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Abstract 

Background: Cryptosporidium spp. are causative agents of gastrointestinal diseases in a wide variety of vertebrate 
hosts. Mortality resulting from the disease is low in livestock, although severe cryptosporidiosis has been associated 
with fatality in young animals.

Methods: The goal of this systematic review and meta‑analysis was to review the prevalence and molecular data on 
Cryptosporidium infections in selected terrestrial domestic and wild ungulates of the families Bovidae (bison, buffalo, 
cattle, goat, impala, mouflon sheep, sheep, yak), Cervidae (red deer, roe deer, white‑tailed deer), Camelidae (alpaca, 
camel), Suidae (boar, pig), Giraffidae (giraffes) and Equidae (horses). Data collection was carried out using PubMed, 
Scopus, Science Direct and Cochran databases, with 429 papers being included in this systematic analysis.

Results: The results show that overall 18.9% of ungulates from the investigated species were infected with Crypto-
sporidium spp. Considering livestock species (cattle, sheep, goats, pigs, horses and buffaloes), analysis revealed higher 
Cryptosporidium infection prevalence in ungulates of the Cetartiodactyla than in those of the Perissodactyla, with 
cattle (29%) being the most commonly infected farm animal.

Conclusions: Overall, the investigated domestic ungulates are considered potential sources of Cryptosporidium con‑
tamination in the environment. Control measures should be developed to reduce the occurrence of Cryptosporidium 
infection in these animals. Furthermore, literature on wild populations of the named ungulate species revealed a 
widespread presence and potential reservoir function of wildlife.
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Background
Cryptosporidium, the causative agent of cryptosporidi-
osis, is an ubiquitous protozoan parasite. It causes gas-
trointestinal disease in a wide variety of vertebrate 
hosts, including ungulates of the orders Artiodactyla 
and Perissodactyla, as well as humans. Several Crypto-
sporidium species are known to be zoonotic with ani-
mals as major reservoirs [1]. In resource-limited settings, 

cryptosporidiosis is a leading cause of diarrhoeal death 
in children younger than five years across the globe, only 
second to rotaviral enteritis [2]. Cryptosporidiosis is also 
a significant contributor to health care cost in developed 
countries. It is estimated that in the USA 748,000 cases 
of human cryptosporidiosis occur annually [3]. Resi-
dents of and travelers to developing countries may be at 
greater risk of infection due to poor water treatment and 
food sanitation [4, 5]. Cryptosporidiosis typically induces 
self-limiting diarrhea in immunocompetent individu-
als, but the infection can be severe and life-threatening 
in immunocompromised subjects [6]. It is one of the 
most important diseases in young ruminants, espe-
cially neonatal calves [7, 8]. The clinical presentation of 
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cryptosporidiosis varies from asymptomatic to deadly, 
leading to important economic losses due to growth 
retardation, reduced productivity and mortality [9, 10]. 
Considering that an infected bovine calf can shed up 
to 1.1 × 108 oocysts per gram of feces at the peak of the 
infection, cattle (and very likely wild ruminants) are sig-
nificant contributors of environmental Cryptosporidium 
oocysts [11, 12], causing water-borne [13–15] and food-
borne [16, 17] diarrhea outbreaks in humans worldwide. 
The worldwide annual excretion of Cryptosporidium spp. 
oocysts by livestock has been calculated to be 3.2 × 1023 
[18], with cattle being the host species causing most 
environmental contamination. Cattle are able to carry 
different species including C. hominis which implies an 
associated significant public health risk [19]. In addition, 
Cryptosporidium oocysts are infective at the time they 
are passed in feces and are highly resilient to a wide range 
of environmental factors including disinfection and water 
treatment processes. Moreover, low infection doses are 
sufficient to cause disease in suitable hosts, e.g. 10‒100 
oocysts are described to provoke diarrhea in humans [20, 
21].

