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Ancylostoma ceylanicum infective third-
stage larvae are activated by co-culture
with HT-29-MTX intestinal epithelial cells
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Abstract

Background: Human hookworm larvae arrest development until they enter an appropriate host. This makes it
difficult to access the larvae for studying larval development or host-parasite interactions. While there are in vivo
and in vitro animal models of human hookworm infection, there is currently no human, in vitro model. While
animal models have provided much insight into hookworm biology, there are limitations to how closely this can
replicate human infection. Therefore, we have developed a human, in vitro model of the initial phase of hookworm
infection using intestinal epithelial cell culture.

Results: Co-culture of the human hookworm Ancylostoma ceylanicum with the mucus-secreting, human intestinal
epithelial cell line HT-29-MTX resulted in activation of infective third-stage larvae, as measured by resumption of
feeding. Larvae were maximally activated by direct contact with fully differentiated HT-29-MTX intestinal
epithelial cells. HT-29-MTX cells treated with A. ceylanicum larvae showed differential gene expression of several
immunity-related genes.

Conclusions: Co-culture with HT-29-MTX can be used to activate A. ceylanicum larvae. This provides an opportunity to
study the interaction of activated larvae with the human intestinal epithelium.
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Background
Hookworm infection continues to be a problem in de-
veloping regions of Asia, Africa and Latin America [1].
Infection with hookworm contributes to the cycle of
poverty by causing poor growth, anemia, and impaired
school performance in children [1, 2]. Hookworm infec-
tion also causes illness in adults, especially in those who
are immunocompromised or afflicted by other diseases
such as malaria and tuberculosis [3].
There are two major hookworm species of humans:

Ancylostoma duodenale and Necator americanus [4].
Ancylostoma ceylanicum is an emerging hookworm of
humans in southern Asia [5–7]. Unlike the major
hookworm species, A. ceylanicum can infect dogs and
hamsters. The ability of A. ceylanicum to parasitize

laboratory animals has made it a useful model for the
study of human hookworm infection [8].
Hookworm require their host in order to complete de-

velopment. Eggs in feces from an infected host hatch in
the soil and develop to infective third-stage larvae (iL3).
At this point, the larvae arrest and will not resume
development until they enter their host. Upon entry to
the host, the larvae activate, which entails resumption of
feeding, secretion of infection-related proteins, and tran-
scriptional changes [9–13]. Activated larvae migrate to
the intestine where they continue development through
the fourth larval stage (L4), attach to the intestinal wall,
and mature to adulthood. There are two routes by which
iL3 larvae can migrate to the intestine [4]. Ancylostoma
sp., if ingested, can travel through the stomach and
directly to the intestine. Alternatively, both Ancylostoma
and Necator sp. can enter through the skin upon contact
with contaminated soil and travel through the blood
stream to the lungs. From the lungs, they are coughed
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up, swallowed, and travel through the stomach to
the intestine.
Since hookworm only continue development beyond

the iL3 stage inside their host, the initiation of parasit-
ism is difficult to study. The signaling events allowing
the larvae to transition from free-living iL3 to parasitic
L4 are still unknown. Elucidation of these events could
allow for the development of novel parasite control in-
terventions and identification of immunomodulatory
natural products, as well as further our understanding of
hookworm biology [12, 14, 15].
In light of this problem, an in vitro method for the

study of activation of A. ceylanicum iL3 larvae outside of
the host has been developed [12, 16, 17]. In this method,
larvae are incubated with canine serum and reduced
glutathione, resulting in activation, the earliest stage of
larval response to the host environment. Although these
worms do activate, they do not continue development to
L4. Additionally, recent work has shown that larvae acti-
vated by this method do not have the same transcrip-
tional profile as larvae activated in vivo [13, 18].
In order to improve upon the existing in vitro model,

we have begun development of an alternative, human
model for the activation of iL3. In this model, A. ceylani-
cum iL3 are incubated with human intestinal epithelial
cells. Using this model, we have successfully activated
iL3 worms, causing them to resume feeding to a level
exceeding what is observed after percutaneous infection
in vivo [19].

