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Abstract

Background: Control of the mosquito vector Culex pipiens with insecticides is the main way to control arboviruses
that the species can transmit such as West Nile virus (WNV) and Rift Valley fever virus (RVFV). However, its efficiency
has been hampered by the emergence of insecticide resistance. Little is known about the insecticide-resistance
status and underlying resistance mechanisms of field-collected populations of Cx. pipiens in Morocco.

Methods: Mosquito adults from Mohammadia city in Morocco were reared from immature stages. The level of
their susceptibility to insecticides was assessed using standard WHO bioassay. The two forms of the Cx. pipiens
complex and their hybrids were identified by a multiplex PCR. Identified mosquitoes were then tested for the
presence of the G119S ace-1 and L1014F kdr mutations using PCR-RFLP and PCR assays, respectively.

Results: WHO bioassays indicated that Cx. pipiens was resistant to all tested insecticides: lambda-cyhalothrin
(49% mortality), permethrin (63% mortality), DDT (16% mortality), malation (52% mortality) and bendiocarb
(39% mortality). The frequency of the 119S allele was almost identical in the pipiens form and hybrids (0.11 and
0.15, respectively) whereas it remained low in the molestus form (0.03). No significant correlation was observed
between the G119S allele and the resistance phenotype to two tested insecticides (malathion and bendiocarb).
The frequency of the L1014F allele was identical in the pipiens form and hybrids (0.44) whereas it was low in the
molestus form (0.36) but no significant difference was detected (χ2 = 1.46, df = 1, P = 0.225). The presence of the
L1014F kdr mutation was significantly associated with resistance to three tested insecticides in pipiens form
(P = 0.0019, P = 0.0023 and P = 0.023, respectively, to lambda-cyhalothrin, permethrin and DDT) whereas no
significant correlation was observed between the L1014F kdr mutation and resistance phenotype in molestus form
and hybrids to the three tested insecticides.

Conclusion: These findings showed that wild populations of Cx. pipiens have developed resistance against the
main insecticide families with different modes of action: organochlorines (DDT), organophosphates (malathion),
carbamates (bendiocarb), pyrethroids (lambda-cyhalothrin, permethrin). Therefore, urgent action should be taken to
manage the resistance in this species to maintain the effectiveness of arbovirus control.
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Background
The Culex pipiens complex mosquitoes are known to be
competent vectors of West Nile virus (WNV) and Rift
Valley fever virus (RVFV). WNV has been circulating
for a very long time in the Mediterranean region [1–4].
In Morocco, several outbreaks of WNV have been re-
ported. The first was in 1996; 94 equine cases including
42 deaths and only one human case was infected [5].
The second was in September and October of 2003
when WNV occurred among horses in Kenitra [6], and
the last outbreak was in 2010 in Mohammadia region
[7]. Unfortunately, there are no effective vaccines; the
only way to limit the infection is the control of mosqui-
toes, by the most commonly used insecticides, namely
organophosphates (temephos) for larvae and pyrethroids
for adults. However, the overuse of these products
causes the selection of resistance rendering the mole-
cules ineffective for vector control [8].
There are different types of insecticide resistance

mechanisms in mosquitoes, but the two main ones are
(i) the metabolic resistance, grouping three major fam-
ilies of enzymes involved, glutathione S-transferase
(GST), multifunctional monooxygenases (MFOs) and
carboxyl-esterase (COE), and (ii) the target site modifi-
cation, which is due to point mutations in the target of
insecticides, thus limiting the binding of the neurotoxin
products. Several insecticide target modifications have
been described: the γ-amino butyric acid (GABA
Receptors) encoded by Rdl gene, the synaptic acethyl-
cholinesterase (AChE1) encoded by the ace-1 gene and
the voltage-dependent sodium channel encoded by the
kdr gene [9, 10]. The knockdown resistance kdr gene is
the major mechanism responsible for resistance to DDT
and PYR, reducing the sensitivity of the receptors to
these products in the voltage-gated sodium channel
(VGSC) across the neural axon [8, 11]. This resistance is
due to the mutations of kdr gene. Many mutations have
been reported, but the most common known to be asso-
ciated with knockdown resistance in mosquitoes, includ-
ing Cx. pipiens, are L1014F by the substitution of a
leucine (TTA) by phenylalanine (TTT) and L1014S by
the leucine (TTA) to serine (TCA) substitution at codon
1014 [12–14], while the L1014C mutation by the substi-
tution of a leucine (TTA) by cysteine (TGT) has only
been reported for Cx. pipiens molestus from China [15].
The enzyme AChE is the target of OP and CX, which