Over the past few decades, a major subject of debate 
and controversy in the epidemiology of Cryptosporidium 
is whether, and to what extent, domestic and wildlife 
species may act as natural reservoirs of human crypto-
sporidiosis [22, 23]. This is principally due to the fact that 
the genus Cryptosporidium encompasses nearly 40 valid 
species with marked differences in host range, among 
which over 10 (mainly C. hominis, C. parvum and C. 
meleagridis) have been reported in humans [24] with a 
variety of genotypes being zoonotic [1, 22, 25]. The pub-
lic health significance of animal cryptosporidiosis varies 
greatly depending on factors such as geographical vari-
ation in prevalence and genotype distribution, seasonal-
ity, load of environmental contamination with oocysts 
and access to surface waters intended for human con-
sumption or recreation [9, 26]. In particular, genotyping 
data from epidemiological surveys conducted globally 
indicate that infected calves are the major reservoir for 
zoonotic C. parvum in many areas [26, 27], with lambs, 
kids and foals being potential additional sources of C. 
parvum infection for humans in some areas of the world 
[28–31]. Pigs are only sporadically infected with zoonotic 
Cryptosporidium species and are therefore considered 
minor contributors to the zoonotic transmission of 
cryptosporidiosis in humans [32]. Adult livestock typi-
cally harbor low level and asymptomatic infections but 
are epidemiologically important as cryptic carriers of the 
parasite, enabling re-infections at the herd level. Little is 
known of the molecular epidemiology and transmission 
cycles of cryptosporidiosis in wild ungulates. However, 
recent surveys have revealed the presence of C. parvum 

in wild hoofed species including the American mustang 
(Equus ferus caballus) [33], Scottish roe deer (Capreolus 
capreolus) and red deer (Cervus elaphus) [34], and Span-
ish wild boars (Sus scrofa scrofa) [35], which may repre-
sent a threat to water quality and public health [34].

In the present study, we conducted a systematic review 
of publications on the prevalence of Cryptosporidium 
infections and Cryptosporidium species distribution in 
domestic and wild ungulates in order to ascertain the 
extent to which hoofed animals should be considered as 
relevant reservoirs of human infection.

Methods
Search strategy
To evaluate the prevalence of Cryptosporidium infec-
tion in hoofed animals, we performed a comprehensive 
review of literatures (full text or abstracts) published 
online. English databases including PubMed, Scopus, Sci-
ence Direct and Cochran were searched for publications 
related to Cryptosporidium infection of animals world-
wide, from 1984 to 2016. We used the following MeSH 
terms alone or in combination: “Cryptosporidium” or 
“cryptosporidiosis” and “prevalence” and “livestock” or 
“cattle” or “buffaloes” or “sheep” or “pigs” or “camels” or 
“alpacas” or “horses” or “ruminants” or “wildlife”. To iden-
tify additional published articles, we used the PubMed 
option of “related articles” and checked the reference 
lists of the original and review articles. The more agri-
cultural and veterinary focused database CAB abstracts 
was searched using the following search terms: “Crypto-
sporidium” or “cryptosporidiosis” and “prevalence” and 
“cattle” or “cows” or “calves” or “buffaloes” or “sheep” or 
“lambs” or “goats” or “kids” or “camels” or “alpacas” or 
“crias” or “llamas” or “pigs” or “piglets” or “horses” or 
“foals” or “deer” or “fawns” or “farm animals” or “rumi-
nants” or “livestock” or “wildlife”. A protocol for the liter-
ature review was devised (Fig. 1) in accordance with the 
PRISMA guidelines [36] (Additional file 1: Table S1).

Inclusion and exclusion criteria
As part of the eligibility for inclusion, titles that suggested 
the topic Cryptosporidium in domestic and wild hoofed 
animals were selected. The abstracts from the selected 
reference titles were reviewed by two independent 
reviewers to determine if the studies met the inclusion 
criteria and, if so, the entire articles were reviewed in full. 
If more than one report was published from the same 
study, only one was included. Exclusion criteria included 
studies only on human cryptosporidiosis or case reports. 
Studies on epidemiology of Cryptosporidium spp. in 
groups unrelated to hoofed animals, or studies present-
ing overall prevalence estimates, where samples were 
collected from the ground, and data from each animal 
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were not independently retrievable, were also excluded. 
The language of data collection was limited to English. 
In order to provide contemporaneous and representative 
estimates, studies were excluded if they presented data 
collected prior to 1984. On several occasions, we con-
tacted the authors for the collection of raw data.