Methods
Parasites
An Indian strain of A. ceylanicum (USNPC No. 102954)
was raised in Syrian hamsters as described previously
[20]. Hamsters were maintained at the George
Washington University in accordance with institutional
animal care and use committee guidelines. Infective A.
ceylanicum L3 s were recovered from coprocultures after
approximately 1 week at 27 °C by modified Baermann
technique and stored up to 4 weeks in BU buffer
(50 mM Na2HPO4/22 mM KH2PO4/70 mM NaCl,
pH 6.8) [21] at room temperature.

Cell culture
HT-29-MTX (from Dr Thécla Lesuffleur, INSERM
U560, Lille, France) were maintained in DMEM with
10% fetal bovine serum (FBS) and 1X Antibiotic-
Antimycotic (Gibco, Gaithersburg, MD, USA; final
concentration of 100 units/ml penicillin, 100 μg/ml
streptomycin, and 0.25 μg/ml Amphotericin B) at 37 °C
with 5% CO2. Prior to seeding trays for A. ceylanicum
activation assays, cells were treated with 0.25% (v/v)
trypsin and 0.02% EDTA in phosphate-buffered saline,
pH 7.4 (PBS).

Ancylostoma ceylanicum activation assays
HT-29-MTX were seeded into 12-well culture trays
(VWR, 10,062-894), with 2 × 104 cells per well. For the
first 2 days of culture, the cells were incubated in DMEM
with 10% FBS and 1× Antibiotic-Antimycotic (Gibco). On
day 3 of culture, serum-free media (DMEM with 1X
Antibiotic-Antimycotic, 1× Insulin-Transferrin-Selenium,
1× GlutaMax, and 1× MEM NEAA) was substituted for the
previous media. All serum-free media (SFM) supplements
were products of Gibco. Cells were maintained in SFM,
with media changes every other day. On day 6, day 13, or
day 20, A. ceylanicum iL3 were prepared and approximately
100 were added to each cell culture well with 2 μl of Fungi-
zone (Gibco). To prepare A. ceylanicum iL3 for incubation
in cell culture, they were pre-treated with 0.05% sodium
hypochlorite in 1× PBS for 3 min and then washed twice in
1× PBS. Where indicated, they were incubated in 1% HCl
for 30 min and/or incubated in 5% porcine bile in 1× PBS
for 2 h. After each treatment they were washed twice in 1×
PBS. The worms were then added to cell culture, buffer, or
media and incubated for 36 h at 37 °C and 5% CO2. Larvae
were incubated for 36 h because previous work has shown
that by 36 h the maximum number of larvae are activated
[17]. After 36 h, the worms were assayed for resumption of
feeding, according to the method described in Hawdon &
Schad [16]. Briefly, they were incubated in 2.5 mg/ml
FITC-labeled BSA (Invitrogen, Carlsbad, CA, USA) for 2 h
at 37 °C and 5% CO2, washed in 1× PBS, and observed by
fluorescent microscopy. Individuals with a fluorescent intes-
tinal lumen were counted as activated.
For A. ceylanicum activation assays in the absence of dir-

ect contact with the cells, HT-29-MTX were seeded on the
bottom of 6-well transwell insert trays (Costar, 3450), with
2 × 104 cells per well. After day 2, they were maintained in
SFM, as described above, for 20 days. On day 6, 13, or 20,
pre-treated A. ceylanicum iL3 larvae were added to the
upper portion of the transwell insert and incubated as de-
scribed above.
A minimum of three biological replicates were conducted

for each data point. Where noted, the percentage of larvae
feeding was normalized to the percentage of larvae feeding
in the SFM or PBS control, as appropriate for the experi-
ment, with the percentage of larvae feeding in the control
group being set as zero prior to averaging the results for
each biological replicate. This normalization accommodates
for batch-to-batch variability in the activation capacity of
the larvae. Two-way analysis of variance was performed to
look for interactions between variables. Where no interac-
tions were observed, pairwise comparisons using t-tests
with pooled standard deviations were performed.