are competitive inhibitors of acethylcholine (Ach). After
binding to AChE, the insecticides prevent the hydrolysis
of the neurotransmitter Ach in the cholinergic synapses
of the central nervous system. As a result, the Ach
remains active, and the nervous influx is continued,
causing the death of the insect by tetany [16]. In several
insects, two genes are described, ace-1 and ace-2, coding
for the two synaptic enzymes, AChE1 and AChE2,

respectively. Five mutations were described in OP-
resistant insects [17]. In mosquitoes, including Cx.
pipiens, the most common resistance mutation is G119S
in the ace-1 gene [18], located near the catalytic site.
The high insensitivity displayed by Cx. pipiens is due to
the substitution of glycine by serine, resulting from a
single point mutation GGC to AGC in ace-1 gene [18],
allowing a decreased inhibition of the main synaptic en-
zyme AChE1 by the insecticide [19].
In Morocco, research on insecticide resistance and the

mechanisms responsible for insecticide resistance in Cx.
pipiens remain incomplete. The only published studies are
those on the resistance level of Cx. pipiens larvae to teme-
phos [20, 21] and recently, our team described the pres-
ence of kdr mutation in different forms of Cx. pipiens
[22]. This study aimed to evaluate the insecticide suscepti-
bility status and investigate the target site mutation fre-
quencies (G119S and L1014F) in Cx. pipiens (forms
pipiens and molestus, and hybrids) from Mohammadia
area that was affected by the last outbreaks of WNV.

Methods
Mosquito collection
Mosquitoes were collected as larvae using the dipping
sampling method during summer 2016, from a shanty-
town in Mohammadia (33°34′91″N, 7°37′56″E). The site
is a suburban habitat with aboveground breeding sites
treated with insecticides. The larvae were reared to adults
in the laboratory at 28 ± 1 °C with a relative humidity of
80% and a 16:8 h photoperiod. Mosquitoes were identified
as Cx. pipiens using the dichotomous software for the
identification of mosquitoes in Mediterranean Africa [23].

Bioassays
Adult bioassays were carried out using WHO protocols,
using four sets of 20–25 unfed and 2–5-day-old females.
They were exposed to a filter paper impregnated with
malathion (OP) at a dose of 5%, bendiocarb 0.1% (CX),
DDT 4% (OC), lambda-cyalothrin 0.05% and permethrin
0.75% (PYR), corresponding to recommended concentra-
tions to kill 100% of the susceptible individuals [24]. As
a control, two sets of 20 unfed 2–5-day-old females were
exposed to insecticide-free papers in test tubes. After
exposure, mosquitoes were maintained at 28 ± 1 °C and
80 ± 10% relative humidity, with sugar solution provided.
The knockdown effect (KD) was evaluated, at intervals
of 10 min, for each test tube impregnated with PYR and
DDT. The mortality was recorded 24 h after exposure.
Dead and surviving individuals were frozen at -20 °C for
molecular analysis.

Molecular identification of Cx. pipiens forms
Mosquito DNA was extracted individually using the
method of DNAzol according to the manufacturer’s
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protocol. Multiplex PCR assays were used to identify Cx.
pipiens complex, described by Banck &Fonseca [25]. The
CQ11 locus was used to distinguish between the two
forms of Cx. pipiens (pipiens and molestus) and their hy-
brids. The DNA fragment size amplified varied between
pipiens form (200 bp) and molestus form (250 bp),
allowing us to distinguish the two forms in a single
PCR reaction.

