTTGAGGTCATTCAG;
R: GGAGTTCGCCATCAGGGAATCTAT;
F: GTGTTTAAGCTGGCTAAGTCATGGCC (For sequencing)

[160, 162]

M918I; L1014F PCR and sequencing F: GGAATTGAAGCTGCCATGAAGTTG;
R: TGCCTATTCTGTCGAAAGCCTCAG

[17]

Penetration resistance Contig_1766 (CDA) qRT-PCR F: TGAATGCTATAAGAATCGTA;
R: ATTACCAATACACCAACAA

[92]

Contig_1762
(CHS)

qRT-PCR F: TAATGAAGCAAGGCACTA;
R: AATACTCCACACGATACC

[92]

Contig_48951 (CPAP) qRT-PCR F: GTCCTCAGCACCAATCGT;
R: GTTGTTGGAACTGTTGTTGATG

[92]

Contig_17694 (LCP) qRT-PCR F: GCCACTACTATAACAGAG;
R: ATTACCTCCAAGATTGAAT

[92]

Contig_21630 (PCP) qRT-PCR F: CCAGATAATTCAAGAGATG;
R: AGTCTAATCGGTCTATATG

[92]

Contig_24229 qRT-PCR F: CGCCAGGGCCGAGGAGTATG;
R: ACGGGGTCGGCGGTGTAGTCT

[94]

Contig_24231 qRT-PCR F: CGACGATCATCCCCAATACAGTTT;
R: AGGGGCGGCTTTAGCGACCACA

[94]

Contig_24227 qRT-PCR F: TTTCTTTTGGCAGCTTTGGTTGTA;
R: CCTGCTTTCGGTCTGGGATTTG

[94]

Contig_24230 qRT-PCR F: GACTACTACGCCCACCCGAAATAC;
R: GTGAGCAGCGTGGCCAGTCTTGTG

[94]

Contig_24228 qRT-PCR F: TCCCGCTGTTACCAAGACTCAATG;
R: GCCAAAGCGACTGCAGGTGTATC

[94]

Contig_2034 qRT-PCR F: TACCGTTAATGCTGCTACACCAA;
R: TCCCGAGGCGACGAAACCACT

[94]

Contig_1629 qRT-PCR F: AGGCCAGTCCAACACAACCAAC;
R: TGCTGCCGTCCTCATTCTCC

[94]

Contig_3037 qRT-PCR F: ACGGCAGGATGGTCGAAGATTATG;
R: AGGACGAGGGGCGGGCTGTGGT

[94]

Contig_2322 qRT-PCR F: CGAACCTGCCGGAAGTGACATAAA;
R: TTGCGGCTGGTAGTACTGAGGTTG

[94]

Contig_773 qRT-PCR F: GCCGTTGAGCAGCAGCGATAA; [94]

R: CGTGGGGCGGAAGAAGGATT

Contig_2220 qRT-PCR F: ATGGCACCAGGAGGGGAACTTA;
R: GGTACTGGGGCTGGGCTCTGT

[94]

Contig_1833 qRT-PCR F: ACAATTCGGTGGTGCCCCTTTCT;
R: TCGGCGACGTAGCTGACCTGGAC

[94]

Contig_820 qRT-PCR F: ATCAGCAGCCAAGTCGTAGGAAGC;
R: GGAGGGGTTGGGAGGTGGTCT

[94]
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Table 9 Published molecular markers of genes putatively involved in resistance mechanisms of bed bugs (Cimex spp.) (Continued)

Contig_934 qRT-PCR F: ACACCACTCCCGTTCCCATCGTC;
R: CGTTCTCGTCGGCGGTGTAAGTCA

[94]

Contig_2492 qRT-PCR F: CGGTATCTCGGCGAAGGAACAG;
R: GCGGCGTAGGGAGATGAGCA

[94]

Contig_22513 qRT-PCR F: CGACGGAACATACAACTGGGAATA;
R: GTCGGCGGTGTAGGTCAACTGGAT

[90]

Contig_15313 qRT-PCR F: ACGGAACCCATCCCGATCCTTAAA;
R: ATGCCGTTACCGGTTTCGTATTCC

[90]

Contig_02621 qRT-PCR F: ACTCCTGAAGTCCAAGCAGCAAGA;
R: TCGGAAGGGTTGTCCAAATCGTGA

[90]

Contig_8158 qRT-PCR F: CCAAGCGGTCAAAGCAGCACATTT;
R: AGCCTAGCGAGAGCTTGGTTGTAA

[90]

Metabolic resistance
[1] P450s

CYP9
(Contig No.: N/A)

qRT-PCR N/A [104]

CYP6DM2
(Contig No.: N/A)

qRT-PCR F: CCCCCTTATGCTACCCGTTTGA;
R: TTCGTCCTTTTTATGTCCGTCTGC

[113]

CYP397A1
(Contig No.: N/A)

qRT-PCR F: CTCGGGCTCACCACTCTCAACA;
R: ACCGTCATGGCTCCCGTCAG

[113]