Treatment of HT-29-MTX with A. ceylanicum larvae
HT-29-MTX were seeded and maintained as for the 20-day
A. ceylanicum activation assays. For treatment of

Feather et al. Parasites & Vectors  (2017) 10:606 Page 2 of 8



HT-29-MTX cells, A. ceylanicum larvae were prepared as
above with 0.05% sodium hypochlorite treatment followed
by 1% HCl treatment. Buffer washes were performed as
described above. On day 20, HT-29-MTX cells were
treated with approximately 100 A. ceylanicum larvae in
20 μl of buffer or with buffer alone and incubated at 37 °C
and 5% CO2 for 24 h. After 24 h the cells were harvested
for RNA isolation.

RNA isolation
RNA was isolated from and RNA-Seq performed on a
total of four samples. Two samples were HT-29-MTX
cells treated with A. ceylanicum larvae and two control
samples were HT-29-MTX cells treated with buffer
alone. Total RNA from the samples was purified using
Trizol (Thermo Fisher, Waltham, MA, USA). The purifi-
cation procedure deviated from the commercial Trizol
protocol in the following regards: (i) after the first phase
separation, an additional chloroform extraction step of
the aqueous layer was performed using Phase-lock Gel
tubes (5 prime), (ii) 1 μl of GlycoBlue (Thermo Fisher)
was added immediately prior to the isopropanol precipi-
tation, and (iii) the RNA was washed twice with 75%
ethanol. RNA sample quality was confirmed by spectro-
photometry (NanoDrop) and with a fragment analyzer
(AATI Fragment Analyzer). For each sample, 1 μg of
total RNA was used for further analysis. PolyA+ RNA
was isolated with the NEBNext Poly(A) mRNA Magnetic
Isolation Module (NEB).

RNA sequencing
RNA-Seq was performed using the RNA Sequencing
Core at Cornell University. TrueSeq-barcoded RNAseq
libraries were generated with the NEBNext Ultra
Directional RNA Library Prep Kit (NEB). Each library
was quantified with a Qubit 2.0 (dsDNA HS kit; Thermo
Fisher) and the size distribution was determined using a
fragment analyzer (Advanced Analytical) prior to pool-
ing. Libraries were sequenced on the NEXTseq 500. At
least 20 M single-end 75 bp reads were generated per
library. Reads were trimmed for low quality and adaptor
sequences with Cutadapt v1.8. Reads were mapped to the
reference genome UCSC hg19 using Tophat v2.0. Cufflinks
v2.2 was used to generate FPKM values and to complete
statistical analysis on differential gene expression.

Results
In designing an in vitro method for the activation of A.
ceylanicum iL3 larvae, we aimed to mimic the oral route
of infection, where iL3 larvae are consumed and pass
through the stomach into the small intestine [19].
Therefore, after sterilization in 0.05% sodium hypochlor-
ite, A. ceylanicum were treated with 1% HCl to mimic
passage through the stomach. After HCl treatment,

larvae were treated with 5% porcine bile, in a manner
similar to that used by Li et al. [22] in Trichinella activa-
tion. Larvae would encounter bile acids as they pass
through the duodenum.
After these pre-treatments, larvae were washed and incu-

bated with HT-29-MTX intestinal epithelial cells (IECs) for
36 h at 37 °C and 5% CO2. HT-29 is a cell line derived from
a human colon carcinoma [23]. Colon cancer cell lines,
when differentiated, are structurally and functionally similar
to the epithelium of the small intestine [24]. Methotrexate-
adapted HT-29 cells (HT-29-MTX), when grown to post-
confluency, are fully differentiated and composed of
mucus-secreting goblet cells and polarized, absorptive
enterocytes with brush borders [23–25]. HT-29-MTX cells
were cultured in SFM, as previous work has shown that in-
cubation of A. ceylanicum iL3 with serum alone is sufficient
to induce activation of the larvae [12, 16, 17].
As a measure of activation, we calculated the percent-

age of the larvae that were feeding after incubation with
the IECs. Larvae were counted as feeding if they were
observed to have fluorescent protein in their intestines
after two-hours of incubation with FITC-BSA.
First we determined the effect that each step of the