Detection of G119S mutation
The presence of G119S was confirmed using diagnostic
PCR-RFLP tests described by Weill et al. [26] (30 cycles of
94 °C for 30 s, 52 °C for 30 s and 72 °C for 1 min). PCR
products were digested by AluI, restriction enzyme, accord-
ing to the manufacturer’s instructions (Jena Bioscience,
Jena, Germany). After digestion, DNA fragments were
separated by electrophoresis on 2% agarose gel and were
visualized by ethidium bromide staining under ultraviolet
light. Two fragments (74 bp and 120 bp) were obtained
for homozygous resistant (RR) mosquitoes. The homozy-
gous susceptible (SS) mosquitoes presented one un-
digested fragment of 194 bp while the heterozygous
resistant (RS) individuals displayed a combined pattern
(three fragments: 194, 120 and 74 bp).

Detection of L1014F mutation
The presence of L1014F was investigated using two sep-
arate PCRs in parallel, one for wild-type susceptible al-
lele detection, using the primers Cgd1, Cgd2 and Cgd3
and the other for leucine-phenylalanine substitution, by
replacing Cgd3 by Cgd4. The PCR conditions were
1 min at 94 °C, 2 min at 48 °C and 2 min at 72 °C for
40 cycles, as described by Martinez Torrez et al. [12],
which allow detecting only one form of resistance allele
(1014F). Then the DNA fragments were separated by
electrophoresis on 1.5% agarose gel and were visualized
by ethidium bromide staining under ultraviolet light.

Data analysis
The knockdown time for 50% (the median knockdown
time ‘kdT50’) and 90% of exposed mosquitoes to PYR
and DDT were estimated using a log time probit model
(WINDL software). OP and CX do not induce any
knockdown effect. The odds ratio (OR) test was applied
to estimate the association between ace-1-resistant allele
119S and the resistant phenotype and the association be-
tween kdr-resistant allele 1014F and resistant phenotype
to different insecticides.

Results
Insecticide susceptibility bioassays
Culex pipiens mosquitoes from the study area showed
resistance to all tested insecticides (Table 1). For organo-
phosphates (malathion) and carbamates (bendiocarb),

resistance was observed in mosquitoes with mortality
rates of 52% and 39%, respectively. While for pyre-
throids, resistance was observed in mosquitoes with
mortality rates of 49% and 63%, respectively, for lambda-
cyalothrin and permethrin. In contrast, DDT caused only
16% of mortality, which revealed a low susceptibility.
KDT50 and KDT90 were 33 min and 61 min, respect-
ively, for lambda-cyalothrin, and 33 min and 65 min, re-
spectively, for permethrin (Table 1).

Frequencies of Culex pipiens forms
After insecticide bioassays, 531 insecticide-resistant and
insecticide-susceptible mosquitoes were tested by PCR
to identify the Cx. pipiens forms and hybrids. The high-
est frequency of insecticide-resistant Cx. pipiens was
observed for the pipiens form with 67%, 63%, 49%, 48%
and 67%, respectively, for malathion, bendiocarb,
lambda-cyhalothtrin, permethrin and DDT. Hybrids rep-
resented 23%, 24%, 35%, 48% and 30%, respectively,
while the molestus form represented only 10%, 13%,
16%, 5% and 2%, respectively (Tables 2 and 3).

Genotyping of target-site mutations: ace-1 and kdr
A total of 531 female mosquitoes, exposed to the five
neurotoxin products, were analyzed for the G119S ace-1
and L1014F kdr mutations.
The mosquitoes used for the bioassays with malathion