CYP400A1
(Contig No.: N/A)

qRT-PCR F: CCTGCGCGTTCGGAGTCAATA;
R: CATCGGCTAAATAGAGGAAAAAGT

[113]

Contig_19601
(CYP397A1V2)

qRT-PCR F: TCGGAGGAATGGAAGAAG;
R: CGTCATGGTATGGATGGT

[92]

Contig_103
(CYP6A2)

qRT-PCR F: AAGTTGTCCTAGAGTGTT;
R: GAGATATGCGTGAATGTC

[92]

Contig_22399
(CYP6A13)

qRT-PCR F: CGTCATGGTATGGATGGT;
R: TCGGAGGAATGGAAGAAG

[92]

Contig_11345
(CYP397A1)

qRT-PCR F: TATTGGAGTCGACAGGGCGTGAAA;
R: TGACATCGCCCAATTGCTTGTAGC

[90]

Contig_03764
(CYP398A1)

qRT-PCR F: TGTCGACCCAATGATGGCTCTGAA;
R: GAAATTGGAGGCCGATTTGGCGAT

[90]

Contig_04490
(CYP6DN1)

qRT-PCR F: GCGAGTCTGGGAAATTGTGCATGAAT;
R: AATGCCCGATTACGATGTCAGGGA

[90]

Contig_04099
(CYP4CM1)

qRT-PCR F: ATTGGTAACATTGGAGGCCCTGGA;
R: AGAGATTTGCCTTACCACCAGCGA

[90]

ClCPR
(Contig No. N/A)

qRT-PCR F: TATGCCGCAGAATACGGACAACTC;
R: ACCTGCAAATTCTTCACCAGTGCC

[122]

[2] Esterases CE3959
(Contig No. N/A)

qRT-PCR F: ACGTCTGGAGAAGGGCAACTGAAA;
R: GACGGCCGGGTAGATGAAAACAAC

[90, 113]

CE21331
(Contig_03262)

qRT-PCR F: TCTCACGGGGACGAACTGCCTTAT;
R: CCTGGTCTTCTGGGTATTTCTTCA

[90, 113]

[3] GSTs gsts 1
(Contig No. N/A)

qRT-PCR F: AGGAGAGCCAGTTAGATTTATGTT;
R: AAGCGATTCCCACCGATTTT

[113]

[4] ABC- Transporters Contig_1346 qRT-PCR F: TGCTCTACATAATTCTGACAT;
R: GTAGGACGGTATGAGGTA

[92]

Contig_08506
(Abc8)

qRT-PCR F: ATCCTGATGGGCCGAGTAAACCAT;
R: TTCTGGAGGTGACCGTCAAGTTGT

[90]

Contig_02154
(Abc9)

qRT-PCR F: TTTAGCAACCGATGTGACGCAAGC;
R: TGACCCAGACGTTGTCAACACAGA

[90]

Contig_05955
(Abc10)

qRT-PCR F: TCACAGCGGTCTTCCTGGATTCTT;
R: AACTTCTGCGCGCACATTAGAACG

[90]

Contig_09403
(Abc11)

qRT-PCR F: ATGCAGCTCAGTAGGGTCGTCTTT;
R: CGGGCCAAAGTCAAATCAGCACAT

[90]

Abbreviation N/A Not applicable, AS-PCR Allele-Specific PCR, QS Quantitative Sequencing qRT-PCR quantitative Real-Time PCR, F Forward primer, R Reverse primer
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sensitive and specific molecular assay (e.g. TaqMan Real-
Time PCR assay) should be developed to identify kdr
mutations.
The recent transcriptome and genomic studies in bed

bug populations have revealed that multiple candidate
genes that putatively mediate resistance mechanisms
may be present in bed bug populations (Table 1)
[90, 92, 93, 113, 197]. In these studies, overexpres-
sion of genes that encode metabolic enzymes (e.g.
P450s, esterases, and GSTs) and genes that encode
cuticular proteins for thickening or remodelling
cuticle to reduce the insecticide penetration rate,
were used as discriminating criteria to identify genes
that are likely associated with insecticide resistance,
especially with pyrethroid resistance, in bed bugs
[90, 92, 94, 104, 113], although they need to be
further experimentally validated. Based on the quan-
titative RT-PCR technology, many molecular markers
have been developed to monitor those putative
resistance-associated genes based on these studies
(Table 9) [90, 92]. Additionally, RNAi techniques
also provides a promising approach to further
validate the gene(s) that governs resistance in bed
bugs [90, 122]. Lastly, other approaches, such as
transgenic expression [143] and metabolism studies
[105], can be conducted to directly validate the
gene(s) governing resistance in bed bugs.