treatment protocol had on A. ceylanicum activation. In-
cubation in SFM alone increases the percent of activated
A. ceylanicum iL3 by 3 %, compared to larvae incubated
in PBS. Pre-treatment with HCl did not increase the per-
centage of feeding larvae over incubation in SFM with-
out pre-treatment (Fig. 1). Although treatment with HCl
did not increase the percentage of feeding larvae, we
continued to include this step in our larval preparation
as an additional sterilization step.
We hypothesized that bile acid pre-treatment may play

a role in activation of A. ceylanicum iL3. Treatment with
bile did significantly increase feeding by approximately
10% (F(1, 9) = 16.5379, P = 0.0017) (Fig. 1). While bile
treatment alone was not sufficient to induce a high level
of feeding in the larvae, it may be permissive for activa-
tion through other pathways [26]. A two-factor analysis
of variance showed no significant interaction between
HCl treatment and bile treatment (F(1, 9) = 1.2357,
P > 0.05).
After treatment with 1% HCl and 5% bile, incubation

of A. ceylanicum iL3 larvae for 36 h with 21-day cultures
of HT-29-MTX results in over 70% of the iL3 becoming
activated (Fig. 2). This exceeds the percentage of A. cey-
lanicum iL3 activated by percutaneous infection of ham-
sters in vivo [19]. Although the larvae did activate, they
did not continue development into L4.
At 21-days, post-confluent cultures of HT-29-MTX are

fully differentiated [25]. They express the differentiation-
associated proteins dipeptidyl peptidase IV, carcinoem-
bryonic antigen, and villin [23, 24] and have higher
expression levels of the mucus protein-coding genes, mucs
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1-5 [25, 27]. This led us to investigate the effect of age of
culture on activation of A. ceylanicum iL3 larvae. Twenty
one-day cultures of HT-29-MTX are significantly better at
activating A. ceylanicum iL3 than 7-day or 14-day cul-
tures, P = 0.0058 and P = 0.0266, respectively (Fig. 3). This
difference may be due to the absence or decreased con-
centration of the activating signal in younger cultures.
The signal from HT-29-MTX that results in activation

of may be secreted by the cells into the culture media,
or may require direct contact of larvae with the cells.
We used transwell inserts to separate larvae from the

IECs to test these alternatives. Larvae were activated at a
greater percentage with direct contact with the IECs,
P = 0.014 (Fig. 3). The fact that the larvae were still acti-
vated to some extent in the absence of contact suggests
that a soluble factor is at least partially responsible for
activation of the worms. The reduced percentage of lar-
vae activated without direct contact with the IECs could
be due to the soluble factor being at lower concentration
in the transwell than next to the cells, or due to some
other contact-dependent factor playing a role in activa-
tion. A two-factor analysis of variance showed no signifi-
cant interaction between age of cell culture and direct
contact with the culture (F(4, 14) = 0.4501, P > 0.05).
To investigate the effect that the hookworm have on

HT-29-MTX cells, we used RNA-Seq to analyze transcrip-
tional changes in cells treated A. ceylanicum larvae.
Nineteen genes were identified as differentially expressed,
with a p-value of 0.00005 and a q-value of 0.03. These
genes are listed in Table 1.

Discussion
Identification of the host-specific factor responsible for
promoting development of hookworm from iL3 to L4
has remained elusive. Similarities between the life cycle
of Caenorhabditis elegans, a well-studied, free-living soil
nematode which can enter an arrested stage of develop-
ment called ‘dauer’, and that of hookworm, which con-
stitutively arrest development until entry into the host,
has led researchers to look for parallels in the signaling
mechanisms between dauer exit and the iL3-L4
transition [28].
A bile acid-like, steroid hormone, dafachronic acid

(DA), is required for dauer exit in C. elegans through its
binding of the nuclear receptor, DAF-12 [26]. Ancylostoma
ceylanicum lack a homologue of the cytochrome P450

Fig. 1 Treatment with 5% bile increases the activation of Ancylostoma ceylanicum iL3 larvae. Treatment of A. ceylanicum iL3 with 5% bile increases
the percent of activated larvae (P = 0.0017). Each bar represents the mean of three trials normalized to the percent feeding in PBS alone. Error
bars represent the standard error of the mean. Each trial had n > 50. Data from each trial was normalized to the percent activation observed in
observed in cell-free controls. Abbreviation: SFM, serum-free media