Data extraction and tabulation
A data extraction form was used to collect the follow-
ing data from each study: first author, year of publica-
tion, location of study, period of study, host species, age 
range, clinical signs (diarrhoeic versus non-diarrhoeic), 
population nature (e.g. domestic, captive or wild), total 
number of fecal samples, utilized detection method 
(conventional microscopy, CM; immunofluorescence 

antibody test, IFA; enzyme-linked immunosorbent 
assay, ELISA; immunochromatographic test, ICT; 
quantitative latex agglutination, QLAT; and polymerase 
chain reaction, PCR), number of Cryptosporidium-pos-
itive samples and identity of Cryptosporidium species 
and genotypes.

Retrieving sequences and phylogenetic analyses
To examine the genetic relationships among Crypto-
sporidium spp. (C. hominis, C. felis, C. parvum, C. 
erinacei, C. xiaoi, C. ryanae, C. scrofarum, C. muris, 
C. andersoni, C. ubiquitum, C. bovis and C. suis) in 
ungulates, a phylogenetic tree was constructed using 
the program Splits Tree v.4.0 based on the Neighbor-
Net method and Median-Joining analysis of sequences 

Fig. 1 Flow diagram describing the paper selection process according to PRISMA guidelines
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of the 18S rRNA gene [37]. For this purpose, the 
sequences of the 18S rRNA gene of these Cryptosporid-
ium spp. were retrieved from the GenBank database 
in the FASTA format. These sequences were initially 
obtained from various herbivores, including cattle, buf-
faloes, yaks, camels, goats, sheep and deer, as well as 
pigs.

Meta‑analysis
A meta-analysis was performed for studies describ-
ing Cryptosporidium infection prevalence in domestic 
animals that are common in many parts of the world, 
i.e. cattle, sheep, goats, buffaloes, horses and pigs. This 
analysis was performed to enhance knowledge on the 
potential role of livestock in zoonotic Cryptosporidium 

Table 1 Summarized Cryptosporidium prevalence data for major domestic farmed animals. Data for wild populations of the given 
species not included (see for full datasets and other host species in Additional file 2: Table S2)

a Multiple studies revealed the same prevalence data

Abbreviation: ns, not stated

Host species Region No. of studies Utilized diagnostic methods Retrieved minimum 
prevalence (%)

Retrieved 
maximum 
prevalence (%)

Buffalo (Bubalus bubalis) Africa 6 CM, PCR 1.3 (CM) 52.0 (CM)

Asia 16 CM, ICT, PCR 3.6 (CM) 50.0 (CM)

Australia 2 PCR 13.1 (PCR) 30.0 (PCR)

Europe 1 ELISA 14.7 (ELISA)

South America 2 CM, PCR 9.4 (CM) 48.2 (PCR)

Cattle (Bos taurus) Africa 29 CM, ELISA, PCR 0.5 (CM) 86.7 (CM)

Asia 74 CM, ICT, IFA, PCR 1.5 (CM) 93.0 (CM)

Australia 7 CM, IFA, PCR 3.6 (IFA) 73.5 (PCR)

Europe 60 CM, ELISA, ICT, IFA, PCR, QLAT 0.0 (CM) 71.7 (CM)

New Zealand 5 CM, IFA 2.6 (IFA) 21.2 (CM)

North America 29 CM, IFA, PCR 1.1 (IFA) 78.0 (CM)

South America 11 CM, ICT, PCR 3.0 (CM) 56.1 (CM)

Goat (Capra hircus) Africa 10 CM, ELISA 0.0 (CM) 76.5 (ELISA)

Asia 15 CM, ICT, IFA 0.0 (IFA) 42.9 (CM)

Australia 1 PCR 4.4 (PCR)

Europe 22 CM, ELISA, IFA 0.0 (CM) 93.0 (IFA)

North America 3 CM 20.0 (CM) 72.5 (CM)

South America 3 CM 4.8 (CM) 100 (CM)

Sheep (Ovis aries) Africa 10 CM, ELISA, PCR 1.3 (CM) 41.8 (ELISA)

Asia 17 CM, ELISA, ICT, PCR 1.8 (CM) 66.6 (CM)

Australia 7 PCR 2.2 (PCR) 81.3 (PCR)

Europe 22 CM, IFA, ELISA 1.4 (CM) 100.0 (CM)

North America 9 CM, IFA, PCR 20.0 (CM) 77.4 (PCR)

South America 5 CM, PCR 0.0 (CM) 25.0 (PCR)

Pig (Sus scrofa) Africa 5 CM, ELISA, IFA, PCR 13.6 (CM) 44.9 (ELISA)