(92 specimens) and bendiocarb (102 specimens) were
genotyped for the G119S mutation. The frequency of
genotypes is presented in Table 2. When treated with
malathion and bendiocard, no homozygote resistant ge-
notypes were detected. Most mosquitoes presented a SS
or RS genotype. In addition, 339 mosquitoes were
analyzed for the L1014F kdr mutation (Table 3). After
exposure to lambda-cyalothrin, most resistant mosqui-
toes had a RS genotype (68%, 80% and 78% for the
pipiens, hybrid and molestus forms, respectively) and
susceptible mosquitoes presented a SS genotype (61%,
68% and 50% for the pipiens, hybrid and molestus forms,
respectively). Only few individuals had RR genotypes.
With permethrin, most resistant mosquitoes were

scored as a RS genotype: 67% for the pipiens form, 72%
for the hybrid form and 50% for the molestus form.
Surprisingly, a high proportion of individuals with
susceptible phenotype were scored as a RS genotype:
68% for the pipiens form, 76% for the hybrid form and
67% for the molestus form. Only few individuals pre-
sented a RR genotype.
After exposure to DDT, only a low proportion of mos-

quitoes had a RR genotype: 13% for the pipiens form
and 21.5% for the hybrid form. Most DDT-resistant
mosquitoes had a RS genotype: 71% for the pipiens
from, 71.5% for the hybrid form and 100% for the moles-
tus form. Susceptible mosquitoes presented mostly a SS
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genotype: 80% for the pipiens form and 50% for the
hybrid form.
The frequencies of the 119S allele and the 1014F allele

are shown in Tables 2 and 3. The frequency of the 119S al-
lele was almost identical in the pipiens form and hybrids,
0.11 and 0.15, respectively, whereas it was low in the moles-
tus form (0.03). The frequency of the 1014F allele was iden-
tical in the pipiens and hybrid forms (0.44) whereas it was
low in the molestus form (0.36) but no significant differ-
ence was detected (χ2 = 1.46, df = 1, P = 0.225).
The diagnostic test using ace-1 as a resistance marker in

Cx. pipiens differed between malathion and bendiocarb,

with a high specificity for both (72% and 95%, respectively)
but markedly lower sensitivity (33% and 21%, respectively)
(Table 4). The kdr as a resistance marker in Cx. pipiens
differed between the three insecticides, with a high sensi-
tivity (86 for lambda-cyhalothrin, 84 for permethrin and
87 for DDT) but markedly a lower specificity (63, 26, and
56, respectively) (Table 4).
No significant association was shown between the

G119S allele and the resistance phenotype to two tested
insecticides (malathion and bendiocarb) (Table 5). The
presence of the L1014F kdr mutation was significantly
associated with resistance to three tested insecticides in

Table 1 Mortality and knockdown effect of insecticides on Cx. pipiens in Mohammadia, Morocco

Insecticide Exposed mosquitoes Control mosquitoes kdT50 (min) (95% CI) kdT90 (min) (95% CI)

n Mortality (%) n Mortality (%)

Lymbda-cyhalothrin (0.05%) 111 49 40 0 33 (30.52–34.95) 61 (56.23–69.20)

Permethrin (0.75%) 118 63 40 0 33 (30.07–35.07) 65 (59.09–74.43)

DDT (4%) 110 16 40 0 no kd no kd

Malathion (5%) 90 52 40 0 – –

Bendiocarb (0.1%) 102 39 40 0 – –

Abbreviations: kdT50 and kdT90 knock down time for 50% and 90%, respectively, of exposed mosquitoes with confidence intervals (CI) at 5% level provided by
WINDL software, n number of mosquitoes

Table 2 Frequencies of ace-1 mutation according to the phenotype (resistant/susceptible) of different forms of Cx. pipiens in
Mohammadia, Morocco

Insecticide Cx. pipiens form Phenotype n (%) Insecticide
resistance (%)

Genotype (%) Frequency
of alleleSS RS RR

n (%) n (%) n (%)