Fig. 2 Ancylostoma ceylanicum iL3 are activated by co-culture with
IECs. Co-culture with HT-29-MTX for 36 h after 1% HCl and 5%
porcine bile treatment activates A. ceylanicum iL3 (P = 0.00001).
Error bars represent the standard error of the mean. Each bar
represents the mean of three trials, each with n > 50. Abbreviation:
SFM, serum-free media
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enzyme, DAF-9, which is required for synthesis of DA,
although they do have a DAF-12 homologue. Therefore, it
has been speculated that a host-derived enzyme may play
the role of DAF-9 for synthesis of the DAF-12 ligand [28].
Alternatively, a host-derived bile acid-like molecule could
be the DAF-12 ligand. C. elegans DAF-12 ligands are cap-
able of inducing feeding in iL3, although not development
to L4 [28]. Non-endogenous ligands have been shown to
be weak activators of C. elegans DAF-12 [29] and the two
C. elegans DAF-12 ligands are required at higher concen-
tration to activate parasite DAF-12 [28]. This suggests that
in hookworm an alternative endogenous or host-derived
ligand may better activate DAF-12 and result in develop-
ment to L4. As the site in the host where the hookworm
resume development is the small intestine, we hypothe-
sized that a host bile-acid may be the ligand. To test this
hypothesis, we tested if porcine bile acids would have any
effect on activation of A. ceylanicum, as dog, hamster, and
human bile acid are not commercially available. We found
that treatment with porcine bile acid only marginally in-
creased A. ceylanicum feeding. Since bile acids from a
non-host species can induce some level of A. ceylanicum
feeding, it is possible that host bile acids would be more
effective and could contain a DAF-12 ligand.

Co-culture with HT-29-MTX IECs was effective in ac-
tivating A. ceylanicum iL3 larvae, although it did not
lead to development to L4. HT-29-MTX do express
genes from the cytochrome P450 superfamily, however,
they do no express all of the P450 cytochrome genes
that are expressed in the human ileum or liver [30].
Therefore we cannot reject the hypothesis that a host
P450 enzyme is responsible for the development of iL3
to L4.
As an alternative to the hypothesis of a conserved

dauer exit/iL3-L4 signal, the signal for triggering devel-
opment of iL3 to L4 could come from other cell types
present in the intestine. The intestinal epithelium also
contains enteroendocrine cells, Paneth cells, stem cells,
M cells, and is home to all of the cell types found in the
gut-associated lymphoid tissue. Any of these could pro-
duce the signal for the iL3-L4 transition. Preliminary
work with intestinal organoids derived from human
pluripotent stem cells showed that incubation of iL3 lar-
vae with the organoids did not promote development to
L4 (data not shown), although further work could be
done to optimize conditions.
Ancylostoma larvae can infect via a cutaneous or oral

route. When infecting via the oral route, larvae do not

Fig. 3 Ancylostoma ceylanicum iL3 are maximally activated by differentiated IECs. Mature, 21-day-old cultures of HT-29-MTX maximally activate Ace
iL3 compared to 7- and 14-day cultures (*P = 0.0058 and P = 0.0266, respectively). Direct contact with the cells induces greater activation than no
direct contact (P = 0.014). Each bar represents the mean of three trials, each with n > 50. Error bars represent the standard error of the mean. Data
from each trial was normalized to the percent activation observed in observed in cell-free controls
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activate prior to development through L4 [19]. Only
when larvae infect via the cutaneous route do they acti-
vate and resume feeding prior to arrival in the intestine.
It is thought that when larvae infect percutaneously they
need to resume feeding to provide energy for their
journey to the intestine [19]. In our assay, we aimed to
replicate the oral route of infection; however, larvae re-
sumed feeding but did not develop to L4. This suggests
that signal for development to L4 is missing from the
HT-29-MTX culture and that the larvae perceive the
intestinal epithelium provided in our model more
generally as epithelium.
Despite this, the model we have described here can be