Asia 13 CM, IFA, PCR 0.4 (IFA) 55.8 (PCR)

Australia 3 CM, PCR 0.3 (CM) 22.1 (PCR)

Europe 13 CM, IFA, PCR 0.1 (CM) 40.9 (IFA)

North America 6 CM, IFA 2.8 (ns) 19.6 (CM)

South America 3 CM, PCR 0.0 (CM) 2.2 (PCR)

Horse (Equus caballus) Africa 3 CM, PCR 0.0 (CM) 2.9 (PCR)

Asia 7 CM, PCR 2.7 (PCR) 37.0 (CM)

Europe 10 CM, ELISA, IFA, PCR 3.4 (PCR) 25.0 (IFA)

New Zealand 2 CM 18.0 (CM) 83.3 (CM)

North America 6 CM, IFA, PCR 0.0 (IFA/PCRa) 17.0 (IFA)

South America 7 CM 0.0 (CM) 100.0 (CM)
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Fig. 2 Forest plot of prevalence of Cryptosporidium spp. infection in cattle using molecular methods (first author, year and country)



Page 7 of 23Hatam‑Nahavandi et al. Parasites Vectors          (2019) 12:453 

transmission since these animals feature a close con-
tact to humans. The pooled prevalence of Cryptosporid-
ium infection as well as its 95% confidence interval (CI) 
was calculated for each study. A forest plot was gener-
ated to display the summarized results and heterogene-
ity among the included studies. To ensure comparable 
sensitivity of tests used in analyzed studies, only results 
from studies based on PCR as a diagnostic method were 
included. Studies using PCR methods only for molecu-
lar Cryptosporidium species/genotype identification but 
utilizing alternative diagnostic methods to determine 
prevalence were not included. The heterogeneity was 
expected in advance and statistical analyses including I2 
and Cochrane’s Q test (with a significance level of P < 0.1) 
were used to quantify these variations. The meta-analy-
sis considering the random effects model [38] was per-
formed using the Stats Direct statistical software (http://
www.stats direc t.com).

Results
The initial database search retrieved 14,970 publications. 
The screening of these records enabled us to exclude 
14,456 studies due to not meeting the inclusion criteria. 
Altogether, 514 studies were retained for further investi-
gation. During the secondary assessment of these papers, 
another 85 were excluded because of one of the follow-
ing reasons: other host species including wild hoofed 

animals; report of the same results as another paper pub-
lished by the same author; and language of publication 
(e.g. Chinese, Spanish, etc.). Papers evaluating crypto-
sporidiosis in camels, yaks, donkeys, alpacas and llamas 
were excluded in the secondary analysis of data, as the 
meta-analysis focused on Cryptosporidium infection in 
cattle, sheep, goats, pigs, buffaloes and horses. Eventually, 
429 studies which evaluated Cryptosporidium infection 
during three decades met our eligibility criteria and were 
retained for analysis (Fig. 1).

Different diagnostic procedures were used for the 
detection of Cryptosporidium oocysts to a varying extent 
in the different studies. The included publications fea-
tured CM examination (n = 371), IFA (n = 107), ELISA 
(n = 25), ICT (n = 9), quantitative latex agglutination 
(QLAT) (n = 1) and polymerase chain reaction (PCR) 
(n = 99) (Additional file 2: Table S2).

In total, 196,638 stool samples from Artiodactyla and 
Perissodactyla ungulates were evaluated, of which 37,206 
(18.9%) subjects were positive for Cryptosporidium infec-
tion. Among the 196,638 stool samples, 90,744 were 
associated with the domestic hoofed animals (includ-
ing camels, yaks, donkeys, alpacas and llamas), display-
ing a Cryptosporidium infection prevalence of 13.6% 
(n = 12,377) (Table 1 and Additional file 2: Table S2).

All subsequent analyses included only the studies that 
focused on Cryptosporidium infection in cattle, sheep, 

Fig. 3 Forest plot of prevalence of Cryptosporidium spp. infection in goats using molecular methods (first author, year and country)

http://www.statsdirect.com
http://www.statsdirect.com
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goats, pigs, buffaloes and horses (n = 429). Among them, 
201 provided data on cattle, 66 on sheep, 55 on goats, 
39 on pigs, 37 on horses and 28 on buffaloes (Additional 
file 2: Table S2).