Malathion Cx. p. pipiens Susceptible 30 (46.0) 22 (73.0) 8 (27.0) 0 0.13

Resistant 35 (54.0) 67 25 (71.5) 10 (28.5) 0 0.14

Total 65 47 (72.0) 18 (28.0) 0 0.14

Hybrid Susceptible 8 (40.0) 5 (62.5) 3 (37.5) 0 0.19

Resistant 12 (60.0) 23 6 (50.0) 6 (50.0) 0 0.25

Total 20 11 (55.0) 9 (45.0) 0 0.22

Cx. p. molestus Susceptible 2 (28.5) 2 (100) 0 0 0

Resistant 5 (71.5) 10 4 (80.0) 1 (20.0) 0 0.10

Total 7 6 (86.0) 1 (14.0) 0 0.07

Bendiocarb Cx. p. pipiens Susceptible 23 (37.0) 22 (96.0) 1 (4.0) 0 0.02

Resistant 39 (63.0) 63 31 (79.5) 8 (20.5) 0 0.10

Total 62 53 (85.0) 9 (15.0) 0 0.07

Hybrid Susceptible 16 (52.0) 15 (94.0) 1 (6.0) 0 0.03

Resistant 15 (48.0) 24 10 (67.0) 5 (33.0) 0 0.17

Total 31 25 (81.0) 6 (19.0) 0 0.09

Cx. p. molestus Susceptible 1 (11.0) 1 (100) 0 0 0

Resistant 8 (89.0) 13 8 (100) 0 0 0

Total 9 9 (100) 0 0 0

Abbreviations: RR homozygote resistant, RS heterozygote resistant, SS homozygote susceptible
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the pipiens form (P = 0.0019, P = 0.0023 and P = 0.023,
respectively, to lambda-cyhalothrin, permethrin and
DDT). There was no significant correlation between
the L1014F kdr mutation and resistance phenotype in
the molestus and hybrid forms to three tested insecti-
cides (Table 6).

Discussion
Culex pipiens is an important vector of several diseases
including West Nile fever. The lack of an effective vac-
cine drives the use of insecticides as the main way to
control vector populations [27, 28]. In this study, we
investigated the status of resistance of the Cx. pipiens

Table 3 Frequencies of kdr mutation according to the phenotype (resistant/susceptible) of different forms of Cx. pipiens in
Mohammadia, Morocco

Insecticide Cx. pipiens
form

Phenotype n (%) Insecticide
resistance (%)

Genotype Frequency
of alleleSS

n (%)
RS
n (%)

RR
n (%)

Lambda-cyhalothrin Cx. p. pipiens Susceptible 23 (45.0) 14 (61.0) 8 (35.0) 1 (4.0) 0.39