Conclusions
Over the last two decades, bed bugs have undergone a
major resurgence around the world. The widespread
presence of insecticide resistance in field bed bug popu-
lations may be the single most important factor respon-
sible for the bed bug resurgence. Transcriptomic and
genomic studies have significantly revolutionized insecti-
cide resistance research in bed bugs over recent years.
Multiple physiological-based mechanisms are putatively
associated with bed bug insecticide resistance. These
mechanisms include reduced penetration by thickening
or remodelling cuticle (e.g. upregulation of cuticular-
related protein genes), metabolic resistance (e.g. in-
creased metabolic activities of detoxification enzymes),
and target site insensitivity (kdr mutations). However,
the involvement of most of the candidate genes associated
with insecticide resistance found through transcriptomic
and genomic approaches still need to be verified by empir-
ical functional approaches such as RNAi, gene functional
characterization, metabolism/biotransformation studies,
and neurophysiological studies. The progress in under-
standing insecticide resistance mechanisms mentioned
herein is mainly focused on the common bed bug C.
lectularius. Little is known on insecticide resistance
mechanisms in the tropical bed bug C. hemipterus, al-
though it is likely to share similar mechanisms. Bioassay

methods are relatively simple to perform and provide
standardized data to monitor insecticide resistance. How-
ever, they have several practical limitations. For instance,
bioassays require a susceptible strain for comparison and
a large quantity of insects for testing. Ideally, biochemical,
molecular assays and insecticide bioassays could be con-
certedly performed to detect insecticide resistance and its
mechanisms. The latter two assays have advantages, such
as requiring a smaller sample size, and could accurate
identify the gene(s) that is/are associated with the resist-
ance mechanisms. However, these assays require sophisti-
cated and costly equipment and reagents to perform
which may not be readily available in developing coun-
tries. In addition, it would be counter-productive to use
biochemical and molecular monitoring assays as a stand-
alone approach without empirical validation of resistance
status.

Abbreviations
ABC-transporters: ATP-binding cassette transporters;
AChEs: Acetylcholinesterases; ADP: Adenosine diphosphate; ATP: Adenosine
triphosphate; BHC: Benzene hexachloride; CDA: Chitin deacetylase;
CF: Chlorfenethol; CHS: Chitin synthase; CIN-1: A Cimex lectularius strain
collected in 2005 in Cincinnati, OH; CPAP: Cuticular protein analogous to
peritrophin; CPR: NADPH-Cytochrome P450 Reductase; CPRR: Cuticular
protein with the rebers and riddiford consensus; DDT: Dichloro-diphenyl
trichloroethane; DDVP: Dichlorvos; DEF: S.S.S-tributlyphosphorotrithioate;
DEM: Diethyl maleate; EA: Ethacrynic acid; EN16/5–1: 6-[2-(2-butoxyethoxy)
ethoxymethyl]-5-propyl-2, 3-dihydrobenzofuranby; FCVB: Filter Contact Vial
Bioassay; FL-BB: A susceptible C. lectularius strain collected from Gainesville,
Florida; FRET/MCA: Fluorescence Resonance Energy Transfer/Melt Curve
Analysis; GABA receptor: γ-aminobutyric acid receptor; gamma-HCH: gamma-
hexachlorocyclohexane; GSH: Reduced glutathione; GSTs: Glutathione S-
transferases; HOLA: Heated Oligonucleotide Ligation Assay; HRM: High
Resolution Melt; IBP: S-benzyl diisopropyl phosphorothiolate; IRAC: Insecticide
Resistance Action Committee; IRM: Insecticide resistance management; K-
1: (2-phenyl-4H-1,3,2-benzodioxaphosphorothiolate); K-2: 2-phenoxy-4H-1,3,2-
benzodioxaphosphorin 2-oxide; kdr: knockdown resistance; LA-1: A
susceptible C. lectularius strain collected in 2006 in Los Angeles, CA;
LCP: Larval cuticle protein; METI: Mitochondrial electron transport
inhibitors; nAChRs: Nicotinic acetylcholine receptors;
NADPH: Nicotinamide Adenine Dinucleotide Phosphate;
OCs: Organochlorines; OPs: Organophosphates; P450s: Cytochrome P450
monooxygenases; PBH: 3-Phenoxybenzyl hexanoate, a surrogate substrate
for carboxylesterases and oxidases; PBO: Piperonyl butoxide; PCP: Pupal
cuticle protein; qRT-PCR: Quantitative Real-Time PCR; QS: Quantitative
Sequencing; RACE: Rapid amplification of cDNA ends; RNAi: dsRNA-
mediated interference; SEM: Scanning electron microscope;
sesame: 5-[1-[2-(2-ethoxyethoxy) ethoxy]ethoxy]-1,3-benzodioxole;
SSOP-ELISA: Sequence Specific Oligonucleotide Probe Enzyme-linked
Immuno Sorbent Assay; SV-1: O,O-diethyl-O-phenyl phosphorothiolate;
TPP: Triphenyl phosphate; VGSC: Voltage-gated sodium channel;
WOR-1: a C. lectularius strain collected in 2007 in Worcester, MA
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