A total of 105,894 samples from 245 studies on com-
mon livestock, defined as cattle, sheep, goats, pigs, horses 
and buffaloes, were examined for Cryptosporidium 
infection, with 24,829 (23.4%) being positive for Crypto-
sporidium spp. using CM and PCR methods. Most of 
the studies were conducted on cattle (n = 163) and sheep 
(n = 46).

The pooled prevalence rates using the CM method 
were 22.5% (95% CI: 19.6–25.6%), 20.7% (95% CI: 15.2–
26.8%), 18.7% (95% CI: 12.36–26.2%), 15.5% (95% CI: 
10.5–21.3%), 13.8% (95% CI: 6.6–22.9%) and 18.6% (95% 
CI: 11.1–27.4%) for cattle, sheep, goats, pigs, horses 
and buffaloes, respectively (Table  2). The pooled preva-
lence rates using the PCR method were 29.1% (95% CI: 

23.1–35.6%), 24.4% (95% CI: 16.4–33.4%), 8.2% (95% CI: 
3.7–14.3%), 22.6% (95% CI: 13.7–33%), 4.7% (95% CI: 
2–8.4%) and 26.0% (95% CI: 12.2–42.8%) for cattle, sheep, 
goats, pigs, horses and buffaloes, respectively (Table  2). 
Analysis of available data by regions (continents and 
New Zealand) showed a moderate geographical varia-
tion of observed prevalence (Table 1). Although diagnos-
tic tests varied among regions, the observed prevalence 
mostly fell within the 5–30% range (Table 2). Regarding 
cattle, a considerably lower maximum prevalence was 
seen in New Zealand compared to other regions. Crypto-
sporidium prevalence in goat tended to be lower in Asia; 
however, only one study was available for Australia. For 
sheep it was the highest in the regions with most inten-
sive sheep production, i.e. Australia, Europe and North 
America (Table  1). Cryptosporidium prevalence in pigs 
was the highest in Asia, Africa and Europe. In horses, 

Fig. 4 Forest plot of prevalence of Cryptosporidium spp. infection in sheep using molecular methods (first author, year and country)
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studies in South America reported the highest Crypto-
sporidium prevalence.

The forest plot diagrams of prevalence of Crypto-
sporidium infection in domestic hoofed animals derived 
from studies using a PCR method are shown in Figs. 2, 
3, 4, 5, 6, 7. As forest plots show, there is a considerable 
variation of study numbers and observed prevalence in 
a given host species within each defined geographical 
region, even if only studies based on PCR methodology 
are included. Considering a wider range of studies, i.e. 
studies that use either CM or PCR (Table 2), cattle are 
most commonly infected globally while horses feature 
the lowest Cryptosporidium prevalence.

The highest and lowest prevalence rate of Crypto-
sporidium infection in domestic hoofed animals was 
observed in America (26%) and Africa (14%) continents, 
respectively (Table  3, Fig.  8). Among 53 countries with 
data, Canada (60%) showed the highest infection rate 
whereas China, Thailand and Germany (8%) had the low-
est infection rate (Table 3, Fig. 8).

The distribution of Cryptosporidium species/genotypes 
by host and geographical region is summarized in Table 4. 
Cryptosporidium parvum (monoinfections 4172/10,583; 
39.4%) and C. andersoni (monoinfections 1992/10,583; 
18.8%) were the most commonly detected Cryptosporid-
ium species (Table 4). A phylogenetic network was con-
structed based on sequences of Cryptosporidium spp. 