Resistant 28 (55.0) 49 4 (14.0) 19 (68.0) 5 (18.0) 0.52

Total 51 18 (35.0) 27 (53.0) 6 (12.0) 0.38

Hybrid Susceptible 25 (56.0) 17 (68.0) 6 (24.0) 2 (8.0) 0.20

Resistant 20 (44.0) 35 2 (10.0) 16 (80.0) 2 (10.0) 0.50

Total 45 19 (42.0) 22 (49.0) 5 (11.0) 0.35

Cx. p. molestus Susceptible 6 (40.0) 3 (50.0) 3 (50.0) 0 0.25

Resistant 9 (60.0) 16 2 (22.0) 7 (78.0) 0 0.39

Total 15 5 (33.0) 10 (67.0) 0 0.33

Permethrin Cx. p. pipiens Susceptible 28 (57.0) 9 (32.0) 19 (68.0) 0 0.34

Resistant 21 (43.0) 48 3 (14.0) 14 (67.0) 4 (19.0) 0.52

Total 49 12 (24.5) 33 (67.0) 4 (8.0) 0.42

Hybrid Susceptible 37 (64.0) 7 (19.0) 28 (76.0) 2 (5.0) 0.43

Resistant 21 (36.0) 48 3 (14.0) 15 (72.0) 3 (14.0) 0.50

Total 58 10 (17.0) 43 (74.0) 5 (9.0) 0.45

Cx. p. molestus Susceptible 9 (82.0) 3 (33.0) 6 (67.0) 0 0.33

Resistant 2 (18.0) 5 1 (50.0) 1 (50.0) 0 0.25

Total 11 4 (36.0) 7 (64.0) 0 0.32

DDT Cx. p. pipiens Susceptible 10 (14.0) 8 (80.0) 2 (20.0) 0 0.10

Resistant 62 (86.0) 67 10 (16.0) 44 (71.0) 8 (13.0) 0.48

Total 72 18 (25.0) 46 (64.0) 8 (11.0) 0.43

Hybrid Susceptible 4 (12.5) 2 (50.0) 2 (50.0) 0 0.25

Resistant 28 (87.5) 30 2 (7.0) 20 (71.5) 6 (21.5) 0.57

Total 32 4 (12.0) 22 (69.0) 6 (19.0) 0.53

Cx. p. molestus Susceptible 4 (67.0) 0 4 (100) 0 0.50

Resistant 2 (33.0) 2 0 2 (100) 0 0.50

Total 6 0 6 (100) 0 0.50

Abbreviations: RR homozygote resistant, RS heterozygote resistant,SS homozygote susceptible

Table 4 Diagnostic value of ace-1 (malathion, bendiocarb) and kdr (lambda-cyhalothrin, permethrin, DTT) alleles for detection of
resistance in Cx. pipiens

Malathion Bendiocarb Lambda-cyhalothrin Permethrin DDT

Sensitivity, % (95% CI) 33 (20.33–47.11) 21 (11.66–33.18) 86 (74.21–93.74) 84 (69.93–93.36) 87 (73.74–95.06)

Specificity, % (95% CI) 72 (56.11–85.40) 95 (83.08–99.39) 63 (48.74–75.71) 26 (16.22–37.16) 56 (21.20–86.30)

PPV, % (95% CI) 61 (44.98–74.50) 87 (60.76–96.47) 71 (63.01–77.89) 40 (35.85–44.75) 91 (82.69–95.44)

NPV, % (95% CI) 45 (38.77–52.02) 44 (40.11–47.31) 81 (68.41–89.29) 73 (55.39–85.58) 45 (24.41–68.25)

Abbreviations: CI confidence interval, PPV positive predictive values, NPV negative predictive values
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complex to the most commonly used insecticides for
vector control. We showed that Cx. pipiens mosquitoes
of the study area presented high resistance levels to
PYR (λ-cyalothrin and permethrin), OC (DDT), OP
(malathion) and CX (bendiocarb). For PYR and DDT, the
insecticide with the highest resistance, as shown by death
rates, were DDT (16%), followed by λ-cyalothrin (46%)
and permethrin (63%). Understanding the mechanisms

underlying this resistance is essential to guide the use of
these chemicals and preserve their efficacy as vector con-
trol tools. We also investigated the insecticide target site
mutations: G119S ace-1 and L1014F kdr. It has been re-
ported that the kdr mutation was closely associated with
PYR and DDT resistance in mosquitoes [13, 14, 29–32].
We found that the diagnostic values of the ace-1 and kdr
mutations are different: sensitivity is high for the kdr

Table 5 Correlation between the frequency of 119S allele and insecticide resistant/susceptible phenotypes to malathion and bendiocarb

Insecticide Cx. pipiens form Phenotype n G119S alleles Odds ratio P-value

119G (S) 119S (R)

Malathion Cx. p. pipiens Susceptible 30 52 8 1.08 0.875

Resistant 35 60 10 0.40–2.95

Hybrid Susceptible 8 13 3 1.44 0.464

Resistant 12 18 6 0.30–6.87

Cx. p. molestus Susceptible 2 4 0 1.42 0.511

Resistant 5 9 1 0.05–42.25

Bendiocarb Cx. p. pipiens Susceptible 23 45 1 5.14 0.093

Resistant 39 70 8 0.62–42.54

Hybrid Susceptible 16 31 1 6.20 0.071

Resistant 15 25 5 0.68–56.59

Cx. p. molestus Susceptible 1 2 0 na

Resistant 8 16 0 na

Abbreviation: na, not applicable

Table 6 Correlation between the frequency of 1014F allele and insecticide resistant/susceptible phenotypes to lambda-cyhalothrin,
permethrin and DDT