used to further study activation of iL3. Larvae activated
in the presence of an epithelium may more closely re-
semble larvae activated in vivo than those activated by
serum and reduced glutathione alone. This model pro-
vides an opportunity to study the signaling events
occurring in the hookworm and the epithelium as they
interact. We have taken a first step in this direction by
analyzing the transcriptional changes that occur in HT-
29-MTX cells treated with A. ceylanicum larvae. Of the
19 differentially expressed genes that we identified, 14
have been previously shown to play some role in

immunity, including in parasitic infection, bacterial in-
fection, and epithelial barrier function, suggesting that
our in vitro system is representative of at least some in
vivo events of infection. References for these previous
studies are listed in Table 1.
Ht-29 has been used in other immunological studies,

both of innate and adaptive immunity [31–37]. There
has been some evidence that HT-29 cells respond differ-
ently to certain stimuli than do differentiated short-term
primary cultures and intestinal epithelial cells in vivo
[36, 37] and that HT-29 cells exposed to inflammatory
mediators and cytokines produced by cells of the
adaptive immune system show behavioral changes
[31, 38–40]. Use of an immortalized cell line and lack of
feedback from cells of the adaptive immune system may
account for why we did not observe large changes in gene
expression of HT-29 cells upon exposure to activated
hookworm larvae.

Conclusions
This work is the first to show that human IECs are cap-
able of inducing feeding of iL3 human hookworm larvae.
Larvae are maximally activated by direct contact with
fully-differentiated HT-29-MTX cells. Incubation with

Table 1 Gene expression changes in IECs treated with A. ceylanicum iL3. Using RNA-Seq, gene expression was analyzed
in HT-29-MTX cells treated with A. ceylanicum larvae and compared to controls (buffer treatment)

NCBI entrez gene ID NCBI entrez gene ID HT-29-MTX FPKM HT-29-MTX +
A. ceylanicum FPKM

Fold change Reference

DEFB1 (defensin beta 1) 1672 9 3 -1.5 [41]

SUCNR1 (succinate receptor 1) 56670 4 2 -1.1 [42]

IFI44 (interferon-induced protein 44) 10561 2 4 1.0 [43]

LOC100190986 (uncharacterized) 100190986 3 7 1.0

PLK2 (polo-like kinase 2) 10769 46 24 -0.9 [44]

NEAT1 (nuclear paraspeckle assembly transcript 1) 283131 115 210 0.9 [45]

ARL14 (ADP ribosylation factor like GTPase 14) 80117 22 12 -0.9

PFKFB3 (6-phosphofructo-2-kinase/
fuctose-2,6-biphosphatase 3)

5209 16 28 0.8 [46]

APCDD1L (APC down-regulated 1 like) 154284 5 3 -0.8

ADRA2A (adrenoceptor alpha 2A) 150 4 3 -0.7

ADM (adrenomedullin) 133 71 116 0.7 [47]

DUSP6 (dual specificity phosphatase 6) 1848 13 8 -0.7 [48]

ATF3 (activating transcription factor 3) 467 19 29 0.7 [49]

LFNG (LFNG O-fucosylpeptide
3-beta-N-acetylglucosaminyltransferase)

16858 37 24 -0.6 [50]

HES6 (hes family bHLH transcription factor 6) 55502 37 24 -0.6

EPHB3 (Eph receptor B3) 2049 8 5 -0.6 [51]

DDX60 (DexD/H-box helicase 60) 55601 0 1 1.9 [52]

NLRC5 (NLR family CARD domain containing 5) 84166 1 1 0.9 [53]

TACSTD2 (tumor-associated calcium signal transducer 2) 4070 35 52 0.6 [54]

Notes: For each condition, n = 2. Genes were identified as differentially expressed that had a p-value equal to 0.00005 and a q-value equal to 0.03. These genes
are listed in above. For each gene, a citation that documents the gene’s role in immunity was listed, where applicable
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HT-29-MTX cells may provide a better model of iL3
activation than the current model, since the larvae are
exposed to a more complex signaling environment than
they encounter during activation by serum and reduced
glutathione alone. Additionally, this model provides the
opportunity to study the interactions between the
activated parasite and the host tissue.
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