(Fig. 9) using the Neighbor-Net method. On the basis of 
this phylogenetic analysis, 10 clades (I, II, III, IV, V, VI, 
VII, VIII, IX and X) containing 12 Cryptosporidium spp. 
were identified (Fig. 9). Interestingly, C. andersoni and C. 
muris were placed together in Clade I, and C. xiaoi and 
C. bovis were both placed in Clade III. It further demon-
strated a pairwise sister relationship between clades III 
and IV (clustering C. xiaoi, C. bovis, and C. ryanae), VI 
and VII (containing C. ubiquitum and C. suis) and VIII 
and IX (containing C. hominis and C. erinacei), respec-
tively. Interestingly, the result of the phylogenetic analy-
sis indicated that clades II (C. scrofarum), III (C. bovis 
and C. xiaoi) and IV (C. ryanae) could have originated 
from a common ancestor. The distribution of Crypto-
sporidium spp. in a wide range of domestic and wild 
ungulates is presented in Table 4. The C. parvum is the 
most common genotype in cattle (54.1%), goats (42.1%) 
and horses (40.2%), followed by C. ryanae in buffaloes 
(66.6%), C. suis in pigs (54.1%), and C. xiaoi in sheep 
(48.9%). In terms of transmission dynamics and clinical 
importance of zoonotic Cryptosporidium spp., C. homi-
nis, C. parvum, C. andersoni, C. bovis and C. ubiquitum 
were identified in sheep/goats, cattle/goats/horses/pigs/
sheep, cattle/camels/sheep/yaks, buffaloes/cattle/sheep/
pigs/red deer and alpacas/buffaloes/cattle/goats/impalas/
sheep/red deers, respectively (Table 4).

Fig. 5 Forest plot of prevalence of Cryptosporidium spp. infection in pigs using molecular methods (first author, year and country)
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Fig. 6 Forest plot of prevalence of Cryptosporidium spp. infection in horses using molecular methods (first author, year and country)

Fig. 7 Forest plot of prevalence of Cryptosporidium spp. infection in buffaloes using molecular methods (first author, year and country)
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Table 3 The prevalence of Cryptosporidium infection in terrestrial ungulates (cattle, sheep, goat, pig, horse and buffalo) using 
conventional microscopic methods. Data are presented separately by continent and country

Continent Country Prevalence, pooled proportion (95% CI) (%)

Africa (43 studies; 17,424 samples) Egypt 10 (4.44–19.32)

Ethiopia 17 (7.15–30.13)

Ghana 29a

Kenya 15 (10.72–21.30)

Malawi 18 (10.48–28.78)

Nigeria 17 (13.07–22.33)

South Africa 0.5a

Tanzania 11 (1.59–29.29)

Tunisia 14 (2.09–44.93)

Total prevalence in Africa: 14 (11.12–18.31)

America (37 studies; 15,860 samples) Argentina 25 (18.83–33.58)

Brazil 16 (5.82–30.23)

Canada 60 (23.32–91.14)

Chile 56a

Costa Rica 11a

Mexico 41 (31.81–52.23)

Trinidad 32 (6.47–67.24)

USA 11 (2.84–24.39)

Total prevalence in America: 26 (18.41–34.67)

Asia (90 studies; 37,458 samples) Bangladesh 9 (2.93–20.36)

China 8 (5.62–12.95)

India 21 (16.02–28.47)

Iran 16 (11.96–20.68)

Iraq 17 (11.36–25.23)

Japan 24 (0.02–72.52)

Malaysia 24 (8.43–46.55)

Myanmar 56a

Nepal 35 (28.81–43.45)

Pakistan 16 (9.05–25.96)

South Korea 17 (11.53–23.57)

Sri Lanka 28a

Taiwan 35 (32.44–38.15)

Thailand 8 (3.08–17.41)

Vietnam 18a

Total prevalence in Asia: 17 (14.94–20.30)

Australia (4 studies; 923 samples) Australia 23 (0.00–71.85)

New Zealand 20 (15.42–25.92)

Total prevalence in Australia: 21 (7.28–40.02)

Europe (71 studies, 34,229 samples) Austria 11a

Czech Republic 17 (9.87–27.11)

Denmark 33 (14.90–55.60)

France 17 (2.56–41.08)

Germany 8 (3.62–48.31)

Greece 17 (9.87–27.11)

Ireland 23 (3.84–52.25)

Netherlands 60a

Poland 11 (3.62–21.85)