Insecticide Cx. pipiens form Phenotype n L1014F alleles Odds ratio P-value

1014 L (S) 1014F (R)

Lambda-cyhalothrin Cx. p. pipiens Susceptible 23 36 10 3.87 0.0019

Resistant 28 27 29 1.61–9.28

Hybrid Susceptible 25 40 10 4.00 0.070

Resistant 20 20 20 1.58–10.14

Cx. p. molestus Susceptible 6 9 3 1;91 0.429

Resistant 9 11 7 3.38–9.59

Permethrin Cx. p. pipiens Susceptible 28 37 19 2.14 0.0023

Resistant 21 20 22 0.94–4.86

Hybrid Susceptible 37 42 32 0.977 0.429

Resistant 21 27 21 4.47–2.03

Cx. p. molestus Susceptible 9 12 6 1.50 0.746

Resistant 2 3 1 0.13–17.68

DDT Cx. p. pipiens Susceptible 5 9 1 8.44 0.023

Resistant 31 32 30 1.00–70.70

Hybrid Susceptible 2 3 1 4.00 0.223

Resistant 14 12 16 0.37–43.40

Cx. p. molestus Susceptible 2 2 2 1.00 1

Resistant 1 1 1 0.03–29.83
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mutation (84–87%) compared to the ace-1 mutation (21%
and 33%). On the other hand, the specificity is higher for
the ace-1 mutation (72% and 95%) compared to the kdr
mutation (26%, 56%, 63%).
The leucine (L) to phenylalanine (F) substitution at

position 1014 was detected in Cx. pipiens mosquitoes
[12]. This study showed that the distribution of the
L1014F kdr mutation is widespread, particularly in the
pipiens form and hybrids. Our previous report has docu-
mented the presence of a 1014 L/1014F genotype in
three regions of Morocco including Tangier, Casablanca
and Marrakech [22]. These results confirmed that the
frequencies of 1014 L/1014F genotype are variable de-
pending on the area [31, 32], and the L1014F kdr muta-
tion is widespread in different sites of Morocco from the
North (Tangier) to Marrakech in the South. However,
many tested mosquitoes, presenting a resistant pheno-
type, were also susceptible for the kdr allele 1014F; this
result suggests that kdr might not be the only mechan-
ism conferring resistance to PYRs and DDT [33], but
other mechanisms can be involved such an overproduc-
tion of detoxifying enzymes [34]. Our results are in
agreement with those found by other teams [32, 35].
Other mutations were found in Cx. pipiens; the muta-

tion from leucine to serine (TTA to TCA) had been re-
ported in Cx. p. quinquefasciatus [13, 36, 37] and was also
found in Cx. pipiens complex from China (frequencies
ranging between 2.4–28.6%) [38], Cx. p. pipiens from
China and the USA, Cx. p. quinquefasciatus from the
USA and in Cx. pipiens pallens from Japan and China
[15]. The L1014C mutation by the substitution of leucine
(TTA) to cysteine (TGT) has been reported in many
Anopheles species [39–41] and for Cx. P. molestus from
China [15].
Mosquitoes with the Phe/kdr mutation displayed a

high level of resistance to both pyrethroids and DDT,
whereas those with the Ser/kdr mutation displayed a
high level of resistance to DDT but a low level of resist-
ance to pyrethroids [12, 42].
OP and CX are widely used around the world for vec-

tor control. The results of this study showed that all
forms of the population treated with malathion and
bendiocarb exhibit a high level of resistance. G119S is
responsible for the reduction of AChE1 activity in
cholinergic synapses. It is one of the most common
mutations detected in Cx. pipiens mosquitoes [18]. The
results showed that G119S mutation was present in the
tested population presenting resistant phenotypes. In
Morocco in 2002, Faraj et al. [21] found that larvae of
Cx. pipiens developed varying degrees of resistance in
four different provinces for certain organophosphates
(temephos, chloropyriphos, fenitrothion, pirimiphos-
methyl); the highest rates (> 250) were recorded in
Mohammedia and the lowest in Salé (< 7). These results

confirmed the presence of significant resistance in Cx.
pipiens for chlorpyriphos and temephos in the prefec-
tures of Mohammedia, Rabat and Skhirat-Témara.
Resistance was also important in pyrimiphos-methyl in
Mohammedia and malathion in Rabat and Skhirat Témara.
In fact, temephos, chlorpyriphos, and pyrimiphos-methyl
are widely used in the control of mosquito larvae in these
areas, which may explain the high resistance levels to these
products. Malathion, on the other hand, has not been re-
ported among the products used in mosquito control by
the counties of Rabat. Moreover, by comparing the sensi-
tivity of the different populations of Cx. pipiens collected
from these areas, it was found that this species developed
resistance levels that vary according to the prefectures.
Also, the results found by El Ouali Lalami et al. [20],

can be explained by the fact that chlorpyriphos and
temephos are insecticides widely used in the control of
mosquito larvae in the study area of Fez. The highest re-
sistance level (14.34) to temephos was obtained in Sidi
Hrazem, and the lowest (12.17) was recorded in the
Hafat Moulay Driss. The resistance rates of the Cx.
pipiens species to temephos recorded in the city of Fez
were higher than the rates recorded in the prefecture of
Sale but lower than those recorded in the prefectures of
Temara, Rabat and Mohammedia. These observations
are consistent with those reported in Tunisia by Kooli &
Rhaiem [43], who reported that a high level of resistance
was acquired in urban larval populations of Cx. pipiens
after several treatments with organophosphates. Other
authors [44] also reported high levels of resistance of Cx.
pipiens larvae to temephos and fenthion (resistance
ratios 129.23 and 115.56, respectively).
The resistance levels observed, if not due to intensive

prior use, can only be explained by the acquisition of
cross-resistance. Indeed, Sinegre et al. [45] found in Cx.
pipiens treated with chlorpyriphos, the appearance of re-
sistance to other organophosphates. Chavasse &Yap [46]
were able to confirm that the prolonged use of an
organophosphorus always leads to the appearance of
cross-resistance to other organophosphates and some-
times to certain products of the carbamate family.
Indeed, Sinegre et al. [47] were able to establish an obvi-
ous correlation between the degrees of resistance and the
frequency of insecticide treatments. On the French
Mediterranean coast, for example, a resistance rate of 60
was reached after seven years of regular control of Cx.
pipiens larvae with chlorpyriphos [48]. According to the
same author, it increased until a resistance rate of 330 in
some areas after ten years of use. The high rates of resist-
ance found in our study could be explained by the appear-
ance of cross-resistance, especially when the area was
treated only with temephos for larvae and PYR for adults.
Our results showed no correlation between the resist-

ant phenotype and the presence of the G119S mutation.
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This result can be explained by the implication of meta-
bolic mechanisms with overproduction of detoxifying
enzymes. Target site modification coupled with enzyme
detoxification has been described in An. gambiae and
Cx. quinquefasciatus from Benin [49]. Other studies
have demonstrated the likely implication of metabolic
mechanisms in resistance to bendiocarb [50]. There is
also a need for a future study to investigate metabolic re-
sistance like glutathione S-transferase, carboxylesterase,
and cytochrome P450 monooxygenase activity to eluci-
date the mechanisms of resistance to the currently used
insecticides in vector control.

Conclusion
The use of insecticides for vector control had been
achieved in Morocco for a long time. The results of bio-
assays and molecular identification of target-site muta-
tions showed clearly that Cx. pipiens mosquitoes from
Mohammadia were resistant to all tested insecticides.
The frequencies of resistant ace-1 and kdr alleles carry-
ing the G119S and L1014F substitution are dramatically
high for Cx. pipiens populations collected in the study
site. Hence it is pivotal that policy makers and program
implementers recognize the growing threat posed by in-
secticide resistance and strive to integrate resistance
management into all control programs.
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