Portugal 17a
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Discussion
In this systematic review and meta-analysis, we found 
that 18.9% of the overall populations of the investigated 
ungulate species were infected with Cryptosporidium 
spp. Our study showed that although the prevalence of 
Cryptosporidium infection was higher in ungulates of the 
Cetartiodactyla than in Perissodactyla, the prevalence in 
the latter was not negligible and needs to be considered 
in terms of pathogen transmission and cycling. From 
the data collected and summarized on wild animals (as 
included in Table 4, and Additional file 2: Table S2), it is 
obvious that sylvatic cycles play a major role in Crypto-
sporidium transmission. Wild terrestrial ungulates are 
likely serving as important reservoir for the parasite, and 
certainly the infection of livestock and humans may occur 
by contact to wildlife feces. For meta-analysis, worldwide 
Cryptosporidium prevalence and species/genotype iden-
tity common livestock species have been scrutinized. 
Overall, Cryptosporidium prevalence in farmed ani-
mals is the highest in the Americas and Europe (Table 3) 
which could be attributed to the intensive farm animal 
production in these regions. More specifically, consid-
ering domestic farm animals, the pooled prevalence of 
equine Cryptosporidium infection was 4.7%, compared to 
the pooled prevalence of 29.1%, 26.0%, 24.4%, 22.6% and 
8.2% in cattle, buffaloes, sheep, pigs and goats, respec-
tively. Regarding the number of studies published for the 
different geographical regions, our analysis does not sup-
port under investigation of certain regions (e.g. Asia) as 
cause of a detection bias. This reinforces the suggestion 
that animal production intensity affects the prevalence 
of Cryptosporidium spp. Concentrated animal feed-
ing operations (CAFOs) are most common in cattle and 
pigs. For example, in the USA, in 2002 more than 71% 
of all produced beef were derived from operations hold-
ing more than 5000 heads of cattle each. It is known that 
CAFOs pose a major problem due to the high amounts of 
manure that are released to the environment, facilitating 
potential pathogen transmission to humans, wildlife and 

other agricultural operations [39]. Furthermore, patho-
gen transmission within a CAFO seems much more likely 
than in more extensive farming systems. Accordingly, a 
high prevalence of Cryptosporidium was observed in ani-
mals from countries with many CAFO operations, espe-
cially in studies in Asia and Europe, with both regions 
harboring the majority of the commercial pig raising 
industry [40]. High prevalences in pigs in Africa may be 
attributed to the opposite effect of extensive farming with 
high exposure to environmental contamination. Other 
host animals displaying a high prevalence, such as buf-
faloes and sheep, are also generally kept in larger groups 
on commercial operations. The comparatively low prev-
alence rates in equines and goats may potentially result 
from smaller animal groups and free-range nature of the 
animal management.

Between wild and domestic animals, it appears that 
Cryptosporidium prevalence is lower in wild populations 
than in farmed populations in the same host species. For 
example, Zahedi et  al. [41] reported Cryptosporidium 
infection rates of 30% in farmed buffalo but 12% in wild 
buffalo. This suggests that animal density and confine-
ment to the same (contaminated) environment facili-
tate Cryptosporidium transmission in domestic animals, 
and there is no clear host species disposition in terms of 
general susceptibility to infection with the genus Crypto-
sporidium despite the observed variation in Crypto-
sporidium infection rates among host species (Table 4).

Cryptosporidiosis in ungulates, especially ruminants, 
has several economic and health implications. Crypto-
sporidiosis in neonatal calves can lead to profuse watery 
diarrhea, loss of appetite, lethargy, dehydration and even 
death, thus may require costly treatments [42]. Moreo-
ver, as shown in sheep and goats, cryptosporidiosis can 
exhibit long-term effects on the growth of animals [43, 
44]. Additionally, infected calves can shed over 1 × 1010 
oocysts each day, which can survive in the environments 
for months. The ingestion of very few oocysts can cause 
infection in susceptible hosts, including humans [23, 45]. 

a One study was performed in these countries

Table 3 (continued)

Continent Country Prevalence, pooled proportion (95% CI) (%)

Romania 21 (15.02–27.97)

Serbia 40 (31.95–49.48)

Spain 29 (19.80–39.75)

Sweden 8a

Switzerland 55a

Turkey 34 (19.82–50.61)

UK 34 (0.59–85.50)

Total prevalence in Europe: 23 (20.37–27.68)
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It has been shown that the median infection dose of C. 
parvum for humans range from below 10 to over 1000 
oocysts [22]. Zoonotic transmission of Cryptosporidium 
spp. can easily occur seasonally from young animals such 
as bovine calves to humans, frequently as an occupa-
tional hazard [45, 46].

Nearly 40 Cryptosporidium species have been recog-
nized based on molecular, morphological and biologi-
cal characteristics of the parasites. Previous studies have 
shown that four major species are responsible for bovine 
cryptosporidiosis, namely C. parvum, C. andersoni, C. 
bovis and C. ryanae [1]. We showed that the most preva-
lent Cryptosporidium species in ungulates are C. par-
vum and C. andersoni, comprising 39.4% and 18.8% of 
detected parasites, respectively.

The data also suggest that some Cryptosporidium spe-
cies are shared among ungulate hosts (Table 4). This indi-
cates the occurrence of some inter-species transmission 
of Cryptosporidium spp. among ungulate species, making 
wildlife an important reservoir for infections in domes-
tic animals. Currently, most data on the distribution of 
Cryptosporidium species and genotypes are available on 

domestic animal populations. Amazingly, there are clear 
differences in the distribution of Cryptosporidium spe-
cies within the same host species among geographical 
regions. For example, studies from Ethiopia and Nige-
ria indicate that C. andersoni and C. bovis are the most 
prevalent species in cattle. In contrast, in countries with 
concentrated animal feeding operations (CAFO) such as 
Australia, Iran, Japan and New Zealand, as well as many 
European and North American countries, C. parvum is 
prevalent in cattle (Table  4). Similarly, alpacas in their 
region of origin are mostly infected with C. parvum and 
C. ubiquitum, while alpacas in the UK only tested posi-
tive for C. parvum (Table  4). Calves, lambs and goat 
kids in areas with more human activities can even have 
C. hominis infections [19, 41, 47, 48]. Thus, it might be 
speculated that husbandry systems and contact to other 
livestock and humans strongly influence the distribution 
of Cryptosporidium species in an ungulate population.

Our meta-analysis had several limitations. We 
observed a substantial heterogeneity among the 
included studies. Heterogeneity in the meta-analyses 
of prevalence is not uncommon, and the random-effect 

Fig. 8 Overall prevalence of Cryptosporidium in different geographical regions in the world. The prevalence in each country was determined from 
conventional microscopy data in farmed animals (cattle, sheep, goats, pigs, horses and buffaloes)
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model implicitly incorporates some of the heterogene-
ity [49]. Nevertheless, we investigated several factors 
that can contribute to the observed heterogeneity. The 
diagnostic method used for the detection of Crypto-
sporidium infection was one of the main confounding 
variables. For example, the pooled prevalence of bovine 
Cryptosporidium infection was estimated 29.1% using 
PCR compared to 22.5% using conventional micros-
copy. This seems to indicate that molecular methods 
such as PCR are highly sensitive and specific for the 
detection of Cryptosporidium infection, but compared 
with conventional microscopic methods, they are more 
expensive and require a higher degree of expertise [50].

There are geographical differences in the estimated 
pooled prevalence of Cryptosporidium infection. The 
prevalence was highest in the continent of America, 
followed by Europe, Australia, Asia and Africa. Canada 
had the highest prevalence among countries. Study 
design, time of sampling, age of animals, and condi-
tions of keeping animals are other factors that can 
contribute to the observed heterogeneity in crypto-
sporidiosis prevalence, in addition to the nature of ani-
mal management.

The outcome of our study is probably affected by the 
publication bias. Publication bias occurs when the results 
of studies affect the likelihood of their inclusion in the 
systematic review and meta-analysis [49]. Our systematic 

review was limited to studies published after 1984 in 
English. Moreover, many studies did not provide enough 
information to be included in the meta-analysis.

Conclusions
Results of the meta-analysis suggest that Crypto-
sporidium infection is highly prevalent in ungu-
lates, especially ruminants. Geographical differences 
in Cryptosporidium prevalence and distribution of 
Cryptosporidium species are seen for most domestic 
ungulate hosts. These within-host-species differences 
could be partially attributed to differences in animal 
management among geographical regions. The high-
est prevalence in farmed ungulates occurs in America 
and Europe where CAFO is widely practiced. The major 
farm animal hosts of Cryptosporidium spp. appear to be 
cattle, buffalo, sheep and pigs. These farm animals are 
potent reservoirs for a variety of Cryptosporidium spe-
cies. Cryptosporidium prevalence is also clearly higher 
in farmed animals than in wild ungulate populations. 
Inter-species transmission of Cryptosporidium spp. 
appears to be affected by contact with other host spe-
cies (humans or other animals) and infection pressure 
(intensive farming), rendering the investigated ungulate 
hosts capable of propagating both zoonotic and non-
zoonotic Cryptosporidium species.

Fig. 9 The phylogeny of Cryptosporidium spp
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